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c> lim 2 (u ( r ) - -u*( r ) )*=o  a s .  

A’-oc r = l  

Prm) Straightfomard combination of the techniques introduced in 
the proof of Theorem 2.1 together with the analysis in [6]. v v v  

Remark 3.1: Theorem 3.1 uses a stochastic approximation type itera- 
tion with scalar gain p/r(r -  1). In practice, much more rapid convergence 
can be achieved with recursive least-squares type matrix gain sequences 
[12],  [14]. The extension of the proofs given in [14] for least-squares 
algorithms with A Z O  is straightfonvard. 

Remark 3.2: Remarks (2.3) to (2.7) also apply mutatis  mutandis to the 
stochastic case. For example stochastic adaptive controllers having in- 
tegral action can be readily designed by weighting the input increment as 
in (2.30). (2.31), (2.46), and (2.47). 

IV. CONCLUSIONS 

This paper has established global convergence for adaptive one-step- 
ahead optimal controllers based on input matching. The key assumption 
is that  the one-step-ahead optimal controller designed using the  true 
system parameters leads to a stable closed-loop system. This is a very 
natural and obvious requirement for adaptive control using this approach. 
The results apply to a restricted class of linear systems including all stable 
nonminimum phase systems and some unstable-nonminimum phase sys- 
tems. Previous results on the adaptive control of minimum phase system 
(see, for example, [ I]-[7]) can be considered a special case of the  current 
results when X is taken to be zero. Thus, in practice it seems sensible to 
use the adaptive controllers described here rather  than  the usual minimum 
phase controllers since the parameter X offers an extra degree of freedom 
in the design. 

REFERENCES 

A. Feuer and A. S .  Morse.  “Adaptive control  of single input. single output linear 
systems,” IEEE  Tram. Auromar. Contr.. vol. AC-23,  pp. 557-570.  Aug.  1978. 
B. Egardt. Srabrli!p o/Adapaue Conrrollers. Berlin. Germany: Springer Verlag.  1979. 
G. C. Goodwin. P. I. Ramadge. and P. E. Caines.  “Discrete  time  multivariable 
adaptive  control,” IEEE Trans.  Auromar.  Conrr., vol.  AC-25. pp. 449-456, June 1980. 

Auromat. Conrr., vol. AC-25,  pp. 433-439. June 1980. 
A. S .  Morse.  “Global  stability of parameter-adaptive  control  systems,” IEEE  Trans. 

K. S. Narendra  and Y-H. LiR “Stable  discrete adaptive control,” IEEE  Tram. 
Auromur. Conrr., vol. AC-25. pp. 456-461. June 1980. 

control,” SIAM J .  Conrr. Optimiz.. to be  published. 
G. C. Goodwin, P.  J.  Ramadge,  and P. E. Caines.  “Discrete  time  stochastic  adaptive 

control.” IEEE  Trans. Auronmr. Conrr., vol. AC-25, pp. 1241-1245. Dm. 1980. 
G. C. Gocdwin and R S. Long,  “Generalization of results on multivariable adaptive 

W. R. E. Wouters.  “Parameter  adaptive  regulatory  control  for  stochastic SISO 
systems:  Theory and  an  applicatioR” in Proc.  IFAC  Svmp. on Srochasric Conrrol 
(Budapest. Hungary), pp. 287-296. Sept. 1974. 
D. \V. Clarke and J. P. Gawthrop. “Self-tuningcontrouer.” Proc. Imr. Elec.  Eng., vol. 

C. R.  Johnson.  Jr. and E Tse. “Adaptive  implementation of one-step-ahead  optimal 
122. no. 9, pp. 929-934. Sept. 1975. 

control via input matching.” IEEE  Tram. Auromar. Conrr.. vol.  AC-23, pp. 865-872, 
Oct. 1978. 
K. 1. Astrom  and B. Wittenmark, “On self-tuning  regulators,” Auronturrcu. vol. 9. pp. 
185-199. Mar. 1973. 
C.  R.  Johnson.  Jr., “On single  stage optimal control,”  in Proc. I978 IEEE Sourheut- 
(on (Atlanta.  GA).  pp. 51 1-514, Apr. 1978. 
B. Wttenmark  and P. K. Rao.  “Comments on ‘Single step  versus  multistep perfor- 
mance  criteria  for  steady stale SISO system.”’ IEEE Trans.  Auromar. Conrr.. vol. 
AC-24.  pp. 14G141.  Feb 1979 
K. S .  Sin and G. C. Goodwin,  “Stochastic  adaptive  control  using  modified  least 
squares  algorithms.” to  be published. 
R. 1.  Evans  and  R.  BeQ.  “Discrete  time adaptive  control: deterministic results.” Dep. 
Elect.  Eng.,  Univ.  Newcastle. NSW. Australia,  Tech.  Rep.,  Feb. 1980. 
C. R. Johnson.  Jr., G. C. Goodwin. and K. S. Sin. “The  global  convergence of direct 

A/lerro!t Con/. Commumrarion. Conrrol,  und  Compurrng, Monticello. IL. Ocr. 1980. 
adaptive input matching  control of some  nonminimum  phase  plants.” in Proc. 18rh 

back  matrix  synthesis.” IEEE  Tram.  Automar.  Contr.. vol. AC-25. pp. 717-722, Aug. 
G. Kreisselmeier. .‘Adaptke control via adaptive observation  and  asymptotic  feed- 

1980. 
[ I  X ]  G.  C. Goodwin  and  K. S .  Sin,  “Adaptive  control  of  nonminimum  phase  systems,” 

IEEE  Trum Automar. Conrr.. voL AC-26,  pp.  478-483.  Apr. 1981 
[I91 G C.  Goodwin and K. S.  Sin, Adapfiue  Filtering. Predrcrron and  Conrrol. to  be 

published. 
[ZO] G. C. Goodmin. K. S.  Sin. and K. K. Saluja, “Stochastic adaptive control and 

prediction: The general  delay-colored  noise  case,” IEEE  Tram. Auromar. Conrr., vol. 
AC-25. pp. 946-950. Oct. 1980. 

A System  Theoretic  Interpretation for GCD 
Extraction 

L. M. SILvHWAN AND P. VAN DOOREN 

Absiruct-A new algorithm for the GCD extraction of a set of poly- 
nomial matrices is given. The approach is based on system theoretic 
notions of feedback. 

I. INTRODUCTION 

A basic problem in linear system theory is that of finding the greatest 
common right divisor (or left divisor) of a set of polynomial matrices. 
Mathematically this can be reduced to the following. ‘Given an m X r 
polynomial matrix 

h’(s)=No+N,s+ . . .  +Nksk (1.1) 

find polynomial matrices P(s), Q ( s )  such that 

N ( s ) = P ( s ) Q ( s )  ( 1 4 
and, for the case N(s)  has normal rank r,  the matrix P ( s )  has rank r for 
all s (i.e., has no multivariable zeros). 

Two main classes of algorithms have been proposed for solving the 
problem. The more classical approaches are based on the Euclidean 
division algorithm as in  [I]  and [5], for example. More recently, several 
algorithms have been proposed based on real matrix operations on the 
coefficient matrices N, [3]. [4], [2]. In this paper, we present a new 
approach which  while essentially being of the second type is  novel in  that 
it relies heavily on an isomorphism between polynomial matrices and a 
related state space model. 

11. STATE-SPACE A ~ P R O A C H  

The basis of our  approach is the conversion of N(s) initially to a proper 
rational matrix via the mappings- I / + .  With this change of variables we 
obtain from ( I .  1) 

N ( ~ ) = N ( I / ~ ) = N ~ + N , ~ / ~ +  ... + N ~ I / ~ ~ .  (2.1) 

This proper rational matrix has the obvious controllable realization W= 
{ A ,  B ,  C, D} with 

0 I . . .  

A =  1: 0 0 * . . -  . .  I]. .-[ ;j 
0 0 . ‘ . 

c= [ .Vk N k - ,  . . ‘  Nl\1, D= [ h;]. (2.2) 

Notice that the A matrix of the realization of $(p)  is nilpotent (all 
eigenvalues at p=O) and  that this fact is sufficient to ensure that N is 
polynomial in l/p (i.e., polynomial after the transformation l/p=s). We 
are interested first in the effect of a state feedback operation F on the 
system (2.2) 

F 
W - w , = { A + B F , B , C + D F , D ) .  (2.3) 

Lemma 2.1: For any F. W,={A + B F ,  B , C + D F ,  D} has a transfer 
function &(p) that satisfies the relationship 
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where GF is polynomial in l/p and invertible. 
Proof: The result of a fegback operation F on a system W= 

{ A ,  B,C,  D) corresponding to N ( p )  can also be obtained by postmulti- 
plying the matrix N ( p )  with I + F ( p f - A  - B F ) - ’ B .  Inverting this matrix 
with the classical rule, we have 

The matrix & is clearly invertible and is polynomial in l/p since A is 
nilpotent. 

The result shows that any state feedback operation on the-syste~y(2.2) 
‘corresponds’ to a factorization of the type (2.4) where both N and Q F  are 
polynomial in l/p. The remaining problem is to choose F such that NF is 
also polynomial in l/p and  has full rank for all p. 

As the following lemma shows, it is easy to ensure that .?, is poly- 
nomial. 

Lemma 2.2: If the feedback F is such that  the observable modes of W, 
are all lying at p=O, then ?, in (2.4) is polynomial in l/p. 

Proof Clearly. if W,= { A  + BF, B, C+ DF, D) has all its observable 
modes at p = o  %ere exists an equivalent minima/ realization *,= 
{ A ,  B ,  e, D} for N F ( p )  aith A nilpotent, which means N F ( p )  is poly- 
nomial in l/p. 0 

Notice that the system (2.2) is controllable. Therefore, all modes are 
freely assignable by state feedback and  it is always possible to construct a 
feedback satisfymg the previous lemma. To each such feedback there 
corresponds a factorization 

N ( P ) = G ( C ) . & ( P )  
or also, using the fact that 

h.’(l/s)=N(s). ~ F ( l / s ) = h ‘ F ( s )  and Q F ( I / s ) = Q F ( s ) .  

where all three matrices are polynomial. 
The remaining problem is to choose F so that N F ( s )  also has no 

multivariable zeros. To  do this we first need to recall the connection 
between multivariable zeros and system observability under feedback. 

Let W =  { A .  B, C,  D) represent an  arbitrary linear system [not neces- 
sarily the one specified by  (2.2)] and as before let WF = ( A  + BF, B,  C + 
DF, D). Also. let 

denote the i-observability matrix of W and the corresponding matrix 
for W,. 

Definifiotz 2.3 [a]: A system W is said to be sfronglv observable iff W, 
is observable for all F (i.e.. c‘; has full column rank for all F.  where n is 
the order of the system W ) .  0 

An  important property for our purposes is the following. 
Lemma 2.4 [6]: If a system is strongly observable. then its transfer 

function matrix has no multivariable zeros. 0 
If a system is not strongly observable. then a feedback law exists Lvhich 

makes it as unobservable as possible in the following sense (let 3 denote 
“null space of”). 

Lemma 2.5 [ 6 ] :  For any system W = ( A .  3 . C . D ) .  there exists a Fo 
such that %(C‘l;)c9t(e;o) for all F. For any such Fo. U;, is termed 
masinwlly unobsen-ahle. 3 

We shall see in the next section that in our context, the problem of 
GCD extraction reduces essentially to  that of finding an  appropriate Fo. 

111. GCD EXTRACTION 

Based on the relationships developed in the previous section we  now 
show that the GCD extraction problem is equivalent, under mild condi- 
tions. to that of finding a specific type of feedback for the system (2.2). 
The restriction. which  will  be  removed later, is that N(s) has no zero at 
s=O (i.e.. X 0  in (1.1) has full column rank r ) .  

Theorem 3.1: Let rank N ( s ) = r  at s=O and let W = ( A ,  B. C, D) be 
the realization of N ( I / p )  as defined by (2.2). If Fo is such that WFo is 
maximally unobservable and has all its observable eigenvalues at p=O,  
then 

N ( ~ ) = N F J ~ ) Q F & ~ )  

where 

Q ~ , ( ~ ) = I - F ~ ( I / ~ ~ - A ) - ’ B  
and 

NFo(S)=(C+DFo)(l/sz--A-BFo)-~B+D 

are polynomial in s and N F J s )  has  no  multivariablezeros. 
Proof: Since W is maximally unobservable, .V&) has no multi- 

variable zeros or. equvalently,  has full rank for all (finite) values of p. By 
Lemma 2.2, since the observable modes of WFa are at p=O, .c,Jp) is 
polynomial in l/p. Hence, 7VFJ5) = .V,Jl/s) is polynomial in 5 and has 
full rank for all s save possibly at s=O (p= m). But NFJO)= N(0)  has full 
rank by assumption so that X F J s )  has full rank for all s. The form of 
QFJs) and the fact that  it is polynomial have already been established in 
Lemma 2.1. 

In the remainder of this section we shall be concerned with finding an 
algorithm to construct  a Fo satisfying the requirements of this theorem. 
Conceptually. this is no problem. We hour [6]  how to characterize all 
feedback laws making a system  maximally unobservable and within this 
class pole placement could be performed to place the remaining observ- 
able modes at zero. However, this approach is not veq efficient algorith- 
mically. A major contribution of this paper is an algorithm which is 
considerably simpler than the “obvious” solution. The key to this algo- 
rithm is the construction of a special right inverse for the observability 
matrix of an arbitrary maximally unobservable system WF0, as described 
below. 

Let L be a matrix whose rows form a basis for the row space of and 
let L* be a right inverse for L such that L+L is upper triangular (this can 
always be obtained as shown in the next section). Further, define 

F? 

F * = - D + c ( f - L * L )  

where D+ is any left inverse for D (which exists since D=X0 has full 
column rank). The major characterization is then given by the following. 

Theorem 3.2: Let W satisfy the conditions of Theorem 3.1 and let L*. 
F* be as defined above. Then 

i) WF. is maximally unobservable; 
ii) .~‘,~s)=CL*(I/sI-LAL*)-’LBt-D is polynomial in s and  has  no 

multivariable zeros. 
Several preliminary results will  be required to prove this theorem. The 
first is a characterization of the class of all feedback laws which make a 
system maximally unobservable. 

Lemma 3.3 [6]: If D has full column rank then W, is maximally 
unobservable iff F= - D + C +  HL for some H .  

Observe that F* certainly has the above form with H=D+CL*. The 
following lemma shows the role of L*. 

Lemma 3.4: Let A have the form (2.2) then LAL* is nilpotent. 
Proafi L 4 L f  is nilpotent iff ( LAL*)d=O for some finite d. But 

( L A L * ) d = L ( A L * L ) d - ’ A L f .  Since A and L*L are both upper triangular 
and since A has all zeros on its diagonal. AL*L is nilpotent. Therefore, 
there clearly is a d such that ( A L * L ) d - ’ = O  and thus also (LAL*)”=O. 

We note that  an arbitraq right inverse L- u<11 not yield the same result 
as Lemma 3.4. To prove Theorem 3.2  we  now observe that by an obvious 
coordinate transformation 

c i ; . = { L ( A + B F * ) L * , L B , ( C + D F * ) L * . D }  

is equivalent to WF* and is strongly obsenable. Note. however, that 
(I-L’L)L+=O for anx right inverse of L. Hence. 

W,*={LAL*.LB.CL*.D} 

and by Lemma 3.4 LAL’ has all of its eigenvalues at p=O. The conclusion 
of Theorem 3.2 then follows immediately. 
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w. ALGORITHM 

Two remaining details that have to be discussed are how to ensure that 
No in (1.1) is left invertible (see Theorem 3.1) and how to construct L* 
(see Theorem 3.2). We will be able to give the general algorithm after 
clarifymg these two points. A full column rank r for No can  be obtained in 
either of two ways. 

1) Transforms+s’+a, then N(s’+a)=N’(s’)  has constant term N i =  
N(a) which has full rank for almost any a [namely, all a that  are not a 
zero of N ( s ) ] .  By choosing la15 1 this transformation does not give any 
numerical problem. 

2) Apply the  structure algorithm to make the System 2.2 “invertible” 
(i.e., to make D invertible see [SI). The operations performed on the 
system 2.2 can as well be performed directly on  the polynomial matrix 
N ( s )  [3],  [9]. This algorithm is based on the following idea, If N ( s )  has 
c o n s t a n t  term No with rank p r then construct a unitary transformation 
U such that A’& =[ Ho IO]. Then the ( r  - p )  rightmost c o l u m n s  of N(s)U 

can be divided by s resulting in a new polynomial matrix N’(s).  This is 
repeated until N ‘ ( s )  has  constant term Ni with rank r. It is easy to check 
that 

N ( s ) = W ( s ) Q o ( s )  (4.1) 

where Q o ( s )  is a polynomial matrix containing the zeros of N ( s )  at s=O. 
The algorithm is stable since it uses only unitary operations and terminates 
after a finite number of steps [SI. 

For the construction of L* notice that a row transformation of L does 
not affect the problem. Indeed, if LL* = I and L* L is upper triangular, 
then this is also true for L ,  = RL and Lf = L*R-’.  And since one can 
always construct a (unitary) R such that L ,  is in echelon form, we may 
assume, without loss of generality, that L is already in this form. Solving 
L* from LL*=I by back substitution  and filling in Cc=O whenever the 
element is not uniquely determined we obtain a “dual” echelon form for 
L*. The  product L*L is then upper triangular. This is illustrated in the 
example (nonzero elements are marked by an X) 

- 
P 

x x x x  L * = l .  x x  I’, 

X 

x x x x x  
x x x x  

0 0 0  
x x  

0 

L*L= 

- 

The complete algorithm now  goes as follows. 

X 
X 
X 
X 

X 
X 
0 
X 
0 
X 

i) Extract the-multivariablezeros at s=O from N ( s )  by the factoriza- 
tion N ( s ) = N ’ ( s ) Q o ( s )  (see 4.1), so that A$ has full rank. The matrix 
Q o ( s )  will be part of the GCD. We only have to remove the remaining 

zeros from N‘(s). Transform VN’(s)=N“(s)  such that Wi= where 
V is unitary and 5 invertible. This left transfornation does not affect the 
GCD since the latter one is a right factor. 

[:I 
ii) Let the system W= ( A ,  B ,  C, D) for N”( 1/p) be partitioned as 

ThenconstructF,=-D+Ck[& ... ~ ] w h e r e , & - ~ - ’ ~ t o m a k e  
the system WFo maximally unobservable. ’. 

iii) Construct a basis L (in echelon form) for Ego. Since 

are  both sparse matrices an economic scheme can be developed to 
compute CFoAko. Moreover, if for some B we notice that rank O&,=rank 
Ofo-’ we know we have a basis for ego even if B<n (see [6]). While 
recursively building up a basis in echelon form, this rank test can easily be 
performed. 

iv) Construct L* and F ,  = Fo( I -  L* L ) .  
The  GCD  is now immediately given in a polynomial form because of 

the special shape of A and B in its realization. If F, = [ - Qk . . . - Q, 1, 
then 

A 

Q F * ( s ) = l + Q l s +  . . .  +&Sk 

and the overall GCD  is Q(s )=Q, ( s ) .Q , ( s ) .  
Commerzts: 
1) If we are also interested in the ‘remainder’ of the GCD extraction, 

we have to compute the matrices CL*(UL*)’LB.  
2) The time consuming step in this algorithm is the construction of L in 

echelon form. This can  be done using unitary transformations. The 
number of computations is of the  order of [ B( m - r ) ]  ’rk.  

An example may clarify the procedure. 
Example: 

s-1 3 -1  

-2s2-4s 2 ~ + 4  

-1 - 1  1 1  0 0  =I-: -!I+[ -3  -; 0 :Is+[ -; 0 1  : 
L o  

W= 

I 0 0 0  
0 1 0 0  

- 1  4 1 0  

0 - ; 0 1  

ii) 

#: :  - 0 0  0 0  0 0 :I 0 0 

-: : -: :i 0 0  0 0 
. 1 1 -1 -1 

N ( s ) = N ’ ( s ) =  I-; 
1 1  

+[ -: 0 2 
- 1  -1 

I !  0 O’ 

[ -; 
iii) 

I 0 0 1  0 
0 0 0  1 

AFo= -1 , o o  1; 

f 0 1 -I 

L = [ 1  1 - 1  
2 .  

-:I 0 0 

s+[-; 0 

1 

O I  0 

S’. 

0 
0 
0 
1 

- 1 3 (with/3=2) 
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iv) 

[ -2 0 ] [  - 1  0 4 1  4 ’ F*= [o  ; -; 1]  

0 0 0  
1 0 0  

0 - f  I f  0 . 

Result: 

Note that for illustrative simplicity we only use fractional numbers and 
ejementq transformations in this example. For the implementation of 
this method in a program, the  use of unitary transformation is recom- 
mended where possible (namely, for the construction of 5 and of the 
basis in echelon form of L).  This will indeed improve the numerical 
stability of the algorithm. Unfortunately, one still has to invert D and L 
and these steps are poorly conditioned when 5 and L have a large 
condition number [13]. Only part of this is due to the possible bad 
conditioning of the GCD problem itself. The conditioning of Bis indeed 
independent of the conditioning of the GCD problem since 5 can be 
modified by a “shift” a as described in Section IV and since the inversion 
of 5, e g ,  does not appear in other GCD extraction methods (see [J. [5]. 
[IO]. [ I  11, [14]). On the  other  hand,  it is exactly the inversion of D that 
allows us to perform the rank test required in the GCD problem on  a 
smaller matrix than, e.g., other methods [3], [4], [ 1 I]. [14]. One should note 
here that the so-called “fast orthogonalization method” used  in  [I41  is  in 
fact a QFe of Schmidt orthogonalization procedure Nithout reorthogonali- 
zation and is therefore unstable [13]: reorthogonalization would again 
yield a speed  which is comparable to the other methods mentioned above. 
Finally. we want to mention that some of the algorithms for the minimal 
design problem can be used to solve the GCD problem as well (see [ 111, 
[12]. [ 141 for further references). which makes the task of comparing 
methods for GCD extraction rather lengthy. The main advantages of the 
method presented here are its simplicity and  its ease for implementation. 
It should also be noted that the obtained factors QF* and ATF, have 
degree in 5 lower or equal  to the corresponding degree of X (namely k ) .  
Thls is not always the case for other methods [I]. [3], [5 ] .  [IO],  [ I l l .  [14]. 

V. CONCLUSION 

After the initial submission of this paper, we received a report of 
Emre’s [IO] which makes an  alternate connection between common di- 
visors and ( A ,  B)-invariant subspaces (closely related to the null space of 
L for an  appropriate C). However. detailed algorithms of the type given 
here are not provided. Further. connections between the two approaches 
should be explored. however. and  a full numerical comparisons betw-een 
the various GCD extraction methods proposed in the literature should be 
performed. 
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Minimal-Time  Minimal-Order  Deadbeat  Regulator 
with  Internal Stability 

HIDENOR1 KIMURA, MEhBER, IEEE,  AND YASUO TANAKA 

Abstroct-This paper is concerned with the output deadbeat (finite 
settling time) regulation with internal stability for linear discrete-time 
multivariable  systems. The two cases are treated separately; the  one is the 
regulation by state feedback and the other is the regulation through 
function observers. For both cases, the basic solvability conditions, the 
minimal settling time and the characterizations of the minimal-time regda- 
tors  are derived. Throughout the paper, the well-posedness condition plays 
a fundamental role. A deterministic version of the so-called separation 
theorem in LQG problem is derived,  namely. the minimal-time state- 
feedback regulator combined with the minimal-time minimal-order function 
observer yields the overall minimal-time minimal-order regulator by output 
feedback 

I. IhTRODUCTION 

Since the early stage of the development of the sampled-data control 
theory. the deadbeat regulation (the finite settling time control) has been 
regarded as a simple and effective control policy [I] .  In the framework of 
modem state-space approach,  a number of contributions have been made 
on the analysis and sqnthesis of multivariable deadbeat regulators [2]-[5]. 
These works were mainly concerned m5th the stafe deadbeat regulation, 
the deadbeat regulation for the entire state vector. It is only recently that 
the ourpur deadbeat regulation began to be investigated under the in- 
fluence of Wonham-Morse geometric approach [6]. Leden [7] derived a 
solvability condition for the problem of output  deadbeat regulator show- 
ing that the minimal-time deadbeat regulator was constructed through the 
cancellation of all the transmission zeros. He did  not  give a clear answer 
for the stability problem induced by  the cancellation of unstable transmis- 
sion zeros. Akashi and Imai [8] extended this result to the case of output 
feedback with some stability considerations. They derived an elegant 
geometric characterization of the minimal settling time. However, their 
formulation of stability excludes all the systems with nondecaying exter- 
nal signals (steps, ramps. sinusoids. etc.). They also considered the 
deadbeat regulation from the viewpoint of disturbance decoupling [9]. 

In this paper. we consider the problem of output deadbeat regulation 
with internal stability in its full generality. The results of [7]. [8 ]  are 
extended in the following lines: “stability” in [SI is replaced by- *‘internal 
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