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ON THE FACTORIZATION OF HYPERBOLIC AND UNITARY
TRANSFORMATIONS INTO ROTATIONS∗
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Abstract. This paper presents a Σ-unitary analogue to the CS decomposition of a partitioned
unitary matrix. The hyperbolic rotations revealed by the decomposition are shown to be optimal
in that, among a broader class of decompositions of Σ-unitary matrices into elementary hyperbolic
rotations, they are the smallest possible in a sum-of-squares sense. A similar optimality property is
shown to hold for the sines in the CS decomposition of a unitary matrix.
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1. Background. In block Cholesky downdating problems and in block imple-
mentations [3, 4] of the generalized Schur algorithm for the Cholesky factorization of
a block Toeplitz matrix, it is necessary to compute a Σ-unitary matrix

H =

(
H11 H12

H21 H22

)
(1)

such that

H

(
A
B

)
=

(
Â
0

)
,(2)

where A and Â are p×m and B is q ×m. The matrix Â is not assumed to be upper
triangular. The transformation H is required to satisfy the Σ-orthogonality relation

HHΣH = Σ(3)

with respect to the signature matrix

Σ =

(
Ip 0
0 −Iq

)
.

Any transformation, H, satisfying (3) is referred to as Σ-unitary.
In block Cholesky downdating and in the block generalized Schur algorithm,

AHA−BHB is always positive definite. We will also use the notation AHA−BHB > 0
or AHA > BHB for this assumption. Positive definiteness is sufficient to guar-
antee the existence of a Σ-unitary transformation satisfying (2). In particular if
A† = (AHA)−1AH, then we can choose

H =

(
(I − (BA†)H(BA†))−1/2 0

0 (I − (BA†)(BA†)H)−1/2

)(
I −(BA†)H

BA† −I

)
.
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Assuming the inverses and square roots exist, it is easy to algebraically verify that
HHΣH = Σ and that (2) holds with

Â = (I − (BA†)H(BA†))1/2A.

To see that the matrix square roots and inverses exist, note that for full rank A,
AHA − BHB > 0 is equivalent to AH(I − (BA†)H(BA†))A > 0. This implies that
I − (BA†)H(BA†) > 0. To see why, let

x = Ax0 + x1,

where x �= 0 is an arbitrary nonzero vector and xH
1 A = 0. Then

xH
(
I − (BA†)H(BA†)

)
x = xH

0 A
H(I − (BA†)H(BA†))Ax0 + xH

1 x1 > 0.

It follows that ‖BA†‖2 < 1, which is sufficient to show that both matrix inverse square
roots exist.

The inverse and conjugate transpose of a Σ-unitary matrix H are Σ-unitary.
The inverse always exists and is given by H−1 = ΣHHΣ. The product of Σ-unitary
matrices can be shown to be Σ-unitary. It follows that Σ-unitary transformations
form a multiplicative group. It is natural to decompose such matrices into a product
of simpler Σ-unitary transformations. Typical choices are block diagonal unitary
matrices of the form (

UA 0
0 UB

)

for unitary UA and UB , and hyperbolic rotations⎛
⎜⎜⎜⎜⎝
I

ch sh
I

sh ch
I

⎞
⎟⎟⎟⎟⎠ ,

where |ch|2 − |sh|2 = 1 and where the latter transformation acts on a single row of
A together with a single row of B. In the case in which ch is real and positive it is
common to express ch and sh in terms of a single parameter by writing

ch =
1√

1 − |ρ|2
, sh =

ρ√
1 − |ρ|2

.

Common algorithms for applying Σ-unitary matrices compute and apply H as a prod-
uct of such elementary transformations, and the choice of ch being real positive is not
really restrictive. It can be shown that any Σ-unitary transformation can be repre-
sented as a product of block diagonal unitary matrices and hyperbolic rotations.

A common approach for computing H satisfying (2) as such a product follows a
simple triangularization procedure. Introducing subscripts to keep track of different
stages of the process, we suppose that we are given matrices A1 and B1 such that
AH

1 A1 −BH
1 B1 > 0. We start by computing unitary U1 and U2 such that(

UH
1 0
0 UH

2

)(
A1

B1

)
=

(
Â1

B̂1

)
,
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where Â1 and B̂1 are either upper triangular or at least have a first column of the
form

Â1e1 =

(
a11

0

)
and B̂1e1 =

(
b11
0

)

for scalar a11 and b11 and where e1 is a first standard basis vector. A procedure for
introducing the zero elements in Â1 and B̂1 is simply the well-known method of QR
factorization via Givens rotations or Householder transformations.

For the next step of the procedure we note that

1√
1 − |ρ|2

(
1 ρ
ρ 1

)(
a
b

)
=

(
sign(a)

√
|a|2 − |b|2
0

)

for ρ = −b/a. Thus zeros can be introduced into Â1 and B̂1 using hyperbolic rotations.
If

(
Â1

B̂1

)
=

⎛
⎜⎜⎜⎝
a11 aH

12

0 A22

b11 bH12
0 B22

⎞
⎟⎟⎟⎠ ,

then a hyperbolic rotation can be applied to transform Â1 and B̂1 to A2 and B2 of
the form

(
A2

B2

)
=

⎛
⎜⎜⎜⎝

sign(a11)
√
|a11|2 − |b11|2 ãH

12

0 A22

0 b̃H12
0 B22

⎞
⎟⎟⎟⎠ .

This process can be applied recursively to⎛
⎜⎝
A22

bH12
B22

⎞
⎟⎠

using transformations that are Σ-unitary with respect to Σ = Ip−1 ⊕ −Iq to succes-

sively zero the columns of B. This particular process computes an Â that is upper
triangular although none of the results of this paper require that H be computed so
that this is the case.

From this algorithm it follows that the condition AHA − BHB > 0 ensures that
we can compute H satisfying (2) as a product

H =

(
UA 0
0 UB

)
H(p)U (p)H(p−1)U (p−1) · · ·H(1)U (1),(4)

where the matrices U (k) and H(k) have the following form:

U (k) =

⎛
⎜⎝
Ik−1 0 0

0 U
(k)
1 0

0 0 U
(k)
2

⎞
⎟⎠(5)
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and

H(k) =

⎛
⎜⎜⎝
Ik−1 0 0 0

0 h
(k)
11 0 (h

(k)
13 )H

0 0 Ip−k 0

0 h
(k)
31 0 H

(k)
33

⎞
⎟⎟⎠ .(6)

The vertical lines in the partitions of H(k) and U (k) separate the matrices between
columns p and p + 1. The horizontal lines separate the matrices between rows p and
p + 1. This notation is applied consistently throughout this paper. Although (6)
presents each H(k) as a relatively general Σ-unitary transformation, in most cases of
computational interest each H(k) will be either a hyperbolic rotation or a hyperbolic
Householder transformation. The unitary matrices UA and UB are not necessary
for introducing zeros into the factorization (2). But if they are included it is not
difficult to show, without any reference to A or B, that any Σ-unitary matrix admits
a factorization of the form (4). Neither (4), (6), nor (2) suffice to uniquely define the
factors H(k) and U (k). This is not a problem, however, since the results of this paper
will apply to any factorization of a Σ-unitary matrix of the form (4).

Algorithmically the significance of this factorization is that it corresponds to a
procedure for computing the rows of Â one at a time. In later sections of this paper
we will explore the mathematical aspects of this problem by introducing a hyperbolic
version of the CS decomposition. This decomposition can be viewed as a special
case of a factorization of H of the form (4). We will then show that out of all such
factorizations the hyperbolic CS decomposition has optimality properties that parallel
those of the direct rotation. In particular we will show that if H is of the form (4)
and the H(k) are hyperbolic rotations with parameters ρ(k), then the parameters ρ̂(k)

revealed by the hyperbolic CS decomposition give a lower bound

p∑
k=1

|ρ(k)|2 ≥
∑
k

|ρ̂(k)|2.

If both the ρ(k) and the ρ̂(k) are in decreasing order, then

|ρ̂(p)| ≤ |ρ(k)| ≤ |ρ̂(1)|.

Thus among all factorizations of a Σ-unitary matrix H into hyperbolic rotations
the ρ̂(k) are smallest in a 2-norm sense but the largest in an ∞-norm sense. The
parameters given by the hyperbolic CS decomposition give upper and lower bounds
on hyperbolic rotations that can be used in the computational application of a general
Σ-unitary H or to solve problem (2).

Regarding the relevance of these results, we note that problems that are naturally
solved by application of a Σ-unitary transformation via hyperbolic rotations arise
routinely in signal and image processing. Notable examples include the factorization
of structured matrices using the generalized Schur algorithm [4] and the Cholesky
downdating problem [3]. The results of this paper show that the size of parameters
ρ(k) and hence ‖H(k)‖ are to a large extent determined by the problem. A different
choice of a unitary transformation or a poor choice of ordering in applying hyperbolic
rotations will never dramatically increase the norms of the transformations used. This
has potential significance for both error analysis of algorithms and sensitivity analysis
of problems involving downdating and structured matrix factorization.
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It is also worth noting that most problems involving unitary transformations or
orthogonal constraints have a natural, but often more difficult, analogue involving
Σ-unitary transformations or Σ-unitary constraints. The algorithmic use of orthogo-
nality constraints in a variety of ways is covered in [2]. The CS decomposition and
its optimality have significant interpretations for such problems. A hyperbolic CS de-
composition and its optimality properties should find natural application to problems
involving Σ-orthogonality constraints.

An outline of this paper is as follows. In section 2 we introduce a decomposition
of a partitioned Σ-unitary transformation that is analogous to the CS decomposition
of a partitioned unitary matrix. In section 3 we prove the optimality properties of the
hyperbolic CS decomposition. In section 4 we will briefly discuss analogous ideas for
unitary matrices and contrast the results with the optimality of the direct rotation.

2. Decomposition of a partitioned Σ-unitary matrix. This section de-
scribes a hyperbolic CS decomposition. The decomposition is similar to the CS de-
composition of a partitioned unitary matrix [7] except that it applies instead to a
partitioned Σ-unitary matrix. The decomposition also appears in [5].

Theorem 2.1 (hyperbolic CS decomposition). Let H be Σ-unitary with Σ =
Ip ⊕−Iq. If q ≥ p, then H can be decomposed as

H =

(
UA 0
0 UB

)⎛
⎝ DA (D2

A − I)1/2 0

(D2
A − I)1/2 DA 0

0 0 Iq−p

⎞
⎠(

V H
A 0

0 V H
B

)
,(7)

where UA, UB, VA, and VB are unitary and DA is diagonal. The matrices UA, VA,
and DA are p× p.

If q ≤ p, then

H =

(
UA 0
0 UB

)⎛
⎝ DA 0 (D2

A − I)1/2

0 Ip−q 0

(D2
A − I)1/2 0 DA

⎞
⎠(

V H
A 0

0 V H
B

)
.

The diagonal elements in DA are real, positive, and greater than or equal to 1.
Proof. Suppose that q ≥ p and partition H as in (1). Let the singular value

decomposition of the p× p block H11 be

H11 = UADAV
H
A .

The relation HHΣH = Σ implies that

D2
A − V H

A HH
21H21VA = Ip

so that V H
A HH

21H21VA must be diagonal. Clearly the elements of DA must be greater
than one in magnitude and there must exist a unitary UB such that

H21 = UB

(
(D2

A − I)1/2

0

)
V H
A .

This is just the singular value decomposition of H21. Since HΣHH = Σ

D2
A − UH

AH12H
H
12UA = Ip,
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and clearly there is a unitary VB such that

H12 = UA

(
(D2

A − I)1/2 0
)
V H
B .

The singular value decomposition of H12, together with HH
12H12 − HH

22H22 = −Iq,
implies (

(D2
A − I) 0
0 0

)
− V H

B HH
22H22VB = −Iq.

Similarly H21H
H
21 −H22H

H
22 = −Iq implies(

(D2
A − I) 0
0 0

)
− UH

BH22H
H
22UB = −Iq.

If we define DB = UH
BH22VB , then

DH
BDB =

(
D2

A 0
0 Iq−p

)
, DBD

H
B =

(
D2

A 0
0 Iq−p

)
,

which imply that DB is normal and hence diagonalizable by a unitary similarity.
These relations also imply that

DB

(
D2

A 0
0 Iq−p

)
−
(
D2

A 0
0 Iq−p

)
DB = 0.(8)

By writing out the matrix equation (8) element by element we get([(
D2

A 0
0 Iq−p

)]
jj

−
[(

D2
A 0

0 Iq−p

)]
ii

)
[DB ]ij = 0.

From this, DB can easily be seen to be block diagonal with the possibility of nontrivial
(i.e., greater than 1×1) diagonal blocks only where the matrix D2

A⊕Iq−p has repeated
diagonal elements. Since DB is normal a unitary similarity can be applied to fully
diagonalize DB and, since the transformation can be chosen to act only on the blocks
where there are repeated singular values, this transformation of UB and VB will result
in matrices that are still composed of singular vectors for the other blocks H12 and
H21. Thus we can assume that UB and VB are chosen so that

H22 = UB

(
DA 0
0 Iq−p

)
V H
B .

Putting together the singular value decompositions of H11, H12, H21, and H22 we get
the required decomposition for q ≥ p.

For q ≤ p we can obtain the result by application of the q ≥ p case to a matrix
formed by permutation of the blocks of H,(

HH
22 HH

12

HH
21 HH

11

)(
Iq 0
0 −Ip

)(
H22 H21

H12 H11

)
=

(
Iq 0
0 −Ip

)
.

In section 1 we noted that the hyperbolic CS decomposition is a particular case
of a decomposition of the form (4). To see this we define

D = (I −D−2
A )1/2
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to get the following form for (7):

H =

(
UA 0
0 UB

)⎛
⎝ (I −D2)−1/2 D(I −D2)−1/2 0

D(I −D2)−1/2 (I −D2)−1/2 0
0 0 Iq−p

⎞
⎠(

V H
A 0

0 V H
B

)
.(9)

If we define ρ̂(k) by

D = diag(ρ̂(1), ρ̂(2), . . . , ρ̂(p)),

then (9) corresponds to a decomposition of H into a set of elementary hyperbolic
rotations with real parameters ρ̂(k). In particular, if we define

Ĥ(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ik−1 0 0 0 0

0 1√
1−(ρ̂(k))2

0 ρ̂(k)√
1−(ρ̂(k))2

0

0 0 Ip−1 0 0

0 ρ̂(k)√
1−(ρ̂(k))2

0 1√
1−(ρ̂(k))2

0

0 0 0 0 Iq−k

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then

H =

(
UA 0

0 UB

)
Ĥ(p)Ĥ(p−1) · · · Ĥ(1)

(
V H
A 0

0 V H
B

)
.

The right-hand side of this equation is clearly a factorization of the form (4). The
decomposition is not difficult to adapt to the case in which q < p.

3. Optimality of the hyperbolic CS decomposition. In this section we
will show that the hyperbolic CS decomposition is an optimal representation of a
Σ-unitary matrix as a product of hyperbolic rotations. For a given H of the form
(4), where the H(k) are hyperbolic rotations, the ρ̂(k) in (9) are smallest in a sum-of-
squares sense among all possible factorizations of the form (4). However, it will also
be shown that among all factorizations of H into hyperbolic rotations, the hyperbolic
CS decomposition produces the ρ(k) of largest magnitude.

To get the precise result we will first narrow the class of factorizations we must
consider. Consider a transformation of the form (4). We can rewrite this as

H =

(
UA 0
0 UB

)
H(p)

⎛
⎝Ip−1 0 0

0 u
(p)
1 0

0 0 Iq

⎞
⎠(

Ip 0

0 U
(p)
2

)
· · ·H(1)

(
U

(1)
1 0
0 Iq

)(
Ip 0

0 U
(1)
2

)
.

However, for j < k the unitary transformation⎛
⎝Ik−1 0 0

0 U
(k)
1 0

0 0 Iq

⎞
⎠

commutes both with H(j) and with Ip ⊕ U
(j)
2 . Thus

H =

(
UA 0
0 UB

)
H(p)

(
Ip 0

0 U
(p)
2

)
· · ·H(1)

(
Ip 0

0 U
(1)
2

)(
U1 0
0 Iq

)
,
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where

U1 = U
(p)
1 U

(p−1)
1 · · ·U (1)

1 .

Let

H̃(k) = H(k)

(
Ip 0

0 U
(k)
2

)
=

⎛
⎜⎜⎝
Ik−1 0 0 0

0 h
(k)
11 0 (h

(k)
13 )HU

(k)
2

0 0 Ip−k 0

0 h
(k)
31 0 H

(k)
33 U

(k)
2

⎞
⎟⎟⎠ .

Clearly H̃(k) is a Σ-unitary transformation of the same general form as (6). Further,
the quantity we will be concerned with in this section is ‖h31h

−1
11 ‖2, which is invariant

under the transformation by U
(k)
2 . Thus we may assume without any loss of generality

that H has the form

H =

(
UA 0
0 UB

)
H(1)H(2) · · ·H(p)

(
U1 0
0 Iq

)
,(10)

where each H(k) is of the form (6). We will state theorems concerning ‖h(k)
31 /h

(k)
11 ‖2,

which apply to any H(k) in a factorization of the form (4), but when proving those
theorems we will immediately assume that H is of the form (10).

Several intermediate results are required before we attempt to prove the main
result of this section. First we need a theorem proven in [6]. The theorem is well
known in several fields.

Theorem 3.1 (unitary/Σ-unitary correspondence). Let

H =

(
H11 H12

H21 H22

)

be Σ-unitary with Σ = Ip ⊕ −Iq, where H11 is p × p. Then H11 is nonsingular and
the matrix

Q = exc(H) =

(
H−1

11 −H−1
11 H12

H21H
−1
11 H22 −H21H

−1
11 H12

)

is unitary. Conversely, if Q is unitary with a nonsingular leading principal subma-
trix of order p, then exc(Q) is Σ-unitary. In the unitary case the leading principal
submatrix is not guaranteed to be nonsingular.

The exchange theorem is necessary for the proof of the following lemma which,
when applied recursively, will yield the main result of this section. In fact, the lemma
may be interpreted as a block form of the main theorem applied to a product of just
two matrices.

Lemma 3.2. Let G and H be Σ-unitary matrices of the form

G =

⎛
⎝G11 0 G13

0 Ip−k1
0

G31 0 G33

⎞
⎠ , H =

⎛
⎝Ip−k2

0 0
0 H22 H23

0 H32 H33

⎞
⎠ ,

where G11 and H22 are k1 × k1 and k2 × k2, respectively, with k1 + k2 = p and
Σ = Ip ⊕−Iq. Let their product be

F = HG =

(
F11 F12

F21 F22

)
.
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Let ρ̂(k) for k = 1, 2, . . . , p be the singular values of F21F
−1
11 ordered from largest to

smallest. If p > q, then we define ρ̂(k) = 0 for k > q. Then

‖F21F
−1
11 ‖2

F =

min(p,q)∑
k=1

(ρ̂(k))2 ≤ ‖H32H
−1
22 ‖2

F + ‖G31G
−1
11 ‖2

F ,

ρ̂(p) ≤ σk(G31G
−1
11 ) ≤ ρ̂(1)

for k = 1, 2, . . . , k1 and

ρ̂(p) ≤ σk(H32H
−1
22 ) ≤ ρ̂(1)

for k = 1, 2, . . . , k2.
Proof. The invertibility of G11, H22, and F11 follows from the previous theorem.

Multiplying out HG we see that

F11 =

(
G11 0

H23G31 H22

)
, F21 =

(
H33G31 H32

)
.

Thus

F−1
11 =

(
G−1

11 0
−H−1

22 H23G31G
−1
11 H−1

22

)

and

F21F
−1
11 =

(
(H33 −H32H

−1
22 H23)G31G

−1
11 H32H

−1
22

)
so that

‖F21F
−1
11 ‖2

F = ‖(H33 −H32H
−1
22 H23)G31G

−1
11 ‖2

F + ‖H32H
−1
22 ‖2

F

≤ ‖H33 −H32H
−1
22 H23‖2

2‖G31G
−1
11 ‖2

F + ‖H32H
−1
22 ‖2

F .

However, since H is Σ-unitary the exchanged matrix exc(H) is unitary. It is easily
seen that exc(H) contains H33 −H32H

−1
22 H23 as a block. Consequently

‖H33 −H32H
−1
22 H23‖2 ≤ ‖exc(H)‖2 = 1

from which the first inequality of the lemma follows.
The second inequality also follows from the expression for F21F

−1
11 . Clearly

σk

(
H32H

−1
22

)
≤ σ1

(
H32H

−1
22

)
≤ σ1

((
(H33 −H32H

−1
22 H23)G31G

−1
11 H32H

−1
22

))
from which we get the upper bound. If p ≤ q, then

σk

(
H32H

−1
22

)
≥ σk2

(
H32H

−1
22

)
≥ σp

((
(H33 −H32H

−1
22 H23)G31G

−1
11 H32H

−1
22

))
so that the lower bound holds. If p > q, then the lower bound is trivial, since
σp(F21F

−1
11 ) = 0.

To establish the third inequality we note that Theorem 2.1 implies that the sin-
gular values of F−1

11 F12 are the same as those of F21F
−1
11 . The result then follows

from

F−1
11 F12 =

(
G−1

11 G13

H−1
22 H23(G33 −G31G

−1
11 G13)

)
(11)
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through an argument identical to that used in verifying the second inequality.
Although they will not be used in this paper, more sophisticated results are

possible in special cases. For example if k2 = 1, then (11) implies that the singular
values of G−1

11 G13 interlace the values ρ̂(k).
We now require that the H(k) in (4) be hyperbolic rotations and we extend the

theorem to a product of p Σ-unitary transformations.
Theorem 3.3. Let H be Σ-unitary with Σ = Ip ⊕−Iq, p ≤ q, and let

H =

(
UA 0
0 UB

)
H(p)U (p)H(p−1)U (p−1) · · ·H(1)U (1),

where

H(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ik−1 0 0 0 0

0 1√
1−(ρ(k))2

0 ρ(k)√
1−(ρ(k))2

0

0 0 Ip−k+l−1 0 0

0 ρ(k)√
1−(ρ(k))2

0 1√
1−(ρ(k))2

0

0 0 0 0 Iq−l

⎞
⎟⎟⎟⎟⎟⎟⎠

for arbitrary 1 ≤ l ≤ q. Also let U (k) be a block diagonal unitary matrix of the form
(5). Here UA and UB are arbitrary unitary matrices and do not necessarily correspond
to the UA and UB in the hyperbolic CS decomposition. If ρ̂(k) are the parameters from
the hyperbolic CS decomposition of H arranged in decreasing order for k = 1, 2, . . . , p,
then ∑

k

|ρ(k)|2 ≥
∑
k

|ρ̂(k)|2(12)

and

|ρ̂(p)| ≤ |ρ(k)| ≤ |ρ̂(1)|

for k = 1, 2, . . . , p.
Proof. Note that if we partition H(k) as in (6), then

h
(k)
31 /h

(k)
11 =

⎛
⎝ 0
ρ(k)

0

⎞
⎠

so that ‖h(k)
31 /h

(k)
11 ‖2 = |ρ(k)|. As we argued at the beginning of this section, we can

assume that H has the form (10). The H(k) in (10) are not the same as the H(k)

in the statement of the theorem. The new H(k) are no longer elementary hyperbolic
rotations but are instead general Σ-unitary transformations of the form (6). However,

the quantity ‖h(k)
31 /h

(k)
11 ‖2 = |ρ(k)| is not changed. We will assume that H has the

form (10) and prove the statements of the theorem for the quantities ‖h(k)
31 /h

(k)
11 ‖2

instead of for |ρ(k)|.
Note that U1, UA, and UB do not change the parameters ρ̂(k) so that without

loss of generality we can assume that each of these matrices is the identity. Hence to
prove (12) we must show that if H is Σ-unitary with Σ = Ip ⊕−Iq and is factored as

H = H(p)H(p−1) · · ·H(1),(13)
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then

‖H21H
−1
11 ‖2

F ≤
∥∥∥h(p)

31 /h
(p)
11

∥∥∥2

2
+
∥∥∥h(p−1)

31 /h
(p−1)
11

∥∥∥2

2
+ · · · +

∥∥∥h(1)
31 /h

(1)
11

∥∥∥2

2
.

The proof is by induction on p. The case p = 1 is trivial. Assume that if L is Σ-unitary
with Σ = Ip−1 ⊕−Iq and

L = L(p−1)L(p−2) · · ·L(1),(14)

then

‖L21L
−1
11 ‖2

F ≤
∥∥∥l(p−1)

31 /l
(p−1)
11

∥∥∥2

2
+
∥∥∥l(p−2)

31 /l
(p−2)
11

∥∥∥2

2
+ · · · +

∥∥∥l(1)31 /l
(1)
11

∥∥∥2

2
,

where the matrices L and L(k) are partitioned in the same manner as H and H(k).
Define

G = H(p−1)H(p−2) · · ·H(1) =

⎛
⎝G11 0 G13

0 1 0
G31 0 G33

⎞
⎠

so that H = H(p)G. We may apply Lemma 3.2 to conclude that

‖H21H
−1
11 ‖2

F ≤ ‖h(p)
31 /h

(p)
11 ‖2

2 + ‖G31G
−1
11 ‖2

F .(15)

Define

L(k) =

⎛
⎜⎜⎝
Ik−1 0 0 0

0 h
(k)
11 0 (h

(k)
13 )H

0 0 Ip−k−1 0

0 h
(k)
31 0 H

(k)
33

⎞
⎟⎟⎠ .

Then L(k) is Σ-unitary with respect to Ip−1 ⊕−Iq and

L = L(p−1)L(p−2) · · ·L(1) =

(
G11 G13

G31 G33

)
.(16)

Thus the induction hypothesis implies that

‖G31G
−1
11 ‖2

F ≤
∥∥∥h(p−1)

31 /h
(p−1)
11

∥∥∥2

2
+
∥∥∥h(p−2)

31 /h
(p−2)
11

∥∥∥2

2
+ · · · +

∥∥∥h(1)
31 /h

(1)
11

∥∥∥2

2
.

With (15) this completes the induction step to prove (12).
The proof of the upper and lower bounds on |ρ(k)| is similar. We can assume that

H is of the form (13) and we must then prove that

ρ̂(p) ≤ ‖h(k)
31 /h

(k)
11 ‖2 ≤ ρ̂(1).

The proof is again inductive on p. The result is clearly true if p = 1. We assume that
it is true for p− 1; i.e., if L is of the form (14) and partitioned as (16), then

σp−1

(
G31G

−1
11

)
≤ ‖h(k)

31 /h
(k)
11 ‖2 ≤ σ1

(
G31G

−1
11

)
.
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Now consider H. Since H = H(p)G Lemma 3.2 immediately implies that

ρ̂(p) ≤ ‖h(p)
31 /h

(p)
11 ‖2 ≤ ρ̂(1)

and that

ρ̂(p) ≤ σk

(
G31G

−1
11

)
≤ ρ̂(1)

so that the induction hypothesis implies

ρ̂(p) ≤ σp−1

(
G31G

−1
11

)
≤ ‖h(k)

31 /h
(k)
11 ‖ ≤ σ1

(
G31G

−1
11

)
≤ ρ̂(1)

for k = 1, 2, . . . , p− 1.
The theorem shows that in a sum-of-squares sense the parameters ρ̂(k) are less

than or equal to the ρ(k) associated with any factorization of H of the form (4) into
elementary hyperbolic rotations. However, the theorem also shows that ρ̂(1) is larger
than any of the ρ(k). Thus, noting that a ρ(k) close to 1 represents a hyperbolic
rotation with undesirably large norm, the theorem implies that the hyperbolic CS
decomposition is the best possible factorization of H into rotations as measured by the
2-norm of the vector of ρ(k), but the worst as measured by the ∞-norm. Unfortunately
these results are difficult to interpret numerically.

If the H(k) are not hyperbolic rotations, then the theorem holds with the values

ρ(k) replaced by ‖h(k)
31 /h11‖2. This might be of computational interest if the H(k) are

hyperbolic Householder transformations; see [6].

4. Unitary matrices. The results of the last section can be adapted to factor-
izations of unitary matrices. We start by stating the CS decomposition theorem for
a partitioned unitary matrix [7].

Theorem 4.1 (CS decomposition). Let

H =

(
H11 H12

H21 H22

)

be unitary with H11 p× p and H22 q × q. If q ≥ p, then H can be decomposed as

H =

(
UA 0
0 UB

)⎛
⎝C −S 0
S C 0
0 0 Iq−p

⎞
⎠(

V H
A 0

0 V H
B

)
,(17)

where UA, UB, VA, and VB are unitary, C and S are diagonal with |C|2 + |S|2 = I,
and C has positive, real diagonal elements.

If q ≤ p, then

H =

(
UA 0
0 UB

)⎛
⎝C 0 −S

0 Ip−q 0
S 0 C

⎞
⎠(

V H
A 0

0 V H
B

)
.

The next step is to prove a result that is analogous to Lemma 3.2. In the unitary
case the lemma has a very direct proof that does not depend on Theorem 3.1.

Lemma 4.2. Let G and H be unitary matrices of the form

G =

⎛
⎝G11 0 G13

0 Ip−k1 0
G31 0 G33

⎞
⎠ ,
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H =

⎛
⎝Ip−k2 0 0

0 H22 H23

0 H32 H33

⎞
⎠ ,

where G11 and H22 are k1 × k1 and k2 × k2, respectively. Let their product be

F = HG =

(
F11 F12

F21 F22

)
.

Let ŝ(k) for k = 1, 2, . . . , p be the singular values of F21 ordered from largest to smallest.
If p > q, then we define s(k) = 0 for k > q. Then

‖F21‖2
F =

min(p,q)∑
k=1

|ŝ(k)|2 ≤ ‖H32‖2
F + ‖G31‖2

F ,

ŝ(p) ≤ σk(G31) ≤ ŝ(1)

for k = 1, 2, . . . , k1 and

ŝ(p) ≤ σk(H32) ≤ ŝ(1)

for k = 1, 2, . . . , k2.
Proof. As in the proof of Lemma 3.2 we can multiply out HG to get

F21 =
(
H33G31 H32

)
.

The matrix G31 is a block of a unitary matrix so that ‖G31‖2 ≤ 1. This immediately
yields the first inequality. The upper and lower bounds on the singular values of H32

and G31 also follow from the expression for F21.
The consequences of the lemma are similar to Theorem 3.3 except the results are

stated in terms of sines instead of the parameters ρ̂(k). Given a unitary matrix H we
define ŝ(k) by taking the CS decomposition and letting

S = diag(ŝ(1), ŝ(2), . . . , ŝ(p)).

Theorem 4.3. Let H be unitary and let

H = H(p)U (p)H(p−1)U (p−1) · · ·H(1)U (1),

where

H(k) =

⎛
⎜⎜⎜⎜⎝
Ik−1 0 0 0 0

0 c(k) 0 s(k) 0
0 0 Ip−k+l−1 0 0
0 s(k) 0 c(k) 0
0 0 0 0 Iq−l

⎞
⎟⎟⎟⎟⎠

for arbitrary 1 ≤ l ≤ q and for |c|2+ |s|2 = 1. Also let U (k) be a block diagonal unitary
matrix of the form (5). If ŝ(k) are the sines from the CS decomposition of H arranged
in decreasing order by magnitude for k = 1, 2, . . . , p, then

∑
k

∣∣∣s(k)
∣∣∣2 ≥

∑
k

∣∣∣ŝ(k)
∣∣∣2(18)
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and ∣∣∣ŝ(p)
∣∣∣ ≤ ∣∣∣s(k)

∣∣∣ ≤ ∣∣∣ŝ(1)
∣∣∣ .(19)

Proof. The inductive argument required to obtain this result from Lemma 4.2 is
essentially identical to the argument used to obtain Theorem 3.3 from Lemma 3.2.

The unitary version of the theorem gives a lower bound on the sum of squares of
sines in any factorization (4) of unitary H into elementary plane rotations. The bound
is in terms of the sum of the squares of the sines obtained from the CS decomposition
of H. At first glance this result appears to be similar to a well-known optimality
result for the direct rotation [1].

In particular, let

U1 =
(
u1 u2 · · · up

)
, V1 =

(
v1 v2 · · · vp

)
be two orthonormal bases for two p-dimensional subspaces U and V. Let U2 and V2

be orthonormal bases for the orthogonal complements of U and V and define

Ĥ =

(
UH

1

UH
2

)(
V1 V2

)
=

(
H11 H12

H21 H22

)
=

(
UA 0
0 UB

)⎛
⎝C −S 0
S C 0
0 0 I

⎞
⎠(

V H
A 0

0 V H
B

)
,

where S = diag(ŝ(1), ŝ(2), . . . , ŝ(p)) and where for simplicity we have assumed that
p < q in partitioning the CS decomposition of Ĥ. If H is any unitary transformation
mapping V to U and we define

s(k) = sin (� (vk, Hvk)) ,(20)

then

p∑
k=1

∣∣∣s(k)
∣∣∣2 ≥

p∑
k=1

∣∣∣ŝ(k)
∣∣∣2 .(21)

There is an optimal H, known as the direct rotation, which achieves equality in (21)
[1].

Since both involve a lower bound in terms of
∑

k |ŝ(k)|2, it is worth the effort to
contrast the optimality of the direct rotation with Theorem 4.3 to make sure that
they are truly distinct results and not expressions in different languages of the same
underlying fact. We start with the obvious: Theorem 4.3 gives bounds on sines
that can be used in factoring a given unitary matrix H; the optimality of the direct
rotation introduces Ĥ and defines the sines associated with Ĥ not through a matrix
factorization but through (20). The quantities s(k) appear to be defined in two distinct
ways.

In addition to their different definitions, the two sets of sines display different
behavior; the s(k) defined by (20) may satisfy (21) but they do not in general satisfy
(19). This can be shown by considering a simple example.

Example 1. Let

U1 = V1 =

(
I
0

)
, U2 = V2 =

(
0
I

)
.
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Then all H mapping U to V are of the form

H =

(
X 0
0 Y

)

for unitary X and Y and

|s(k)|2 = | sin(� (vk, Hvk))|2 = 1 − | cos( � (vk, Hvk))|2 = 1 − |vH
k Hvk|2

= 1 − |eH
k Hek|2 = 1 − |[X]kk|2.

The matrix Ĥ defined by the bases for U and V is just the identity and is already
reduced to its CS decomposition. So ŝ(k) = 0 for each k. Thus (19), if it held, would
imply that |s(k)| = 0. However, [X]kk can be chosen so that |s(k)| is any value between
0 and 1 and therefore (19) cannot hold for all possible choices of H.
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