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Abstract. In solving a linear system with iterative methods, one is usually confronted with the
dilemma of having to choose between cheap, inefficient iterates over sparse search directions (e.g.,
coordinate descent), or expensive iterates in well-chosen search directions (e.g., conjugate gradients).
In this paper, we propose to interpolate between these two extremes, and show how to perform
cheap iterations along nonsparse search directions, provided that these directions can be extracted
from a new kind of sparse factorization. For example, if the search directions are the columns of a
hierarchical matrix, then the cost of each iteration is typically logarithmic in the number of variables.
Using some graph-theoretical results on low-stretch spanning trees, we deduce as a special case a
nearly linear time algorithm to approximate the minimal norm solution of a linear system Bx = b
where B is the incidence matrix of a graph. We thereby can connect our results to recently proposed
nearly linear time solvers for Laplacian systems, which emerge here as a particular application of our
sparse matrix factorization.
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1. Introduction. Finding solutions of large linear systems of equations is a
fundamental issue, underpinning most areas of mathematical sciences and quantitative
research. For instance, consider partial differential equations arising in various areas
of physics, mechanics, and electromagnetics. These commonly have to be solved
numerically, and a spatial discretization of such a problem naturally leads to solving
a large sparse or structured linear system [29].

In principle, two strategies to solve linear systems exist. First, there are direct
methods [7] like Cholesky factorization or Gaussian elimination. Those methods pro-
vide a (numerically) exact solution of the system by performing a finite number of
computations. However, these algorithms can be computationally expensive, in par-
ticular as the full set of computations always has to be performed to obtain a problem
solution, even if a coarser approximation thereof would be sufficient.

A second strategy is to use iterative methods [8, 22, 29], such as the Jacobi method
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506 SCHAUB, TREFOIS, VAN DOOREN, AND DELVENNE

or gradient descent. Unlike for direct methods, the result after every step of an
iterative algorithm may be interpreted as an approximate solution to the problem,
which keeps getting improved until a desired stopping criterion, e.g., a predefined
precision, is reached. As in practice the specification of the system to be solved
is hardly ever exact, this ability to stop at suitable approximate solutions renders
iterative methods generally less costly in terms of running time. For instance, the
complexity of direct Gaussian elimination for a system of size n is O(n3). In contrast,
the iterative Jacobi method takes only O(Nn2) time. Here, N is the number of
iterations needed, which can usually be kept small.

However, when the system size n is very large, effectively all classical direct and
iterative methods become computationally prohibitive, unless the matrix is known
to have a special structure (banded, Toeplitz, semiseparable, etc.). Methods which
provide faster means for solving linear systems are thus highly demanded.

1.1. Background and related work. The success of any iterative update
scheme in solving a linear system depends on two intertwined factors. On the one
hand, we would like to design our iterations such that each update brings us as close
as possible to the true solution. On the other hand, we would like to make each
iteration computationally as cheap as possible.

Let us initially consider the first of these two objectives here. Trivially, the update
that would bring us closest to the true solution entails finding the correct solution
directly, and thus requires only one iteration. However, this is clearly not feasible, if
our initial problem evaded direct solution methods. A more realistic scheme, aiming
to bring us as close as possible to the desired solution, would be conjugate gradient
descent, which tries to find good search directions at each step using gradient infor-
mation. The downside of an approach like gradient descent is that each step can be
computationally very costly, e.g., as in general all coordinates have to be updated at
each step.

This brings us back to the second objective mentioned above: making each it-
eration as computationally cheap as possible. On this end of the methodological
spectrum there are approaches like (canonical) coordinate descent. Here the idea is
to keep the updates very sparse and only update one (or a small number of k) co-
ordinates at a time, thereby facilitating cheap iterations. However, as this imposes
quite strong restrictions on the allowed search directions, this results, in general, in
a large number of iterations needed, possibly outweighing the gain in computational
complexity for each iteration.

Recently, Spielman and Teng [23] provided a seminal contribution and showed
that one can construct iterative algorithms to solve symmetric, diagonally dominant
(SDD) systems in nearly linear running time. Here, nearly linear refers to a complexity
of the form O(` logc ` log(ε−1)), where ` is the number of nonzero entries in the system
matrix, c is an arbitrary positive constant, and ε is a desired accuracy to be reached.
These results have been further improved and simplified in the last decade [6, 15, 16,
17, 18, 20], and there is now a substantial literature on solving SDD systems effectively
in nearly linear time. Interestingly, all these algorithms follow essentially the same
paradigm. The problem is first reduced to solving a system of the form Lx = b,
where L is the Laplacian matrix of an undirected graph. The Laplacian system is
then solved efficiently using graph theoretic techniques.

1.2. Main contributions. We provide a sparse matrix factorization that en-
ables the construction of fast iterative algorithms. Namely, using our k-sparse matrix
factorization allows for cheap iterative updates in efficient directions.
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SPARSE FACTORIZATIONS FOR FAST LINEAR SOLVERS 507

The key question we address is in how far cheap, coordinate descent like updates
can also be performed in more flexible search directions. As we show in the following
the answer is indeed affirmative. If the iterative updates are performed along direc-
tions qi that can be assembled into a k-sparse decomposable matrix Q = [q1, . . . , qn],
then we can always perform cheap iterative updates, despite the fact that the search
direction may not have sparse support, i.e., Q might be a dense matrix. This signifi-
cantly enlarges the array of possible search directions and paves the way for efficient
algorithms that can benefit from both cheap updates and well-chosen search direc-
tions.

Remarkably, our k-sparse factorization is applicable for a variety of matrices with
seemingly disparate structures. In particular, we can design iterative algorithms for
sparse, hierarchical, semiseparable, or Laplacian matrices with a complexity similar
to specially tailored algorithm for those respective classes. In the case of Laplacian
systems (and, therefore, all SDD systems through the usual reduction), our approach
differs from previous work in that we take a different, matrix-theoretic approach,
rather than relying purely on graph-theoretic machinery to achieve a nearly linear
complexity. Finally, we show that this algorithm can be applied to solve Laplacian
systems in nearly linear time, thereby establishing a connection to the previous lit-
erature. Rather than emphasizing one particular application and providing detailed
simulations for our algorithms, the focus of the present paper is on the theoretical
development of a new sparse matrix factorization and its algebraic properties, which
may then be used in different contexts.

Note that both sparse and dense systems are, in principle, amenable for a k-
sparse decomposition. Therefore, in principle, the target systems for our k-sparse
matrix factorization and the associated iterative solution strategy may be dense or
sparse. For instance, Laplacian systems, which serve as our final application exam-
ple in this paper, are typically sparse systems. Nevertheless, the theory developed
is equally applicable to dense systems as will become apparent when discussing hier-
archical matrices. Of course, in the case of very large dense systems, one may have
to find efficient representations or approximations for storing such data (e.g., using
hierarchical matrices [12, 13], or semiseparable matrices [27, 28]). This is a challenge
in its own right, not addressed in the present paper.

1.3. Outline of the paper. In section 2, we first review some preliminaries for
iteratively solving linear systems and set up some notation. In section 3, we then mo-
tivate and define our k-sparse matrix factorization. We highlight some properties of
this factorization and show how it enables an iteration of the form (2) to be computed
in O(k) time. We then discuss how these cheap iterations can be utilized to construct
fast iterative solvers for linear systems. In section 4, we review several examples of
k-sparsely factorizable matrices, including some sparse matrices, hierarchical matri-
ces, semiseparable matrices, as well as the incidence matrices of trees. Of particular
interest here are hierarchical matrices [4, 11, 12], which are an example of k-sparse
factorizable matrices for which k does not depend on the size of the matrix. In sec-
tion 5, we present fast iterative solvers for systems of hierarchical matrices, based on
k-sparse decompositions. In section 6, we then show how similar techniques can be
applied if the system matrix is the incidence matrix of a graph, and how this naturally
leads to an algorithm for solving a Laplacian system in nearly linear time. Section
7 concludes the paper and discusses possible avenues for future work. To improve
readability, some technical proofs are reported in the appendices.D
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508 SCHAUB, TREFOIS, VAN DOOREN, AND DELVENNE

2. Preliminaries. For simplicity of notation, we will consider only real vectors
and matrices, although generalizations to the complex case are straightforward. In
what follows, the index variable t will be reserved to denote the tth iterate of a vector
(x, or y, respectively). Otherwise, an indexed vector vi is to be interpreted as the
ith column vector of a set of column vectors (usually associated with a corresponding
matrix V = [v1, v2, . . .]).

From an abstract point of view, we consider the problem of finding the minimal
norm vector x within an affine space X . Let v ∈ X be any point in our affine space.
Then by updating x within this search space along a set {qi} of chosen search directions
spanning X −v, one can find the minimal norm solution of x. More precisely, starting
from an x0 ∈ X we iteratively solve

min ‖x‖(1)

s.t. x− v ∈ span({qi}).

As we review in the next section, this problem is closely connected to iteratively
solving a linear system, and the natural updates are of the form

(2) xt+1 = xt −
xTt qi
qTi qi

qi.

The goal of this work is to show that if the search directions for problem (1)
are such that they correspond to the columns qi of a matrix Q that is k-sparsely
factorizable, then all iterative updates of the form (2) can be performed in O(k)
time. Here k is usually much smaller than the dimension of the search space, thereby
facilitating fast iterative updates schemes, as we will see in the subsequent sections.

2.1. Underdetermined systems. Given a compatible linear system Ax = b,
we are looking for the optimal solution of the following optimization problem:

min ‖x‖(3)

s.t. Ax = b,

where ‖x‖ :=
√
xTx. We denote this optimal solution by x∗:

(4) x∗ := arg min
s.t.Ax=b

‖x‖,

This problem can be readily solved as follows. Suppose we are given a matrix Q
where the columns qi form a basis of the null space, null(A), of A. If x0 is a feasible
solution to Ax = b, we can write (4) as

(5) x∗ := arg min
s.t. x=x0+Qy

‖x‖,

for some unknown vector y. Consequently, we may compute increasingly accurate
approximations of x∗ by iteratively updating x according to

(6) xt+1 = xt + α∗t qi with α∗t = arg min
αt∈R

‖xt + αtqi‖ = −x
T
t qi
qTi qi

.

Thus each iteration is of the form (2). We remark that these updates may be inter-
preted in the context of a (randomized) Kacmarz scheme as discussed in the appen-
dices. If we start with a feasible solution x0, each iterate xt is an exact solution of
Ax = b, since all updates added to x0 are in the null space of A. Therefore, the above
iterative method converges to the optimal x∗.
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2.2. Overdetermined and square systems. Iteration (2) also appears natu-
rally when iteratively solving an overdetermined system:

(7) arg min
y

‖Ay − b‖.

By simply making the substitution x = Ay − b, we can transform the above into the
equivalent problem:

min ‖x‖(8)

s.t. x+ b ∈ Im(A),

i.e., we are again trying to find the minimum norm solution of x within an affine space.
Now an arbitrary y0 will provide a starting point x0 = Ay0− b for an iterative update
procedure, and the search directions can be set to Q = A. Let ei denote the ith unit
coordinate vector. It is now easy to see that our update rule (2) for x amounts to
dual updates in y in coordinate descent form:

yt+1 = yt −
(Ayt − b)T qi
‖qi‖2

ei = yt + α∗t ei.

Hence, we can iteratively construct the solutions in y and x by keeping track
of the stepsizes α∗t in the directions of Q. One may, of course, alternatively choose
Q = AS, for any full-row-rank matrix S. The case of a square invertible system
corresponds to the overdetermined scenario in which the minimum-norm solution x
is zero. Most of our results for the underdetermined case can thus be simply recast,
mutatis mutandis, to the overdetermined or square invertible setting, and vice versa.

3. A new sparse matrix factorization for fast iterative updates.

3.1. A k-sparse matrix factorization enabling efficient updates for iter-
ative algorithms. We are now prepared to introduce the notion of k-sparse matrix
factorization. Our motivation for this factorization is that it should enable fast iter-
ative updates of the form (2), i.e., we want to compute any iteration

xt+1 = xt −
xTt qi
qTi qi

qi,

in O(k) time, if qi is a column of the k-sparsely factorizable matrix Q = [q1, q2, . . .].
The underlying idea here is akin to the case where qi is a sparse vector with only

k nonzero entries. Then just k nonzero products need to be computed. Hence, the
computational cost of the update is O(k). However, in order to solve a generic linear
system efficiently, we need to ensure that we can find a set of vectors {q1, . . . , qn} such
that all necessary iterative updates can be performed with this complexity. This will
be the key ingredient of our results on linear solvers presented in section 5.

Definition 1 (support and sparsity of vectors and matrices). The support of a

vector v =
(
v1, . . . , vm

)T ∈ Rm is the set of indices of the nonzero entries of v:

supp(v) = {i ∈ {1, . . . ,m} : vi 6= 0}.

A vector v ∈ Rm is said to be k-sparse, if the size of its support, |supp(v)|, is less
than or equal to k. Similarly, a matrix is said to be k-column (k-row) sparse if each
of its columns (rows) is k-sparse.
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Suppose that xt is not stored in the canonical basis, but in a different set of
coordinates encoded by a matrix C. That is, instead of performing iterations (2) on
xt, we keep track of a vector yt such that xt = Cyt. To yield a sparse update, we
may choose C such that qi is sparse in this representation, i.e., qi = Cdi, where di is
a l-sparse vector. This leads to an iteration of the form

Cyt+1 = Cyt −
xTt qi
qTi qi

Cdi.

Using this representation, every update would be sparse in that it would only effect l
components of y. However, this is not enough to perform each iteration (2) fast, as
one also needs to compute the scalar product xTt qi, which in the new basis becomes
yTt C

TCdi, i.e., the iteration in terms of yt is of the form

yt+1 = yt −
yTt C

TCdi
dTi C

TCdi
di.

To bound the complexity of this operation, one must understand the sparsity pattern
of CTC, which is dictated by how the supports of the columns of C overlap. Observe
that the entry [CTC]ij contains the scalar products between the ith and the jth
column of C. Whence, if every column of C overlaps in support with at most c other
columns, then every column of CTC contains at most c nonzero entries. If we can
find a matrix for which this is true, then CTCdi is a k = cl sparse vector, since di
is l-sparse, and ytC

TCdi is computed in time O(k). If we compile all such vectors qi
into a matrix Q, then we say that Q = CD is a k-sparse factorization.

While this reasoning provides us with some intuition, this definition must, in
fact, be improved to reach tighter complexity bounds. First, we can exploit the
symmetry of CTC, by noting that it can be decomposed as CTC = UT + U , where
U is an upper-triangular matrix. Observe that the number of nonzero entries in the
ith column of UT (or ith row of U) is bounded by the number of columns cj that
overlap with ci for j ≥ i. Second, two columns of UT may have their nonzero entries
at the same positions. Therefore, the support of the sum of two columns does not
necessarily increase. To bound the complexity we need to look at the size of the union
of supports of all columns uj of UT , for which j belongs to the support of di. This
number can indeed be much lower than the approximate estimate cl above. This
justifies the following definition.

Definition 2. Suppose a matrix Q ∈ Rm×n has a factorization Q = CD. Let us
denote the columns of C ∈ Rm×p and D ∈ Rp×n by ci and dj, respectively. We define
the forward-overlap FO(ci) of a column ci to be the list of columns cj, with j ≥ i, that
have a support overlapping with the support of ci. We call the factorization Q = CD
k-sparse if

∣∣∪i∈supp(dj)FO(ci)
∣∣ ≤ k for all j (see Figure 1 for an illustration). Without

loss of generality, each column of C and each row of D is supposed to be nonzero.

The example in Figure 1 shows an 8-sparse factorization of the given matrix
Q. For instance, one can easily check that the forward overlap of column c12 is
FO(c12) = {c12, c13, c16, c20}, and, e.g.,∣∣∪i∈supp(d5)FO(ci)

∣∣ = |{c11, c12, c13, c15, c16, c19, c20}| = 7 ≤ k = 8.

To gain some further intuition, let us consider an alternative definition of a sparse
factorization. We define a partial order on the columns of C with the following
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Fig. 1. (a) An example of 8-sparse factorization. (b) Illustration of the forward overlap of all
columns i ∈ supp(d5).

properties. First, only columns ci with overlapping support are comparable. Second,
every subset Ti = {ci, . . .} spanning a column qi has an upper set of at most k
elements. The upper set is here defined as the union of Ti and all columns of C
larger than any element of Ti in the partial order. Indeed, the factorization Q = CD
expresses nothing but the fact that every column qi is a linear combination of a set
of columns of C with coefficients given by entries of ith column of D.

The following properties of a k-sparse factorization are worth noting.
1. Any m × n matrix Q is min(m,n)-sparsely factorizable with either Q = QI

or Q = IQ. Similarly, it is easy to see from an SVD that every rank k matrix
is k-sparse factorizable.

2. If Q = CD is a k-sparse factorization, then for every column ci of C,
|FO(ci)| ≤ k, C is k-row sparse and each column of D is k-sparse.

3. Conversely, a matrix C such that |FO(ci)| ≤ k for all columns ci is trivially k-
sparsely factorizable. A k-column sparse matrix D is also trivially k-sparsely
factorizable.

4. If Q = CD is a k-sparse factorization and F is f -column sparse, then QF =
C(DF ) is a kf -sparse factorization of QF .

5. If Q1 = C1D1 is a k1-sparse factorization and Q2 = C2D2 is a k2-sparse
factorization, then the matrix (QT1 Q

T
2 )T is (k1 +k2)-sparsely factorizable. In

order to see this, we write(
Q1

Q2

)
=

(
C1

C2

)(
D1

D2

)
.

In particular, if Q2 is the identity, the compound matrix is (k1 + 1)-sparsely
factorizable.
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The following theorem establishes the running time of N iterations of the form
(2), when the vectors qi are the columns of a k-sparsely factorizable matrix. The
proof of the theorem is given in the appendices.

Theorem 3. Let Q ∈ Rm×n, C ∈ Rm×p, and D ∈ Rp×n be matrices such that
Q = CD is a k-sparse factorization of Q, and consider iterations of the form (2) that
start from an arbitrary vector x0 ∈ Rm. If every qi in (2) is a column of Q, then the
computational complexity of running N iterations of (2) is

O(Nk + (m+ n)k2).

With the same complexity, we can compute a yN such that xN = x0 + QyN , where
xN denotes the vector resulting from the N first iterations. By applying sufficiently
many iterations of form (2) we thus obtain both the solution to the primal problem in
x, as well as the solution to the dual problem in y.

The remarkable point about Theorem 3 is that the running time of each iteration
is merely O(k), even if some columns of Q are full. Hence, if k � m, then the cost
per iteration can be largely reduced through the use of a k-sparse factorization, and
the overhead term (m+ n)k2 is more than compensated.

3.2. Ensuring fast convergence by randomized updates. From our dis-
cussion above, we know that after sufficiently many iterations (2) over all columns of
Q, xt converges to

(9) x∗ = arg min
x∈x0+Im Q

‖x‖2.

However, to ensure that we can construct an efficient algorithm based on such cheap
updates, we need to guarantee that the required number of updates is not too large,
as this would undermine the purpose of the fast updates. Stated differently, we need
the convergence rate of our iterations to not be too slow.

Remarkably, one can indeed ensure a sufficient convergence rate using a random
sampling of the columns of Q. To this end, at each iteration randomly select a column
qi with probability proportional to ‖qi‖. This guarantees a convergence rate of the
form

E‖xt − x∗‖22 =

(
1− σ2

min(Q)

‖Q‖2Frob

)t
‖x0 − x∗‖22,

where ‖Q‖Frob =
√

TrQTQ is the Frobenius norm and σ2
min(Q) = λmin(QTQ) is the

smallest nonzero squared singular value [9, 25]. The proof of this result is provided
in the appendices. There we also discuss interpretations of the here presented scheme
in terms of a randomized Kacmarz or randomized coordinate descent method—with
a particular choice of update directions.

The above results state that the expected error in computing x∗ is decreased by
an order of magnitude, e.g., by a factor of δ−1 = 10 after a number of iterations given
by

(10) N1 =
− log(δ−1)

log(1− σ2
min(Q)/‖Q‖2Frob)

≈ O(‖Q‖2Frob/σ2
min(Q)).

The main challenge for the construction of a fast algorithm is thus to find a matrix
Q spanning the desired search space, with efficient k-sparse factorization and low
“condition number” ‖Q‖Frob/σmin(Q). Note that scaling each column of Q by a
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different scalar will not change whether or not the updates will converge. Neither
will it change the complexity of each update (as columns of Q only matter for their
directions). However, scaling the column may change the “condition number” of Q,
and hence the bound on the convergence time.

3.2.1. The underdetermined case. Let us develop the above reasoning some-
what further for the underdetermined case. One seeks the minimum-norm solution
x∗ to Ax = b, where A is an n ×m matrix with full-row-rank. Therefore, it can be
decomposed as A =

(
E F

)
, where E is an invertible n× n submatrix of A.

A matrix Q whose columns span the null space of A can then be constructed as

(11) Q =

(
E−1F
−Im−n

)
,

where Im−n is the identity matrix of dimension m− n. We clearly have AQ = 0, and
thus the columns of Q belong to the null space of A. The rank of Q is m− n, which
is the dimension of null(A).

Moreover, we have that σ2
min(Q) = λmin(FTE−TE−1F +Im−n) ≥ 1. The number

of steps to decrease the error by one order of magnitude is, therefore, at most of the
order of

(12) N1 = O
(
‖Q‖2Frob
σ2
min(Q)

)
= O(‖E−1F‖2Frob +m).

It follows from the elementary properties of sparse factorization that if E−1 =
CD is k0-sparsely factorizable and F is f -column sparse, then E−1F is k0f -sparsely
factorizable, and Q is k = (kf + 1)-sparsely factorizable:

(13) Q = C̃D̃ =

(
C 0
0 Im−n

)(
DF
−Im−n

)
.

Hence, we have a good complexity if we can find an invertible square submatrix
E such that ‖E−1F‖Frob is small, and the resulting Q is k-sparsely factorizable for
low k.

We still have to find a fairly good initial guess, however. A simple initial solution
is given by x0 = (E

−1b
0

), which can be shown to fulfill the following error bound:

‖x0‖2 = ‖E−1b‖2 = ‖E−1Ax∗‖2 =
∥∥(I E−1F

)
x∗
∥∥2

≤
∥∥(I E−1F

)∥∥2
Frob
‖x∗‖2 = O(n+ ‖E−1F‖2Frob)‖x∗‖2.

Overall, reducing the initial relative error

ε0 = ‖x0 − x∗‖/‖x∗‖ ≤ 1 + ‖x0‖/‖x∗‖ = O
(√

n+ ‖E−1F‖2Frob

)
to a prescribed value ε, requires thus a reduction by O(log(n + ‖E−1F‖2Frob)/2 +
log ε−1) orders of magnitude, which is also in O(log(m+‖E−1F‖2Frob)+log ε−1) given
that n ≤ m.

In summary, denoting κ = m+‖E−1F‖2Frob, we find that it takes N1 = O(κ) iter-
ations to decrease the error by an order of magnitude. Further, it takes O(log(κε−1))
orders of magnitude to achieve relative accuracy ε. Following Theorem 3, the total
complexity is thus O(κ log(κε−1)k +mk2).
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Table 1
Complexity of solving (compatible) structured linear systems with a k-sparse matrix factoriza-

tion approach compared to known results in the literature.

Structure k-sparse factorization Literature
k row/column sparse O(Nk) O(Nk) (randomized Kacmarz [25])

Hierarchical O(N log(n) + n log2(n)) O(n log2(n)) (direct method [2])
semiseparable O(N log(n) + n log2(n)) O(n) [27, 28]

Laplacian O(m log2 n log logn log(mε−1)) [15] (similar to this paper)
(Thm. 16) [6] (fastest algorithm)

4. Classes of sparsely factorizable matrices. Many modern and classical
methods aim at exploiting particular structure in the system matrix for fast algo-
rithms. Table 1 provides an overview of results known from the literature and the
k-sparse factorization approach presented in this paper. Interestingly, our k-sparse
matrix factorization approach provides good complexity results for a range of different
matrix types, and might thus be seen as a general framework for seemingly different
matrix structures. We will now discuss some classes in more detail.

Let us start with some intuitive examples first. A simple case is the overdeter-
mined system Ay = b where A is k-column-sparse. In this case, taking Q = A = IA
as a trivial k-sparse factorization, and our algorithm can be seen as a randomized
Kacmarz scheme for the normal equation ATx = AT b, which keeps track of the up-
dates in the x coordinates but also in the y coordinates. In the space of y, this is
simply coordinate descent with a cost O(k), as discussed in section 2.2. The total cost
amounts to O(Nk) as the overhead cost becomes irrelevant when C in the Q = CD
decomposition is the identity.

If A is k-row-sparse and invertible, then Q = IAT is a k-sparse factorization. In
this case a trivial modification of the algorithm in the proof of Theorem 3 simply
coincides again with a randomized Kacmarz scheme [25] (see the appendices).

4.1. Hierarchical matrices. In the following, we will discuss hierarchical Hr-
matrices [13], originally introduced by Hackbusch [12], and show that they are k-
sparsely factorizable. Importantly, in this case k depends only on the height and the
degree of the hierarchical structure.

4.1.1. Definition of an Hr-matrix. As the name suggests, Hr-matrices are
intimately related to hierarchical structures. As a hierarchy may be aptly represented
as a tree we introduce these matrices here with the help of (tree-)graphs. As we will
see, this also enables us to establish a connection to graph-theoretic algorithms for
solving Laplacian systems in subsequent sections.

Definition 4 (dendrogram). A dendrogram is a hierarchical partitioning P
of the set {1, . . . , n}. Every dendrogram comprises a sequence of increasingly finer
partitions Ph, . . . , P0 starting from the coarsest (global) partition Ph given by the whole
set, up to the finest (singleton) partition P0 into n sets. A dendrogram is conveniently
represented by a rooted directed tree. The nodes of this tree at height i are the subsets
of partition Pi. Thus the root (i = h) is the full set while the leaves (i = 0) are the n
single-element subsets. The children (out-neighbors) of a node at height i correspond
to the subsets of this node as specified by the next lower partition Pi−1. We call h the
height of the dendrogram, and the maximum number of children of a node in the tree
is denoted as maximum degree d.
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Fig. 2. (a) A dendrogram of I = {1, . . . , 8} of height h = 3 and degree d = 2. (b) The
P-partitioning of an 8× 8 matrix where P is the dendrogram of {1, . . . , 8} in (a).

Figure 2(a) shows an example of a dendrogram with height 3 and maximum degree
2. For simplicity of notation and without loss of generality, we suppose throughout
the paper that every node of a dendrogram has consecutive elements.

A dendrogram P induces a hierarchical block segmentation of a matrix E ∈ Rn×n
as follows. Let us denote the degree of the root node by t ≤ d. The rows and columns
of E are first block-partitioned according to the partition Ph−1:

(14) E =


EI1×I1 EI1×I2 . . . EI1×It
EI2×I1 EI2×I2 . . . EI2×It

...
...

...
...

EIt×I1 EIt×I2 . . . EIt×It

 ,

where I1, . . . , It are the elements of partition Ph−1. The diagonal blocks EIi×Ii are
recursively subpartitioned according to Ph−2, etc. This partitioning of E is called
P-partitioning. See Figure 2(b) for an illustration.

Definition 5 (elementary block). We use the term elementary block to refer
to a sub-matrix of E generated by the P-partitioning that is not further subdivided. In
other words, it is a block of the form EIi×Ij where Ii and Ij are either two different
sets in the same partition Pk, or two single-element sets of the finest partition P0.

Definition 6 (hierarchical matrix). An Hr(P)-matrix is a square matrix, struc-
tured according to the dendrogram P, for which the elementary blocks have rank at
most r ∈ N. We use the shorthand Hr when the dendrogram is clear from the context.

Note that a submatrix EIi×Ii of an Hr(P)-matrix E, where Ii is a set of some
partition Pk, is an Hr-matrix as well.

4.1.2. Sparse factorization property. In the following, we prove that Hr(P)-
matrices are k-sparsely factorizable, and express k in terms of the rank r, maximum
degree d and height h.

Recall that an Hr(P)-matrix E is of the form (14). Every nonelementary block
EIi×Ii on the diagonal is recursively of the same form until the diagonal block is just
a scalar. Hence, every diagonal nonelementary block is a hierarchical matrix, too.
Further, note that every column of the full matrix E is built by concatenating the
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corresponding columns of the EIi×Ij blocks. For example, the first column of E can
be built by stacking up the first columns of EI1×I1 , EI2×I1 , . . . , EIt×I1 .

We can thus build a k-sparse factorization E = CD as follows. As every off-
diagonal elementary block EIi×Ij has a rank of at most r, there is a matrix Dij

such that the elementary block can be decomposed as EIi×Ij = CijDij , where Cij
has at most r columns. Thus, we know how to express all the elements in the off-
diagonal blocks using this factorization. Hence, if we knew a sparse decomposition
of the diagonal blocks EIi×Ii = CiiDii, we could assemble the whole matrix E by
appropriate concatenation of the matrices Cij .

To factorize the diagonal blocks we apply this construction recursively. To make
the recursion well defined, if the diagonal block E is a scalar (a 1 × 1 matrix), we
define E = CD, where C is an arbitrary nonzero scalar. For instance, we take C = E
and take D = 1. Decomposing the columns of E in this recursive way, we obtain a
sparse factorization E = CD.

We illustrate this for the case t = 3, hereafter. For each i ∈ {1, 2, 3}, let each
diagonal block EIi×Ii = CiiDii be a ki-sparse decomposition (recursively), and recall
that each elementary block EIi×Ij (i 6= j) can be factorized as EIi×Ij = CijDij . Then
a k-sparse factorization of E is given by

E =

C11 C12 C13

C22 C21 C23

C33 C31 C32


︸ ︷︷ ︸

C



D11 0 0
0 D12 0
0 0 D13

0 D22 0
D21 0 0

0 0 D23

0 0 D33

D31 0 0
0 D32 0


︸ ︷︷ ︸

D

,

(15)

where C11, C22, C33 are recursively defined according to the diagonal blocks of E.
Having thus found a possible factorization, the question remains what sparsity,

k, it affords. To answer this question, let us first consider the columns of C necessary
to build the first columns of E, and the union of their forward overlaps. There are
two types of columns in C needed to build up the first block of columns in E.

1. The columns in the
(
C11 0 0

)T
block. Their forward-overlap is k1+r(l−1),

where k1 is the sparsity of the factorization of C1, and the r(l − 1) term
accounts for the overlap with the (l − 1) r-column matrices C12 and C13.

2. The columns in the blocks
(
0 C21 0

)T
and

(
0 0 C31

)T
. Their forward

overlap is r(l − 1) at most.
As this argument holds for any column of E, the factorization E = CD is k-sparse
for k = maxi ki + r(l− 1), where ki is determined recursively from the decomposition
of the diagonal block EIi×Ii . Unravelling the recursion over all h levels, we find that
k = rd(d− 1)(h+ 1), where d is the maximal degree of the dendrogram, as before.

Throughout the paper, in a k-sparse factorization E = CD of an Hr(P)-matrix,
the matrix C is supposed to be of the generic form (15), for an accordingly determined
degree d. We will call this type of matrix a C-matrix. In the appendices, we prove
that the number p of columns of C in the recursive construction in (15) is bounded
by p ≤ rd2n.
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We formalize the above findings in the following theorem.

Theorem 7. Let E ∈ Rn×n be an Hr(P)-matrix with a dendrogram P of height
h and maximum degree d. Then, there are matrices C ∈ Rn×p and D ∈ Rp×n such
that p ≤ rd2n and the factorization E = CD is k-sparse for k = rd(d− 1)(h+ 1).

4.2. Semiseparable matrices. Another important matrix class which has re-
ceived much attention in the literature are semi-separable matrices, whose inverses
are given by tridiagonal matrices [27, 28] and thus can be solved in linear time.

Definition 8 (see [26]). An n× n matrix E is called (p, q)-semiseparable if the
following relations are satisfied:

rank(E(1 : i+ q − 1, i : n)) ≤ q and rank(E(i : n, 1 : i+ p− 1)) ≤ p

for all feasible 1 ≤ i ≤ n.

Theorem 9. An n × n matrix that is (p, q)-semiseparable is an Hr(P)-matrix
where r = max{p, q} and P is a binary dendrogram.

The proof is given in the appendices. It follows directly that semiseparable matri-
ces are k-sparsely factorizable, too. We note that, due to their remarkable structural
properties, algorithms solving semiseparable systems in linear time are well known in
the literature [27, 28].

4.3. Reduced incidence matrices of trees and their inverse. In what fol-
lows, we define a reduced incidence matrix of a tree, and show that it is k-sparsely
factorizable as it is an H1(P)-matrix where P is a binary dendrogram (d = 2). We
remark that, to the best of our knowledge, this connection between hierarchical ma-
trices and incidence matrices of trees has not been reported in the literature so far.
The importance of this observation arises in the context of Laplacian systems, as we
will see in a later section.

We first give the definitions of an incidence matrix of a graph and of a reduced
incidence matrix of a tree.

Definition 10 (incidence matrix, reduced incidence matrix). Let G be a posi-
tively weighted undirected graph on n nodes and m edges with an arbitrary direction
chosen for each edge. An incidence matrix B ∈ Rn×m of G is a node-by-edge matrix
such that given an edge ei of G from node i1 to node i2 with weight wi, the ith column
of B takes value −√wi at the source node i1, value

√
wi at the target node i2, and

value 0 at any other node.
A reduced incidence matrix of a graph G is an incidence matrix of G from which

one row has been removed.

To reveal the hierarchical structure in the reduced incidence matrix of a tree, one
has to recursively split the nodes of the tree in a balanced way. A classic way to do
so is provided by the tree vertex separator lemma.

Lemma 11 (tree vertex separator lemma, [5, 14]). For any forest T with n ≥ 2
nodes, one can divide T into two forests both of at most 2n/3 nodes, by removing at
most one node d, which can be computed in O(n) time.

Proposition 12. A reduced incidence matrix of an n-edge tree is, for some or-
dering of the nodes and edges, an upper-triangular H1(P)-matrix for a binary den-
drogram P with height O(log n). The inverse of the reduced incidence matrix is, for
the same ordering of nodes and edges, also an upper-triangular H1(P)-matrix. The
dendrogram P and both hierarchical matrices can be computed in time O(n log n).
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Thus, a O(log n)-sparse factorization of (the inverse of) such a hierarchical matrix is
computable in time O(n log2 n).

Proof. Note that in this proof we consider T as an undirected tree with root v. A
tree T of n nodes has n− 1 edges, and hence is described by an n× (n− 1) incidence
matrix. By convention we assign an arbitrary direction to each edge, encoded by the
signs of the entries in the incidence matrix. However, the chosen direction does not
play any role for the results in the following. By removing a row from the incidence
matrix, we obtain a square reduced incidence matrix of dimension n− 1.

We now split the tree T into two forests T1 and T2 following the procedure of the
tree vertex separator lemma. Each of T1, T2 will accordingly have no more than 2n/3
nodes. We assign the separator node d (if any) to T2. We now order the nodes in our
reduced incidence matrix in two blocks according to this split:

E =

(
EI1×I1 EI1×I2

0 EI2×I2

)
,

where EIi×Ii (for i = 1, 2) is the reduced incidence matrix of Ti and EI1×I2 is a
rank-1 matrix with at most one nonzero entry corresponding to the edge linking d
to its father. Here, the indices of the edges have been assigned as follows: an edge
connecting node i and j is indexed by j if j is one step further away from the root
than i (i.e., j is the “child” of i).

We repeat this argument recursively and thereby create a dendrogram P on the
nodes of T of height O(log n), and a corresponding upper-triangular H1(P)-matrix
structure for E. From the ordering of edges, we see that the ith node is always incident
to the ith edge, thus the diagonal entry of E is ±√wi, making it easily invertible.
Indeed, the inverse of E can be computed recursively as

E−1 =

(
E−1I1×I1 F

0 E−1I2×I2

)
,

with F = −E−1I1×I1EI1×I2E
−1
I2×I2 . Note that we may write F = uvT as it is clearly of

rank-1 at most, thus leading to an upper-triangular H1(P)-matrix for E−1 as well.
Both for E and E−1, every of the O(log n) steps of the recursion takes O(n), required
to finding the tree vertex separators and (in case of E−1) computing u and v, solutions
of triangular systems. Therefore, we get a total cost of O(n log n).

Finally, using the procedure outlined above we can decompose E−1 = CD. Using
E−1I1×I1 = C11D11 and E−1I2×I2 = C22D22, we recursively construct

E−1 =

(
C11 u

C22

)D11

D22

vT

 .

By unfolding this recursion we can see that this leads to a forward-overlap of size
O(log(n)) in C, and an O(log(n)) column-sparse matrix D. Similarly, a O(log n)-
sparse factorization can be obtained for E.

5. Fast iterative linear solvers on hierarchical systems. To illustrate the
usefulness of our results, in the following we showcase two concrete application sce-
narios in which the above developed theory can be employed.

5.1. A strategy for solving underdetermined systems. In the following,
we focus again on the case of an underdetermined system Ax = b. We devise a
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strategy that assumes a decomposition of the n×m full-rank matrix A (with n < m)
of the form A =

(
E F

)
, where E is an invertible n×n submatrix of A. In particular,

let us consider the case where E−1 is hierarchical. We can then combine Theorem 3
and the subsequent discussion, and Theorem 7 to obtain the following result.

Theorem 13. Let A =
(
E F

)
be an n × m matrix with n < m, where E ∈

Rn×n is invertible and E−1 is an Hr(P)-matrix with an associated dendrogram P of
maximum degree d and height h. Further, let F ∈ Rn×(m−n) be f -column sparse.
Then, we can compute an approximation of x∗ := arg mins.t.Ax=b ||x|| by applying N
iterations of the form (2) in time

O(Nfrd2h+mf2r2d4h2) + Cost(CD),

where Cost(CD) is the cost of computing a (rd2(h+ 1))-sparse factorization of E−1.
The number of iterations to gain one order of magnitude on the error is at most
N1 = O(‖E−1F‖2Frob +m).

Proof. Following Theorem 7, let E−1 = CD be a k-sparse factorization with
k = rd(d − 1)(h + 1) = O(rd2h). By the second elementary property of the sparse
factorization (see Property 2 in section 3.1), we know that C is k-row sparse and
that each column of D is k-sparse. A feasible solution to Ax = b is then given by
x0 = (E

−1b
0

) where E−1b = CDb is computed in O(kn) time.
Now, consider the matrix Q given in (11). From our discussion above we know

that the columns of Q are a basis of null(A) and that the matrix Q is (kf+1)-sparsely
factorizable. Let Q = C̃D̃ be the (kf + 1)-sparse factorization given in (13). We start
from the vector x0 and iteratively pick a column q of Q and perform an iteration of
the form (2). Theorem 3 with Q, C̃, and D̃ then shows that the running time is given
by

O(Nfk +mf2k2) + Cost(CD).

5.2. Square hierarchical systems. The present technique can be also applied
to solve square systems Ax = b, where A is hierarchical and invertible.

Theorem 14. The system Ay = b, where A is an invertible n× n Hr(P)-matrix
with P a dendrogram of degree d and height h, can be solved iteratively in time

O(Nrd2h+ nr2d4h2) + Cost(CD),

where N is the number of iterations and Cost(CD) is the running time needed to
compute a k-sparse factorization of A with k = rd(d− 1)(h+ 1).

Proof. In section 2.2, we explain how to solve an overdetermined system using
iterations (2). Trivially, we can use the presented method for the square system
Ay = b. Following the notation of Theorem 3, here Q = A, m = n, and the running
time is

O(Nk + nk2) + Cost(CD).

Moreover, we use Theorem 7 which states k = rd(d − 1)(h + 1) to deduce that the
running time is

O(Nrd2h+ nr2d4h2) + Cost(CD).

D
ow

nl
oa

de
d 

10
/3

1/
18

 to
 1

93
.1

90
.2

53
.1

45
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

520 SCHAUB, TREFOIS, VAN DOOREN, AND DELVENNE

In particular, if A is an H1(P)-matrix (rank r = 1) with a binary (d = 2)
dendrogram P of height h = O(log n) (e.g., A could be the reduced incidence matrix
of a tree), then this running time becomes

O(N log n+ n log2 n),

where we have used Proposition 12 which states that a sparse factorization of A is
computed in time O(n log2 n).

As far as we know, this is the best iterative method in terms of cost per iteration
(log n). Most standard methods would exhibit a cost of O(n) per iteration, the cost of
a matrix-vector product. However, for solving squared hierarchical systems a direct
method exists that solves such a problem in O(n log2 n) [2].

6. Solving Laplacian systems in nearly linear time. In the following we
demonstrate how the approach outlined above can be used to solve Laplacian systems.

6.1. Minimum norm solution for a system with reduced incidence ma-
trix.

Corollary 15. Let A be a reduced incidence matrix of a connected undirected
graph on n nodes and m edges. Then, the minimal norm solution x∗ of a compat-
ible system Ax = b can be computed with relative accuracy ε = ‖xt − x∗‖/‖x∗‖ in
O(m log2(n) log log(n) log(mε−1)) time.

Proof. Note that every edge in the graph corresponds to one column of A, and
thus every spanning tree is associated with a submatrix E which is invertible by
construction [24]. Choosing an invertible (sub-)matrix E such that A =

(
E F

)
is, therefore, equivalent to selecting a spanning tree of G. We now claim that we
can choose E, i.e., choose an appropriate spanning tree, such that ‖E−1F‖2Frob =
O(m log n log log n).

For any choice of spanning tree, we define the root as the node whose row has
been removed from the incidence matrix A to obtain a reduced incidence matrix. We
choose the (arbitrary) orientation on the edges so as to go from root to leaves. We
also order the nodes from root to leaves (topological order) and edges so that any edge
has the same index as its destination. Let us call the unweighted, directed adjacency
matrix of this spanning tree TE . With the choices made above TE is upper triangular.
Then we can write E = (I − TE)

√
WTE

where WTE
is the diagonal matrix weights

on the edges.

Using a Neumann series expansion we can see that E−1 = W
−1/2
TE

(I + TE + T 2
E +

T 3
E + · · · + ThE) where h is the height of the tree. The columns of E−1 encode the

paths between root and leaves, with entries given by the (positive) inverse square root
of the edge-weights.

Since F is a (reduced) incidence matrix, each column i of E−1F is the (weighted)
difference between two columns of E−1. In fact, each column i of E−1F describes
the (signed) path in the tree between the extremities of edge i, on which each edge
e has weight

√
wi/we. Therefore, the squared Frobenius norm of E−1F is the so-

called stretch of the tree in the graph with inverse weights, i.e., weight w−1e on
each edge e of the graph, as already noticed in [15]. Using the algorithm in [1]
we can, therefore, find a spanning tree with reduced incidence matrix E such that
‖E−1F‖2Frob = O(m log n log log n), where m is the number of edges in the graph. The
incurred computational cost for is O(m log n log log n) [1].

From Proposition 12, it follows that E−1 is an H1(P)-matrix, which is a binary
dendrogram P of height h = O(log n), and parameters r = 1, d = 2. A sparse
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decomposition of E−1 can thus be computed in time O(n log2 n). Using Theorem 13,
we can thus compute the minimal norm solution x∗ of Ax = b in nearly linear time.

More precisely, following section 3.2.1 we define κ = ‖E−1F‖2Frob + m, which
is O(m log n log logn). We then find that N1 = O(κ) iterations, each of which
costs k = O(log n), suffice to gain one order of magnitude, and the overall cost to
achieve a relative accuracy ε is O(κ log(κε−1) + mk2), which in this case reduces to
O(m log2 n log log n log(mε−1)).

6.2. Solving Laplacian systems. The above corollary provides the critical step
in solving a compatible Laplacian system Lχ = c, where L is the Laplacian of the
same graph, as we show now. For a given incidence matrix B the Laplacian is defined
as L = BBT , or equivalently as the node-by-node matrix with entries Lij = −wij for
every edge ij of weight wij , Lij = 0 if i is not adjacent to j, and the weighted degree
Lii =

∑
k wik on diagonal entries. Such a system Lχ = c can be solved in two steps:

1. solve Bx = c so that x is in the image of BT ;
2. solve the compatible, overdetermined system BTχ = x.

This strategy of splitting the problem of solving a Laplacian system into two parts
is in line with the approach followed by Kelner et al. [15]. However, their algorithm
relies on graph-theoretic notions and a specific data structure construction, rather
than a matrix decomposition.

Note that the first step in the procedure above is equivalent to finding the
minimum-norm solution of Bx = c. Any solution of Bx = c is of the form x = BTχ+v,
for some v such that Bv = 0. This implies that v is orthogonal to BTχ, and thus
BTχ + v has a norm larger than BTχ, with the minimum norm solution given by
v = 0. The goal is, therefore, to solve Bx = c in the minimum norm sense. Since
the columns of B sum to zero, we can remove an arbitrary row without affecting the
solution, i.e., we can “ground” the system. Let us call A the so-obtained reduced
incidence matrix of the graph, and b the vector obtained from c by removing one
entry. Now we have to solve Ax = b, which can be done efficiently as discussed above.

The second step outlined above then requires finding the solution of a compatible
overdetermined system. This can be found by solving the square invertible triangular
subsystem ET y = xE where E is the reduced incidence matrix of the spanning tree
used to solve Ax = b (see the proof of Corollary 15) and xE is the corresponding part
of vector x. Solving this triangular system takes O(n) time from leaves to root.

We remark that when solving a semidefinite positive system Lχ = c, the L-
pseudonorm ‖χ‖2L = χTLχ is often used as the error norm. Note that all ‖χ‖2L
vanishes only if vector χ has identical entries. The relative accuracy of the solution
χ is accordingly defined as ε = ‖χ− χ∗‖L/‖χ∗‖L.

Putting these pieces together, we obtain the following theorem.

Theorem 16. Given a Laplacian matrix L of a connected graph with m edges
and a zero-sum vector c, the (compatible) system Lχ = c can be solved within time
O(m log2 n log log n log(mε−1)) with relative accuracy ε, as measured in the L-pseudo-
norm.

Proof. From Corollary 15 we find an approximate solution x∗+∆x to the problem
Bx = c, with ‖∆x‖/‖x∗‖ ≤ δ, in time O(m log2 n log log n log(nδ−1)).

We then find the approximate solution χ∗ + ∆χ as E−T (x∗E + ∆xE), where xE
denotes the restriction of the m-dimensional vector x to the n entries corresponding
to E. The incurred error ∆χ can be bounded, using L = BBT and B = (E F ):

(16) ‖∆χ‖2L = ‖E−T∆xE‖2L = ‖(I E−1F )T∆xE‖2 ≤ O(m log n log log n)‖∆x‖2.
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Moreover the exact solution fulfills ‖χ∗‖2L = ‖x∗‖2 by definition of x = BTχ.
Thus, we see that the relative accuracy on x in terms of ‖.‖L is

‖∆χ‖2L
‖χ∗‖2L

= O(m log n log log n)
‖∆x‖2

‖x∗‖2
.

Therefore we can choose δ−1 = O(
√
m log n log log n)ε−1, for any required accuracy

level ε. The proof is concluded by Corollary 15.

We remark that the computational complexity of our final algorithm could be
reduced further, by using some of the computational techniques discussed in [15, 16,
17], which are beyond the scope of this paper, however. For instance, one could employ
a preconditioning to change the norm of ‖E−1F‖ and thereby obtain a better initial
estimate for x̂0. Indeed using such a preconditioning recursively, Kelner et al. [15] are
able to obtain an algorithm with a total complexity of O(m log2 n log log n log ε−1).
Note, however, that Kelner et al. [15] employ quite different means to establish this
result. Instead of a matrix factorization, the core tool invoked is an efficient data-
structure which enables fast updates. Our k-sparse matrix factorization approach
may thus be seen as an alternative perspective on the problem of solving Laplacian
systems.

7. Conclusion. In this paper we have considered the problem of finding the
minimum norm vector x within an affine space, which arises naturally when solving
an under- or overdetermined linear system. We have shown that this problem can
be solved very efficiently in an iterative manner by choosing the matrix of search
directions Q = [q1, . . . , qm] in an appropriate way. Specifically, if there exists a k-

sparse matrix factorization of Q, each iterative update of the form xt+1 = xt− xT
t qi
qTi qi

qi

can be computed in O(k) time, enabling us to construct fast algorithms for solving
linear systems. The notion of a k-sparse matrix factorization is indeed central to these
findings, as it ensures the existence of a computationally efficient update scheme
despite the fact that Q might be full, i.e., the search directions are not formed by
sparse vectors.

We have shown that some important classes of matrices are k-sparsely factoriz-
able, and in particular that in the case of hierarchical matrices k does not depend
on the size of the matrix, but merely on the depth of the hierarchy. From this, we
have deduced an iterative method with fast iterations that approximates the minimal
norm solution of underdetermined linear systems. In particular, this approach can
be applied when the coefficient matrix is the incidence matrix of a connected graph.
This leads naturally to a method to solve Laplacian systems in nearly linear time. In
this context, our work provides a complementary algebraic perspective to the problem
of solving Laplacian system, and connects combinatorial and graph-theoretic notions
with the problem of finding a k-sparse matrix factorization.

An important direction for future work is to characterize the general class of
matrices that can be sparsely factorized in more detail, and see how it can be extended
beyond the matrices discussed within the present manuscript. For instance, solvers
based on tensor decompositions [3, 19, 21] have been presented in the literature, which
assume that the linear system under study has an inherent Kronecker-product [3, 19]
or tensor-train [21] representation (or at least can be well approximated by such a
structure). It would be interesting to investigate in how far these matrix structures
are also amenable to a k-sparse factorization.

Other avenues for future work include investigating possible parallelization of
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the here presented techniques, or combining them with other randomized update
schemes [9, 10] than the here considered randomized Kacmarz updates [25]. For
instance, it would be interesting to see in how far block updates (instead of single
coordinate updates), could lead to more efficient iterative algorithms.

Appendix A. Proof of Theorem 3.

Theorem 17 (Theorem 3). Let Q ∈ Rm×n, C ∈ Rm×p, and D ∈ Rp×n be
matrices such that Q = CD is a k-sparse factorization of Q, and consider iterations
of the form (2) that start from an arbitrary vector x0 ∈ Rm. If every qi in (2) is a
column of Q, then the computational complexity of running N iterations of (2) is

O(Nk + (m+ n)k2).

With the same complexity, we can compute a yN such that xN = x0 + QyN , where
xN denotes the vector resulting from the N first iterations.

Proof. Let us first comment on the general strategy for computing fast iterations.
Given xt ∈ Rm and a column qj = Cdj of Q, recall that the next iteration we aim to
compute is of the form

(17) xt+1 = xt −
xTt qj
qTj qj

qj .

In order to get a running time for each iteration not depending on the system
size m, we make use of two generating sets of Rm. The sets are given by the columns
of C, as well as the columns of CU−T , where U is the p× p upper triangular matrix
such that CTC = UT + U . Each column of Q has a decomposition in terms of these
generating sets with a sparsity governed by k; indeed a column qj is expressed as
qj = Cdj = CU−TUT dj , where dj , a column of D, is k-sparse and ej := UT dj is
k-sparse by definition of the k-sparse factorization. Using these sets we can thus
express xt, with the coefficient vectors ht, gt, defined via the relationships xt = Cht
and xt = CU−T gt. Note that such a vector gt is given by gt = UTht. Now at each
iteration we only use the vectors hi, gi, dj , and ej , and do not need to store the full
vector xt. In particular, the inner-product can be computed as

xTt qj = hTt (CTC)dj = hTt (U + UT )dj

= (UTht)
T dj + hTt (UT dj) = gTt dj + hTt ej .

This can be done in O(k) time, as we will show in the following.
In order to establish this key result about the complexity of the inner product,

which leads directly to an efficient algorithm for performing our iterative updates, we
will proof the following facts.
Fact 1. We can compute the matrix U in O(mk2) (which is also the cost of computing

CTC).
Fact 2. We can compute an m-sparse vector h0 ∈ Rp such that x0 = Ch0 in time

O(m).
Fact 3. We can compute g0 := UTh0 in time O(mk).
Fact 4. The matrix UTD can be computed in time O(nk2).
Fact 5. All the scalar products qTi qi, where qi is a column of Q, are computable in

time O(nk).
Proof of Fact 1. The cost of computing CTC can be estimated by the number

of scalar additions and multiplications involved. In fact, the number of additions
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is the same as the number of multiplications, so we need only track the number of
scalar multiplications. From the elementary properties of the k-sparse factorization,
it follows that there are at most k entries per row. In the course of computing the
entries of CTC all the scalar products between the p columns of C will be computed.
Thus we find that every entry of the first row of C will be multiplied with every k
(or less) entries of the first row, which gives O(k2/2) scalar multiplications associated
to the entries of the first row. Since every row can be treated similarly, the cost of
computing CTC is at most O(mk2).

Proof of Fact 2. We can assume without loss of generality that the columns of C
contain the canonical basis of Rm. To see this, one can set C̃ :=

(
Im C

)
∈ Rm×(p+m)

and D̃ :=
(
0 DT

)T ∈ R(p+m)×n. It then follows that for each column c̃i of C̃,

|FO(c̃i)| ≤ k + 1, that D̃ is (k + 1)-column sparse, and that for each column d̃j ,∣∣ ∪i∈supp(d̃j) FO(c̃i)
∣∣ ≤ k + 1. Consequently, even though D̃ has some zero rows, the

factorization C̃D̃ has all the properties of a (k + 1)-sparse factorization and we say
that C̃D̃ is (k + 1)-sparse. As a consequence, the running time does asymptotically
not depend on the choice of the decomposition CD or C̃D̃. Hence, we can assume
without loss of generality that a vector h0 ∈ Rp, such that x0 = Ch0, can be computed
in O(m) time.

Proof of Fact 3. Denote by U the p×p upper-triangular matrix such that CTC =
UT + U . Notice that the ith row of U is |FO(ci)|-sparse. Since |FO(ci)| ≤ k, this
implies that the matrix U is k-row sparse. Moreover, as each column of C is assumed
to be nonzero, we can deduce that U is invertible. Hence, given h0, since UT is
k-column sparse, we compute the vector g0 := UTh0 in time O(mk).

Proof of Fact 4. Let dj be a column of D, which is k-sparse. Then, since Q = CD
is a k-sparse factorization, the vector ej := UT dj is k-sparse and is computed in time
O(k2). Consequently, we can compute the matrix product UTD, i.e., all vectors ei in
O(nk2).

Proof of Fact 5. We compute any product qTi qi as

qTi qi = dTi (CTC)di = dTi (U + UT )di = (UT di)
T di + dTi (UT di) = eTi di + dTi ei.

Since ei and di are k-sparse, it takes O(k) time to compute qTi qi, and thus O(nk) to
compute all the products.

Appendix B. Fast iterative algorithms. Following the analogous reasoning
as in the proof of Fact 5, we see that

xTi qj = gTi dj + hTi ej

is also computable in O(k) time. Hence, we can compute a first iteration of (17)
efficiently.

In order to make this computational gain available at every iteration, we have to
find a way to update ht and gt in a fast manner, too. Given ht, gt ∈ Rp such that
xt = Cht and gt = UTht and given ej = UT dj , the vectors

ht+1 := ht −
xTt qj
qTj qj

dj ,

gt+1 = gt −
xTt qj
qTj qj

ej
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are such that xt+1 = Cht+1 and gt+1 = UTht+1. Moreover, from Facts 2 and 3, and
the sparsity of dj , it follows that the vectors ht+1 and gt+1 are computed in time
O(k).

Consequently, at each iteration, we need only the vectors ht, gt, dj , and ej in order
to compute ht+1 and gt+1. Note that both ht+1 and gt+1 are required to compute
the scalar product xTt+1qj (needed in the next iteration) in time O(k). Finally, the
approximate solution after N steps, xN , is computed from the relation xN = ChN .
This can be done in O(mk) time due to the sparsity of C.

Combining these results, it follows that N iterative updates can be performed in
time

O(Nk + pk + (m+ n)k2).

Finally, the computation of yN such that xN = x0 +QyN can be performed while
computing xN with the above described method without additional costs. Indeed,
start with y0 = 0. If the (t+ 1)th iteration is

xt+1 = xt −
xTt qj
qTj qj

qj ,

then yt+1 corresponds to updating the jth entry of yt by adding −x
T
t qj
qTj qj

. As the

required scalar products are computed for xt+1, no additional cost is incurred.

B.1. Relationships to randomized Kaczmarz and randomized coordi-
nate descent. In the following we discuss how the iterative updates we discuss in
section 2 can be interpreted from the lens of (randomized) Kacmarz and (randomized)
coordinate descent methods.

B.1.1. The underdetermined case. We consider finding the minimum norm
solution for a consistent linear system Ax = B where A is an n × m matrix with
m > n. As discussed in section 2, given any initial solution x0, this can be achieved
by iteratively updating x, by projecting it onto the hyperplane orthogonal to the
vectors qi:

(18) xt+1 =

[
I − qiq

T
i

qTi qi

]
xt = xt −

xTt qi
‖qi‖2

qi,

where the update directions qi lie within the null space of A. Stated differently, the
matrix Q = [q1, q2, . . .] fulfills AQ = 0.

Now we can relate the above to the Kacmarz scheme as follows: Let us denote
the row vectors of A by aTi (i ∈ 1, . . . n). One update step according to the Kacmarz
scheme is defined as

(19) xt+1 = xt +
bi − aTi xt
aTi ai

ai,

where bi is the ith component of the right-hand side.
To see that finding this minimal norm solution via the update (18) can indeed

be interpreted as Kacmarz update scheme, let us define the augmented m×m linear
system:

(20) A′x =

(
A
QT

)
x =

(
b
0

)
.
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Note the (unique) solution to this system is indeed the minimum norm solution of
Ax = b.

Let us now consider iteratively solving (20) according to the Kacmarz scheme.
Since we assumed that we start with an initial condition x0 that fulfills Ax0 = b, the
first m equations are automatically fulfilled. Given that the right-hand side has to be
zero for the m − n equations for the solution to be of minimum norm, we can easily
see that all the updates are indeed of the desired form.

Finding a feasible solution x0. Let us briefly discuss the scenario that we cannot
obtain a feasible solution x0 in a simple manner, but the matrix (A′)T in (20) is
sparsely factorizable. As we use our k-sparse factorization, all inner-products are
cheap to compute, and we can also compute iterations of the form (19) efficiently. In
particular, for a compatible square system of the form Ax = b, where AT is sparsely
factorizable (say Q = IAT is k-column sparse), we can employ our k-sparse matrix
factorization to compute any iteration of the form (19) in O(k) time.

B.1.2. The overdetermined case. In this case we have a system of the form
Ay = b where a is an n×m matrix with m < n. Let us define x = Ay− b as discussed
in section 2. From the analytical solution to the normal equations ATAy = AT b,
we know that we must have ATx = 0. Whence, if we choose Q = A in our update
rule (18), this is exactly equivalent to an update of the form (19), and can be solved
efficiently using our k-sparse matrix factorization.

As discussed by Gower and Richtarik [9, 10] the dual update in y simply corre-
sponds to coordinate descent:

yt+1 = yt −
(Qy − b)T qi
‖qi‖2

ei,

where ei is the ith unit vector. Indeed by keeping track of the step sizes α∗t =
(qTi xt/q

T
i qi)qi we effectively construct y∗ such that Qy∗ + x0 = x∗ in (5).

Appendix C. Semiseparable and hierarchical matrices.

Lemma 18. The number of columns in C in the recursive construction in (15) in
section 4.1.1 is given by p ≤ rd2n.

Proof. By induction on n, we prove that p ≤ rd(d− 1)
(

d
d−1n−

1
d−1
)
.

1. If n = 2, then d = 2 and p ≤ 4 ≤ rd(d− 1)
(

d
d−1n−

1
d−1
)
≤ rd2n.

2. If n > 2, then E is of the form (14). Let us denote the size of a diagonal

block EIi×Ii by ni, so we have n =
∑d
i=1 ni. Now, from the construction of

C we know that p ≤ r(d−1)d+
∑d
i=1 pi, where pi is the maximum number of

columns in the matrix Ci of EIi×Ii (1 ≤ i ≤ d). Consequently, by induction
we have

p ≤ r(d− 1)d+ r(d− 1)d

d∑
i=1

(
d

d− 1
ni −

1

d− 1

)
= r(d− 1)d

(
d

d− 1
n− 1

d− 1

)
≤ rd2n.

Theorem 19 (Theorem 9). An n × n matrix that is (p, q)-semiseparable is an
Hr(P)-matrix where r = max{p, q} and P is a binary dendrogram.

Proof. Following the definition, we have 1 ≤ p, q ≤ n, and we assume without loss
of generality that n ≥ 2. Now, let E be an n×n matrix which is (p, q)-semiseparable,
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and let {I1, I2} be a partition of I = {1, . . . , n} with I1 = {1, . . . , bn2 c} and I2 = I\I1.
Consider an integer i1 ∈ I such that bn2 c − q + 1 ≤ i1 ≤ min{bn2 c, n− q + 1}. Then,
the submatrix E(1 : i1 + q − 1, i1 : n) is of rank `1 ≤ q and contains EI1×I2 .

Similarly, if i2 ∈ I such that bn2 c − p + 1 ≤ i2 ≤ min{bn2 c, n − p + 1}, then the
submatrix E(i2 : n, 1 : i2 + p− 1) is of rank `2 ≤ p and contains EI2×I1 . Therefore,
we have shown that the off-diagonal blocks EI1×I2 and EI2×I1 are of a rank lesser
than or equal to r.

From the definition of semiseparable matrix, it follows that the diagonal blocks
EI1×I1 and EI2×I2 of E are also (p, q)-semiseparable matrices. Repeating the previous
argument recursively on EI1×I1 and EI2×I2 shows that E is an Hr(P)-matrix with P
being a binary dendrogram, i.e., d = 2.

Appendix D. Convergence rate and required number of iterations for
randomly sampled search directions. The proof is due to Strohmer and Ver-
shynin [25] and has originally been given in the context of a randomized Kaczmarz’s
method for solving linear systems. The version we give here is adapted to the context
of this paper.

We want to establish the speed of convergence of iterations (2), when each column
qi of the matrix Q is chosen with probability proportional to ‖qi‖2. In order to do so,
for any x we first consider the auxiliary quantity∑

i

〈x, qi〉2 = xTQQTx ≥ σ2
min(Q)‖x‖2.

Here 〈x, qi〉 denotes the usual scalar product xT qi. If each direction qi is selected with
probability pi = ‖qi‖2/

∑
j ‖qj‖2 = 〈qi, qi〉/‖Q‖2Frob, we can rewrite this inequality as

∑
i

pi〈x, qi〉2/〈qi, qi〉 ≥
σ2
min(Q)

‖Q‖2Frob
‖x‖2.

Now, we know that x∗, the minimum norm point in the affine space x0+span{qi},
must be orthogonal to all directions qi in the space. It thus follows that 〈x, qi〉 =
〈x− x∗, qi〉. Therefore, we can write

(21)
∑
i

pi〈x, qi〉2/〈qi, qi〉 ≥
σ2
min(Q)

‖Q‖2Frob
‖x− x∗‖2.

Furthermore, we have

‖xt − x∗‖2 = ‖(xt+1 − x∗)− (xt+1 − xt)‖2 = ‖xt+1 − x∗‖2 + ‖xt+1 − xt‖2.

The second equality is due to orthogonality

〈xt+1 − x∗, xt+1 − xt〉 = 0 = 〈xt+1 − x∗, const · qi〉.

This can be checked from the two following observations. First, x∗ is orthogonal to all
directions qi in the affine space, as it is the point with the minimal norm in our affine
space. Second, xt+1 is computed as the minimum norm point on the line xt + αtqi,
and is therefore also orthogonal to the current search direction qi. Thus the error
xt+1 − x∗ is also orthogonal to search direction qi.
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Finally we combine the results and observe that the expected value of the error
norm ∑

i

pi‖xt+1 − x∗‖2 =
∑
i

pi‖xt − x∗‖2 −
∑
i

pi‖xt+1 − xt‖2(22)

=‖xt − x∗‖2 −
∑
i

pi
〈xt, qi〉2

〈qi, qi〉2
‖qi‖2 ≤

(
1− σ2

min(Q)

‖Q‖2Frob

)
‖xt − x∗‖2,(23)

which is the desired result.
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