
UPDATING A GENERALIZED URV DECOMPOSITION∗

MICHAEL STEWART† AND PAUL VAN DOOREN‡

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 479–500

Abstract. An updating scheme for a quotient type generalization of a URV decomposition of
two matrices is introduced. This decomposition allows low complexity updating as rows are added
to two rectangular matrices, determining the dimension of three distinct subspaces. One of these
subspaces is the intersection of the range space of the two matrices—information which leads to a
potential application in subspace algorithms for system identification.

Key words. generalized SVD, URV decomposition, system identification

AMS subject classifications. 65F15, 65F20

PII. S0895479897320460

1. Introduction. The quotient singular value decomposition of two matrices,
A and B, with an equal number of rows m, has been described in several ways. The
justification for the name is most obvious when A and B are both square and of the
same size and when A has full rank. Suppose an application demands knowledge
of the singular values of A−1B. It is well known in the context of the generalized
eigenvalue problem, in which the goal is to find the eigenvalues of A−1B, that the
best approach is to compute the eigenvalues by applying orthogonal transformations
to A and B without explicitly computing A−1B. This also applies to the singular
value problem and, instead of computing A−1B, a more reasonable approach is to
directly compute invertible X and orthogonal VA and VB such that

X−1AVA = ΣA, X−1BVB = ΣB ,

where ΣB and ΣA are diagonal. This solves the problem, since

A−1B = VAΣ−1
A ΣBV

T
B

is clearly the singular value decomposition of A−1B. If X is required to be orthogonal,
then the best that can be done is to make ΣA and ΣB triangular. An appropriate
choice of orthogonal X, VA, and VB guarantees that Σ−1

A ΣB will be diagonal.
More generally, when A and B are possibly rank deficient m × na and m × nb

matrices, the generalized SVD [10, 13] has been defined by

X−1AV1 =

[

ΣA

0

]

r
m− r

, X−1BV2 =

[

ΣB

0

]

r
m− r

,(1.1)

where

ΣA =





IA
SA

0A



 , ΣB =





0B
SB

IB





∗Received by the editors April 23, 1997; accepted for publication (in revised form) by L. Eldén
September 11, 1998; published electronically August 9, 2000. This work was supported by ARPA
grant 60NANB2D1272 and NSF grant CCR-9209349.

http://www.siam.org/journals/simax/22-2/32046.html
†Computer Sciences Laboratory, RSISE, Australian National University, Canberra, ACT 0200,

Australia (stewart@discus.anu.edu.au).
‡CESAME, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (vdooren@anma.ucl.

ac.be).

479



480 MICHAEL STEWART AND PAUL VAN DOOREN

with diagonal positive definite SA and SB satisfying S2
A + S2

B = I and where r is the
rank of

[

A B
]

. The partitionings are such that SA and SB are the same size, r3. The
identity matrices IB and IA are r2×r2 and (r1−r3)×(r1−r3), where r1 is the rank of
A. The zero blocks 0A and 0B are (r−r1)× (na−r1) and (r−r2−r3)× (nb−r2−r3).
The decomposition reveals that r3 is the dimension of the intersection of the range
spaces of A and B.

In the rectangular case in which A has full rank the decomposition reveals the
singular values of A†B, where A† denotes the pseudoinverse of A. If A is rank deficient,
then the decomposition reveals singular values associated with a quotient formed from
the B-weighted pseudoinverse of A [4, 2].

An early development of the generalized SVD was given in [10]. A general descrip-
tion suitable for adaptation to a URV decomposition is as follows: the m× (na + nb)
matrix

[

A B
]

is decomposed as

UT
[

A ‖ B
]

V = UT
[

A ‖ B
]

[

V1 0
0 V2

]

=





R11 0
0 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S13 R14 0
R23 0 0
0 0 0



 ,(1.2)

where R11 is r1 × r1 and upper triangular with full rank and R23 is r2 × r2 and upper
triangular with full rank. The rectangular block

R14 =

[

R̂14

0

]

is r1 × r3 with full column rank r3, and R̂14 is square and upper triangular. Clearly
the first r3 columns of U form a basis for the intersection of the range spaces. Since
the rank of A is clearly r1 and the rank of B is r2 + r3, this decomposition reveals the
same rank information as the quotient SVD.

Further, if we define R̂11 to be the r3 × r3 leading principal submatrix of R11 and

R̂−1
11 R̂14 = V11ΣRV

T
14

to be the SVD of R̂−1
11 R̂14, then

R̂11V11 = R̂14V14Σ
−1
R ,

and consequently there exists an orthogonal UR such that UT
R R̂11V11 and UT

R R̂14V14

are both upper triangular. Applying UR, V11, and V14 to the relevant rows and columns
of (1.2) will maintain the structure of (1.2) while ensuring that R̂−1

11 R̂14 will be di-

agonal. Note that the singular values of R̂−1
11 R̂14 are not changed by these further

orthogonal transformations.
If U and V are required to be orthogonal, then this is the most condensed form

one can obtain. However, if we define

X−1 =







R−1
11 −R−1

11 S13R
−1
23 0

0 R−1
23 0

0 0 I






UT ,

then

X−1
[

A ‖ B
]

V =









I 0 0
0 I 0
0 0 0
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 R̂−1
11 R̂14 0

0 0 0
I 0 0
0 0 0









.



UPDATING A GENERALIZED URV DECOMPOSITION 481

If the original orthogonal transformations were chosen so that R̂−1
11 R̂14 is diagonal

and positive definite, then clearly R̂−1
11 R̂14 = S−1

A SB . Thus up to permutations and
scaling by S−1

A we recover the quotient SVD as presented in [10] and we can conclude

that the quotient singular values of A and B are the singular values of R̂−1
11 R̂14 even

when R̂−1
11 R̂14 is not diagonal. This is the justification for viewing the decomposition

as a quotient type generalization of the URV decomposition.
In this paper we do not require diagonality of R̂−1

11 R̂14 and we present an algorithm
to efficiently update a rank revealing decomposition that is related to (1.2) when rows
are added to the matrices A and B. An obvious application is recursive identification
of MIMO systems. The algorithm in [7] requires the intersection of the range spaces
of two matrices and may be adapted for use with the decomposition. A summary of
the main idea will be presented in section 5. Further details are in [12].

Other papers have considered updating for a quotient generalization of the ULV
decomposition [5] in the case in which A and B are na×m and nb×m with na, nb ≥ m
and the update involves the addition of rows to A and B. In the formulation chosen
in this paper in which the matrices have an equal number of rows, this is equivalent to
updating under the addition of columns to A and B. The method was first proposed
in [5] for the case in which A has full rank and extended in [6] to the rank deficient
case. A natural application for these decompositions is in prewhitening of colored
noise in signal processing [4]. Because of the assumptions on the dimensions of the
matrices in [5] and [6] and the difference between updating under the addition of
columns and rows, the algorithms considered in this paper are substantially different
from the previous work on generalized ULV decompositions.

The set of all rank deficient matrices is a subset of measure zero in the set of all
matrices. If m ≥ na + nb, then A and B can have nonempty range space intersection
only when

[

A B
]

is rank deficient. Moreover, A or B can be rank deficient only

when
[

A B
]

is rank deficient. It follows that when m ≥ na + nb the decomposition
(1.2) has the form

UT
[

A ‖ B
]

V = UT
[

A ‖ B
]

[

V1 0
0 V2

]

=





R11

0
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S13

R23

0



(1.3)

except on a measure zero set. This represents the special case of (1.2) when r1 = na,
r2 = nb, and r3 = 0. Because of numerical errors or noisy data, we can always expect
a quotient URV to have the trivial structure (1.3).

Thus an exact quotient URV gives no real information about the relation between
the numerical range spaces of A and B. Instead of computing the exact quotient
URV, we will attempt to compute a rank-revealing decomposition that shows when
small perturbations give a nontrivial quotient URV structure of the type (1.2). The
perturbations we allow will take the form of small nonzero elements in some of the
blocks of (1.2) that were previously zero. We constrain U and V to be orthogonal
and drop the requirement that R̂−1

11 R̂14 must be diagonal. The result is

UT
[

A ‖ B
]

[

V1 0
0 V2

]

=

















R11 E12

0 E22

0 E32

0 E42

0 F52

0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S13 R14 E15

R23 E24 E25

0 F34 E35

0 0 F45

0 0 0
0 0 0

















.(1.4)



482 MICHAEL STEWART AND PAUL VAN DOOREN

The blocks R11 and R23 are square and upper triangular. In (1.2), R14 was upper
triangular with full column rank. To make the updating easier, we modify this in
(1.4): we allow R14 to have potentially large elements arranged in the form of an
upper triangular matrix that has had its columns reversed. The rest of the elements
can be nonzero but are constrained to be below a prespecified tolerance. The elements
below the cross diagonal are kept small enough that they will not cause the block to
become rank deficient when the triangular part R14 is kept suitably well conditioned
by an appropriate method for deflating small singular values. Letting r represent a
potentially large element and e represent an element which is small relative to the
tolerance, the 4 × 3 case of R14 looks like

R14 =









r r r
r r e
r e e
e e e









.

Although the structure of R14 may seem odd, it turns out that both the permuted tri-
angular structure and the possibility of having small nonzeros below the cross diagonal
significantly simplify the updating algorithm.

In further examples, we will follow the convention used for describing the structure
of R14. An r will always represent a potentially large element and an e will represent
an element which is small relative to the tolerance. The algorithm will keep the
elements which should be small from growing inappropriately.

Each F block of the decomposition is an upper triangular matrix with norm of
the order of the tolerance. Each E block is an arbitrary matrix, also with norm of the
order of the tolerance. The S block is an arbitrary matrix. With sufficiently small E
and F blocks, the decomposition gives estimates of the numerical range spaces of A
and B, along with an estimate of the numerical intersection in the form of the basis
provided by the first r3 columns of U .

The justification for the small nonzero blocks in (1.4) is that they allow us to find
a nontrivial quotient URV structure associated with a slightly perturbed pair of ma-
trices. The locations of these blocks are chosen to facilitate updating. The algorithm
will be designed to perform deflations of small singular values using a tolerance that
will keep these elements suitably small.

However, in some applications this might not be sufficient. If we wish to reliably
identify the most rank deficient nearby quotient SVD structure corresponding to the
smallest ranks for A, B, and

[

A B
]

, then it is natural to expect these perturbations,
and hence the magnitudes of the E and F blocks, to be not much larger than the
smallest perturbations to A and B required to give a quotient URV structure of the
form (1.2). Inordinately large elements in this blocks might cause the tolerance to be
reached too early in the deflation process, leading to an overestimate of the ranks of
A and B and an underestimate of the intersection dimension.

Unfortunately, standard quotient QR and URV algorithms fail by this standard
and the method of this paper suffers from a similar problem. The difficulty centers
on the fact that R23 is a part of a URV decomposition,





R23 E24 E25

0 F34 E35

0 0 F45



 ,(1.5)

that estimates a numerical rank for P⊥
A B. The exact decomposition (1.2) reveals the



UPDATING A GENERALIZED URV DECOMPOSITION 483

exact rank of P⊥
A B. When the range space of A is sufficiently sensitive to pertur-

bations, small perturbations of A can lead to large changes in the small singular
values of P⊥

A B that correspond to the exactly zero singular values shown in the un-
perturbed (1.2). Thus, even when dealing with small perturbations to a matrix pair
with the exact structure (1.2), the E and F blocks in (1.5) might be significantly
larger than the original perturbations to the data.

We illustrate the problem with the matrix pair

A =









1 0
0 δ
0 ε
0 0









, B =









0 0
1 0
0 0
0 1









,(1.6)

where 0 < ε < δ < 1. We suppose that δ is significantly smaller than 1 but that it is
large enough that A can be considered to have full numerical rank. We assume that
the perturbing quantity ε is small enough that it is of the same order as the tolerance
used in rank decisions. A perturbation of norm ε to A clearly results in two full rank
matrices with an exact one-dimensional row subspace intersection.

Consider the orthogonal transformation given by the QR factorization of A,









1 0 0 0
0 δ√

δ2+ε2
ε√

δ2+ε2
0

0 −ε√
δ2+ε2

δ√
δ2+ε2

0

0 0 0 1

















1 0
0 δ
0 ε
0 0

∣

∣

∣

∣

∣

∣

∣

∣

0 0
1 0
0 0
0 1









=









1 0

0
√
δ2 + ε2

0 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

0 0
δ√

δ2+ε2
0

−ε√
δ2+ε2

0

0 1









.

This decomposition gives the SVD of P⊥
A B. The smallest singular value is ε/

√
δ2 + ε2.

If δ is sufficiently small, we would conclude that P⊥
A B has full rank. This would imply

that ri = 0, so that the algorithm completely misses the possibility that there is a
nontrivial range space intersection achieved by matrices within O(ε) of A and B. The
end result is a misleadingly partitioned quotient URV that fails to reveal an interesting
and potentially useful feature of A and B.

Sensitivity in rank decisions is fundamental to any generalized URV or generalized
QR algorithm that starts with an estimate of the range space of A and proceeds with
a rank decision for P⊥

A B, including the methods described in [9, 1]. The algorithms in
[5, 6] are somewhat different in that they make rank decisions on a matrix with singular
values equal to the generalized singular values of A and B. Since generalized singular
values can be sensitive to perturbations [8], the rank decisions in these methods can
also be difficult.

Although the updating problem considered here is more involved, the basic tools
needed to update this decomposition have already been developed for the problem of
updating a URV decomposition in [11]. The algorithm can be broken into two stages.
The first restores the form of the decomposition when new rows are added to A and
B. After this stage of the update, the decomposition has the same general form, but
the triangular R matrices are potentially of different size and might no longer have full
rank. The second stage looks for small singular values of the R blocks and recursively
deflates these blocks, using the scheme described in [11], until they have full rank.

When it is obvious after representing the new rows in the bases provided by V1

and V2 that the new information does not increase the ranks of any of the full rank
blocks, parts of the updating algorithm are not needed. This is essentially the same
simplification as appears in [11]. To avoid giving the details of too many special cases,



484 MICHAEL STEWART AND PAUL VAN DOOREN

r r r r r r2 r r r r r r1
r r r r e e r r r r e e
0 r r r e e r r r e e e
0 0 r r e e r r e e e e
0 0 0 r e e r r e e e e
0 0 0 0 e e r r e e e e
0 0 0 0 e e 0 r e e e e
0 0 0 0 e e 0 0 e e e e
0 0 0 0 e e 0 0 0 e e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 01 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 02 e 0 0 0 0 0 0

Fig. 2.1. An example.

we deal only with the most general and the most difficult case here. This algorithm
applies in every contingency, but if it is immediately obvious that the new data will
not significantly change the estimates of the subspaces, then some of the steps are
unnecessary. We will be more precise about which steps can be skipped in section 3.

2. The updating algorithm. We first describe how to restore the general struc-
ture after new rows are added to A and B, leaving the discussion of deflation for
section 3. We also ignore initialization issues by assuming that at some stage the
decomposition has already been computed and we are simply interested in computing
the update. This does not evade the description of an essential step since the algo-
rithm applies in degenerate cases when the sizes of some of the triangular matrices
are zero (although this might involve the elimination of superfluous steps). Thus, the
process can be initialized by setting the decomposition to zero, setting the unitary
matrices to the identity, and starting the algorithm with the first rows of A and B.
It could also start at some later point by applying a more conventional generalized
SVD algorithm to compute the initial decomposition.

If two rows, aT and bT , are added to A and B, respectively, and each row of the
old matrix is weighted by 0 < α < 1, then

[

1 0
0 UT

] [

aT

αA

∣

∣

∣

∣

∣

∣

∣

∣

bT

αB

] [

V1 0
0 V2

]

=





















aT1 aT2
R11 E12

0 E22

0 E32

0 E42

0 F52

0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bT3 bT4 bT5
S13 R14 E15

R23 E24 E25

0 F34 E35

0 0 F45

0 0 0
0 0 0





















,(2.1)

where aTi and bTi are the obvious partitionings of aTV1 and bTV2. The blocks of the
decomposition shown here are the same as those shown in (1.4) but weighted by α.
The problem is to update the orthogonal matrices U and V to restore the structure
of the decomposition and to deal with possible rank changes in the R matrices.

To illustrate how we can restore the appropriate structure, we take as an example
Figure 2.1. This shows an extra row added to the top of a matrix that has the general
form described in (1.4). We may efficiently restore the original structure through the



UPDATING A GENERALIZED URV DECOMPOSITION 485

application of sequences of Givens rotations of the form

G =

[

c s
−s c

]

,

where c2 + s2 = 1, to the appropriate rows and columns of the matrix in Figure 2.1.
A description of how to compute Givens rotations to introduce zeros in a numerically
reliable manner may be found in [3].

When showing the updating of the decomposition, the approach taken here for
dealing with Givens rotations is to mark the elements that are to be eliminated with
a number indicating their order and to give any additional information in the text.
Such information includes whether the rotation acts on the row or column containing
the marked element, along with which other row or column the rotation also acts on.
In this algorithm, the rotations will always act on a row or column that is adjacent to
the numbered row or column in addition to the numbered row or column itself. The
identity of the adjacent row or column is not always explicitly mentioned in the text,
but the examples should make this detail of the procedure clear.

Many of the rotations will destroy the structure of a block of the decomposition
so that it is sometimes necessary to apply additional rotations to fix this damage. The
elements that must be eliminated to fix the structure will be marked with the same
number as the rotation that originally did the damage. Occasionally there will be a
sequence of two such fixes beyond the original rotation. The fix will always be applied
on the opposite side of the rotation which originally did the damage. Thus damage
caused by rotations applied on the left are fixed by rotations applied on the right and
vice versa. All such rotations can be easily spotted, since they always correspond to
either a marked zero element or one of the small elements of the R14 block—elements
for which no rotation would be needed if they had not been made potentially large
by another rotation.

In Figure 2.1 the numbered elements represent two sequences of right rotations to
zero the marked elements. Rotation 1 acts on the column of the numbered element and
the preceding column to eliminate the marked element, destroying the triangularity
of the F45 block. It can be restored after the Givens rotation is applied from the right
by a rotation from the left. Rotation 2 destroys the triangular structure of the F52

block. This can also be maintained through the appropriate use of a left rotation. In a
more general setting, rotations 1 and 2 would each be replaced by multiple rotations
that are intended to zero all but the first element of aT2 and bT5 , respectively, and,
after each rotation, it would be necessary to apply an additional rotation to fix F52

and F45

The result of these rotations is the matrix shown in Figure 2.2. Now that rotations
have been applied to concentrate large elements from the new rows into a region in
which they can damage at most two columns, we can take advantage of the permuted
triangular structure of the overall decomposition and apply a sequence of rotations
that are essentially the same as those used in QR updating. Each numbered rotation,
except for those in R14, acts on the numbered row and the preceding row to introduce
the necessary zeros. The only additional complication is the need to preserve the
triangular structure of R14. Figure 2.2 marks the elements to be eliminated by left
rotations. Each left rotation operates on the row marked and the previous row to
eliminate the marked element. The first r3 rotations, rotations 1 and 2 in this example,
will destroy the structure of the R14 block. For rotation 1, we may fix the damage to
R14 by using a right rotation on the numbered column and the one before it and then



486 MICHAEL STEWART AND PAUL VAN DOOREN

r r r r r 0 r r r r r 0
r1 r r r e e r r r r e1 e
0 r2 r r e e r r r e2 e e
0 0 r3 r e e r r e e e e
0 0 0 r4 e e r r e e e e
0 0 0 0 e e r5 r e e e e
0 0 0 0 e e 0 r6 e e e e
0 0 0 0 e e 0 0 e7 e e e
0 0 0 0 e e 0 0 02 e8 e e
0 0 0 0 e e 0 0 0 01 e9 e
0 0 0 0 e e 0 0 0 0 0 e10

0 0 0 0 e11 e 0 0 0 0 0 0
0 0 0 0 0 e12 0 0 0 0 0 0

Fig. 2.2. A sequence of left rotations.

r r r r r e r r r r r e
0 r r r r e r r r r e e
0 0 r r r e r r r e e e
0 0 0 r r e r r r e e e
0 0 0 0 r e r r r e e e
0 0 0 0 r6 e 0 r r e e e
0 0 0 0 r5 e 0 0 r e e e
0 0 0 0 r4 e 0 0 0 e e e
0 0 0 0 r3 e 0 0 0 0 e e
0 0 0 0 r2 e 0 0 0 0 0 e
0 0 0 0 r1 e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2.3. Left rotations to repartition R11.

fix the damage to F34 by using a left rotation. We allow rotations 3 and 4 to fill the
first column of R14 with potentially large elements, eventually moving down to add a
potentially large column to the beginning of E24, which results in the pattern shown
in Figure 2.3.

At this point, it is necessary to repartition the matrix to prepare for a deflation.
The reason for the peculiar reversed triangular structure of R14 becomes clear. This
figure shows a sequence of elements to be eliminated by left rotations. These rotations
will add extra elements into the subdiagonals of R23, F34, and F45 to give a matrix
that has essentially the same form as the original decomposition. This matrix suggests
a natural repartitioning. We expand the size of the square blocks R11 and R23 by one.
The rest of the matrix can be repartitioned along these lines, except that an extra
column is added onto the right of R14. The new partitioning is marked in Figure 2.3
and in Figure 2.4. In Figure 2.4 it is clear that the general form of the decomposition
has been restored.

The matrix has now been repartitioned so that it has its original form, but it is
possible that some of the R blocks will not have full rank. To finish the update we
need a general procedure to take a matrix of the correct form, (1.4), and determine



UPDATING A GENERALIZED URV DECOMPOSITION 487

r r r r r e r r r r r e
0 r r r r e r r r r e e
0 0 r r r e r r r e e e
0 0 0 r r e r r r e e e
0 0 0 0 r e r r r e e e
0 0 0 0 0 e r r r e e e
0 0 0 0 0 e 0 r r e e e
0 0 0 0 0 e 0 0 r e e e
0 0 0 0 0 e 0 0 0 e e e
0 0 0 0 0 e 0 0 0 0 e e
0 0 0 0 0 e 0 0 0 0 0 e
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2.4. The repartitioned matrix with the correct form restored.

an appropriate size for all triangular matrices. The procedure is the deflation method
introduced in [11], applied to R11, R23, and R14, along with additional rotation to fix
any damage done to the structure by the deflations.

An implementation of this algorithm in MATLAB code is given in the appendix.
This implementation deals with special cases (ri = 0 for i = 1, 2, 3 and/or A or B
has full rank) which were glossed over in the description of the algorithm. For the
most part, these special cases involve omitting only the unnecessary steps. To avoid
producing an overwhelming quantity of code, the deflation procedures described in
the next section are hidden in function calls. The implementation of these deflations
is fairly straightforward, given an understanding of the basic methods of the updating
algorithm. We will not present codes for these functions. Finally, we note that the
algorithm can be made more efficient by comparing components of the new rows
with the tolerance and avoiding certain steps (and the deflations) when the new rows
cannot change the rank of A or B.

3. The deflation process. The deflation process for each block proceeds by
finding a small singular value associated with the block, using knowledge of an asso-
ciated singular vector to apply transformations forcing the rightmost column to have
elements only of the order of this singular value, and continuing the process recursively
on a smaller triangular matrix. The overall process proceeds by recursively deflating
R11 until an appropriate rank is found, then deflating R23 in a similar manner, and
then finally deflating R14. We will describe the deflations in this order. The basic idea
behind the procedure in [11] is to find a vector ‖w‖2 = 1 such that

‖R11w‖ ≈ σmin(R11),

where σmin(R11) denotes the smallest singular value of R11. The literature on condition
estimation contains reliable methods which find such a w with O(r2

1) complexity; the
precise method is not particularly important for our explanation of the procedure.

If ‖R11w‖ is small enough to be considered a null vector within the tolerance,
then R11 is nearly rank deficient and must be deflated. A sequence of rotations is
constructed, zeroing the elements of w in order until the last component is reached.
While at the same time applying left rotations, also to R11 and in the manner de-



488 MICHAEL STEWART AND PAUL VAN DOOREN

scribed in [11] to preserve triangularity, we obtain

R11 =













r r r r e
0 r r r e
0 0 r r e
0 0 0 r e
0 0 0 0 e













.

Then pattern of e elements holds since

σmin(R) ≈ ‖Rw‖ = ‖ÛTRV̂ V̂ Tw‖ = ‖ÛTRV̂ en‖,

while ÛTRV̂ en is the last column of the new R which results from this deflation
procedure. As described in relation to Figure 2.2, while it is convenient we fix the
effects of the left rotation on R14, but after a certain point, we let the first column
of R14 fill with large elements. The result of this is shown in Figure 3.1. The matrix
has to be repartitioned to make R11 smaller. This can be done by eliminating the
elements marked in Figure 3.1 with left rotations which act on the numbered row and
the row just before it. The result is Figure 3.2.

The effect of the deflating R11 on the sizes of the other R blocks is simple to see.
Each time the size of R11 decreases, the size of R23 potentially increases and the size
of R14 potentially decreases.

The deflation of R23 is performed next and the deflation of R14 last. The effects
of the deflation on R23 are very simple to deal with: none of the rotations damage the
overall structure of the decomposition, so all that is needed is the standard deflation
procedure from [11], resulting in Figure 3.3. A sequence of left rotations needed to
produce zeros in the last column of S13 so that it can become the first column of R14

is shown, together with right rotations needed to fix the effect of these on R11. Thus,
each deflation results in a decrease in the size of R23 and an increase in the size of R14.
If the ranks are to be restored to their original values, then it will be necessary to carry
out two deflations on R23. The result of these two deflations, with the corresponding
repartitioning for R23 and R14, is shown in Figure 3.4. The assumption that the ranks
return to their original values is not essential to the algorithm, and it is adopted here
only for convenience on the grounds that the algorithm will typically operate in steady
state. The method of deflation is general and applies even without this assumption.

The deflation process for R14 is similar, although it is worth taking note of minor
differences imposed by the odd structure of the block. First, the methods for finding
w usually involve a back substitution. Here we ignore the small nonzero elements in
attempting to find

‖R14w‖ ≈ σmin(R14).

Assuming that we have such a w, we apply rotations to introduce zeros into all but the
last element and apply these rotations, together with rotations to fix the permuted
triangular structure of R14. Further rotations will be needed to fix R11 and F34. The
result of single deflation will be

R14 =









r r e
r r e
r e e
e e e









.



UPDATING A GENERALIZED URV DECOMPOSITION 489

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 0 r r e e r r r r e e
0 0 0 r e e r r r r e e
0 0 0 0 e e r r r r e e
0 0 0 0 0 e r1 r r r e e
0 0 0 0 0 e 0 r2 r r e e
0 0 0 0 0 e 0 0 r3 r e e
0 0 0 0 0 e 0 0 0 r4 e e
0 0 0 0 0 e 0 0 0 0 e5 e
0 0 0 0 0 e 0 0 0 0 0 e6

0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.1. After a deflation of R11.

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 0 r r e e r r r r e e
0 0 0 r e e r r r r e e
0 0 0 0 e e r r r r e e
0 0 0 0 e e 0 r r r e e
0 0 0 0 e e 0 0 r r e e
0 0 0 0 e e 0 0 0 r e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 0 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.2. After deflation of R11 and repartitioning.

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 02 r r e e r r r r2 e e
0 0 01 r e e r r r r1 e e
0 0 0 0 e e r r r e e e
0 0 0 0 e e 0 r r e e e
0 0 0 0 e e 0 0 r e e e
0 0 0 0 e e 0 0 0 e e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 0 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.3. After a deflation of R23.



490 MICHAEL STEWART AND PAUL VAN DOOREN

r r r r e e r r r r r e
0 r r r e e r r r r e e
0 0 r r e e r r r e e e
0 0 0 r e e r r e e e e
0 0 0 0 e e r r e e e e
0 0 0 0 e e 0 r e e e e
0 0 0 0 e e 0 0 e e e e
0 0 0 0 e e 0 0 0 e e e
0 0 0 0 e e 0 0 0 0 e e
0 0 0 0 e e 0 0 0 0 0 e
0 0 0 0 e e 0 0 0 0 0 0
0 0 0 0 0 e 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3.4. After two deflations of R23.

A sequence of left rotations will easily transform this to

R14 =









r r e
r e e
e e e
e e e









,

and the damage that the left rotations do to R11 can easily be fixed by right rotations.
This completes the deflation of all of the triangular blocks.

Since many of the basic principles were illustrated by appealing to an example, it
is worth noting that the deflation process for each block is quite general and does not
depend on the sizes of the blocks. The deflation might have to be done for each block
several times, but because each deflation returns the matrix to its correct form, they
can be performed recursively for each block until the proper ranks are determined.
As explained above, the deflation process is first applied recursively to R11 until its
rank has been determined, and then we do the same for R23 and finally R14.

There is one difficulty that has not yet been mentioned. The code given in the
appendix assumes that prior to the update r1 ≥ r3. This is generally not a problem,
but if the size of R23 drops sufficiently after several deflations, then r3 will temporar-
ily increase by a corresponding amount before R14 is deflated. After the first such
deflation on R23 for which this is a problem, we will have R14 of the form

R14 =





r r r r
r r r e
r r e e



 .

Right rotations should be applied to compress this into the first 3 columns. The effect
on F34 may be fixed with left rotations. This will keep r3 = r1 while the appropriate
size of R23 is being determined.

The algorithm in this paper is essentially an extension of the URV algorithm as
described in [11] and it inherits the simplicity with which the URV decomposition can
deal with updates that do not increase any of the ranks. If after applying V1 and V2

to the new row vectors it is apparent that none of the ranks increase, the generalized
URV updating can proceed in a manner similar to the simplified URV algorithm by
skipping the rotations shown in Figures 2.1 and 2.3 and by skipping the deflation of



UPDATING A GENERALIZED URV DECOMPOSITION 491

R11 and R14. Because of the way the rotations in Figure 2.2 change the partitioning of
R23 and R14 it will still be necessary to do a deflation on R23. This is all in contrast
to the ULV algorithm in which substantial additional computations are needed to
avoid a deflation.

In the sample code in the appendix, we have hidden the deflations in functions
which are not presented in this paper. Since the deflations involve fewer special cases
and parallel the method of [11] more closely than the update, we have left them out.

4. Complexity. The decomposition has a fairly involved structure and, from
the description given here, it might be assumed that the algorithm is computationally
intensive. In fact, considering the difficulty of the problem, this is not the case; the
computational complexity is surprisingly reasonable. The exact numbers will depend
on r1, r2, and r3 in addition to the number of columns in A and B. To simplify
matters for comparison, we assume ranks which are reasonable in the context of the
identification algorithm of [7]. In particular, we assume that A and B each have 2i
columns and that r1 = i + n, r2 = i, and r3 = n. We assume that i is slightly
larger than n. If left rotations are not accumulated to form U (knowledge of U is not
required by the updating algorithm), then the complexity involved in updating this
decomposition when none of the ranks change is at worst 325i2 + 120in + 6n2 flops.
If it is apparent in the first stage of the update that the new rows do not increase the
ranks of the R blocks, then the update can be computed with much lower complexity.

These numbers look very bad, but when the level of difficulty inherent in the
problem is taken into account, they are quite reasonable. If i is only slightly larger than
n, so that the difference can be absorbed into lower-order terms, then the complexity
is 451(4i)2/16. Thus, since the decomposition involves a matrix combining both A and
B with a total of 4i columns, the worst-case complexity involved is really expressed
more reasonable as approximately 28(4i)2 flops.

This is certainly large when compared with the updating of a QR decomposition
of a matrix of the same size. The QR decomposition involves only 3(4i)2 flops, but an
ordinary URV decomposition is a different matter. Just to compute a URV decom-
position of A involves 71i2 + 6in + 3n2 flops. Again, assuming i and n are close and
ignoring lower-order terms, the complexity is roughly 5(4i)2. Thus updating the quo-
tient URV is about a factor of three more costly than computing URV decompositions
for A and B separately. Depending on the ranks involved, it is often not much more
costly than updating the URV decomposition of a single matrix with 4i columns.

The generalized URV decomposition is similar in spirit to the generalized QR
factorization of [9]. However, a generalized QR factorization does not lend itself to
updating. In terms of computational complexity, the use of the URV updating method
is justifiable only when updates are needed. The method is not competitive for finding
the subspaces associated with the generalized SVD of a single matrix.

5. An application to system identification. Consider the state space model

xk+1 = Akxk + Bkuk,(5.1)

yk = Ckxk + Dkuk,

where xk is n× 1, uk is m× 1, and yk is p× 1.
Assuming we have observations of the input and output vectors, uk and yk,

the identification problem is to find an order, n, and time-varying system matri-
ces {Ak, Bk, Ck, Dk} that satisfy, or approximately satisfy, (5.1) for some n× 1 state
sequence xk.



492 MICHAEL STEWART AND PAUL VAN DOOREN

If the output vectors are generated by a time-invariant model {A,B,C,D} and
observations are corrupted by noise, we want the estimated model to converge to
{A,B,C,D} or to some model {SAS−1, SB,CS−1, D} given by a change of basis for
xk and having identical input/output behavior.

More realistically, it is often assumed that the state space model is slowly time-
varying and that there is small noise on the observed input and output vectors. Under
those circumstances, we wish to provide an algorithm to track variations in the model.

The generalized URV decomposition applies naturally to a system identification
algorithm developed in [7]. The approach can be characterized by two steps: find an
estimate of the state sequence xk, and then obtain the system matrices from the least
squares problem

[

xk+i+j−1 · · · xk+i+1

yk+i+j−2 · · · yk+i

]

Wj−1

=

[

Aj Bj

Cj Dj

] [

xk+i+j−2 · · · xk+i

uk+i+j−2 · · · uk+i

]

Wj−1,

(5.2)

where Wj is a diagonal weighting matrix defined by

Wj =

[

1 0
0 αjWj−1

]

for |αj | < 1 and W1 = 1. The index k is the time at which observations begin and
k + i + j − 1 is the time at which the latest observations have been made. Indices
k and i are fixed, but j grows as more observations are made. To keep the notation
compact, the indexing of the system matrices will show only the dependence on j,
although {Aj , Bj , Cj , Dj} will depend on observation up to uk+i+j−1 and yk+i+j−1.

Define the mi× j block Toeplitz matrices

UK =











uk+j−1 uk+j−2 · · · uk

uk+j uk+j−1 · · · uk+1

...
...

...
uk+j+i−2 uk+j+i−3 · · · uk+i−1











,

Yk =











yk+j−1 yk+j−2 · · · yk
yk+j yk+j−1 · · · yk+1

...
...

...
yk+j+i−2 yk+j+i−3 · · · yk+i−1











,

and

Tk =

[

Uk

Yk

]

.

The following theorem from [7] provides a means for generating an appropriate
sequence of state vectors.

Theorem 5.1. Let the vectors uk and yk be generated by

xk+1 = Axk + Buk,

yk = Cxk + Duk,



UPDATING A GENERALIZED URV DECOMPOSITION 493

where the rank of

[

CT ATCT · · · (AT )n−1CT
]

(5.3)

is n.

Let

Xk =
[

xk+j−1 xk+j−2 · · · xk

]

and

Xk+i =
[

xk+i+j−1 xk+i+j−2 · · · xk+i

]

.

For i ≥ n, if rank(Xk)= rank(Xk+i) = n and the matrices

[

Uk

Xk

]

,

[

Uk+i

Xk+i

]

,





Uk

Uk+i

Xk



(5.4)

all have full rank mi + n, mi + n, and 2mi + n, respectively, then Tk and Tk+i both
have rank mi + n and the intersection of the span of the rows of Tk and Tk+i has
dimension n. Further, there is a basis, X, of the intersection for which

X =
[

xk+i+j−1 xk+i+j−2 · · · xk+i

]

,

and different bases for this space correspond to state vector sequences of models with
equivalent input/output behavior under a transformation of the form

{SAS−1, SB,CS−1, D}.

The rank condition on (5.3) implies the observability of the linear system; without
this assumption the full information contained in the state sequence will not be seen
in the output and any identification scheme can be expected to fail. The condition on
the rank of Xk and Xk+i implies that the input fully excites all modes of the system.
This is also a standard and necessary assumption in system identification.

The rank assumption involving (5.4) is stronger: it clearly implies the rank con-
dition on Xk and Xk+i. The key point is to make sure that Uk and Uk+i have full
rank and to make sure that Xk is not contained in their span. A full rank condition
on the inputs is standard in identification. The joint condition on Xk is less standard,
but it can be verified that it is satisfied generically and the probability that it fails de-
creases when j is increased. More details about the implications of these assumptions
together with a proof of the theorem may be found in [7].

If α 6= 1, we look for the intersection of the span of the rows of TkWj and
Tk+iWj . In that case, the theorem shows that the intersection is the weighted state
vector sequence required by (5.2).

The generalized URV algorithm can be used to update the intersection of the
range spaces of TT

k and TT
k+i as new observations are made and new rows are added

to the matrices. This leaves the solution of (5.2) to complete the identification process.
It is possible to efficiently update the QR decomposition needed to solve (5.2) while
updating the generalized URV decomposition. Further details are contained in [12].



494 MICHAEL STEWART AND PAUL VAN DOOREN

In order to show the effectiveness of the decomposition, we consider the system
defined by

A =





.4 0 .8

.4 .4 −.4

.4 0 .4



 , B =





1 2
3 1
−4 2



 ,

C =

[

0 −1 0
1 −2 −1

]

, D =

[

1 0
0 1

]

.

The system can be verified to be stable with its largest eigenvalue having magnitude
strictly less than 1. The observability condition is also easily verified.

We generated a sequence of input vectors uk with elements that were randomly
generated according to zero mean normal distribution with variance 1. An initial
state vector was chosen as x1 = 0. A sequence of output vectors, yk, was generated
by (5.1).

Before applying the identification algorithm, each component of the input and
output vectors was perturbed by zero mean unit variance normal noise scaled by .01,
resulting in a noise component two orders of magnitude below the signal component.
The tolerance for deflation of all three triangular blocks was set to an absolute value
of .5. To give an idea of the relative significance of this tolerance, the data matrices
satisfy

∥

∥

[

TT
1 TT

i+1

]
∥

∥ ≈ 100

for j = 50. The value of this norm for j = 20 is approximately 50. We used i = 3 and
data were taken for j = 24, . . . , 50.

For each j the generalized URV decomposition correctly identified the order n = 3.
When the identified model was driven by the inputs uk starting with the earliest iden-
tified state vector xi+1, the difference between the outputs produced by the identified
model and the original model was of the same order of magnitude as the noise. We
define

Y =
[

yi+1 yi+2 · · · y100

]

as a matrix of original, unperturbed outputs and

Ŷj =
[

ŷi+1 ŷi+2 · · · ŷ100

]

as the matrix of simulated outputs produced by the system identified using j columns
of T1 and Ti+1. The errors

‖Y − Ŷj‖2

‖Y ‖2

are shown in Figure 5.1.
Clearly the algorithm is successful in handling this level of noise. However, if

we increase the noise level by a factor of 10, the algorithm fails dramatically; it is
not possible to find a tolerance for which the ranks r2 and r3 are estimated reliably.
Nevertheless the rank r1 and the sum r2 + r3 = r1 are both estimated reliably for a
choice of absolute tolerance of 1.

The problem is the inherent sensitivity of the generalized SVD computation as
characterized by a simple perturbation analysis in section 1. For rank estimation, the


