Binary factorizations of the matrix of all ones

Maguy Trefois ${ }^{\text {a,* }}$, Paul Van Dooren ${ }^{\text {a }}$, Jean-Charles Delvenne ${ }^{\text {a,b,c }}$
${ }^{\text {a }}$ ICTEAM Institute, Department of Applied Mathematics, Université catholique
de Louvain, Avenue Georges Lemaître 4, B-1348 Louvain-La-Neuve, Belgium
${ }^{\text {b }}$ Namur Complex Systems Center (NAXYS), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
${ }^{\text {c }}$ Center for Operations Research and Econometrics (CORE), Université catholique de Louvain, Louvain-La-Neuve, Belgium

A R T I C L E I N F O

Article history:

Received 26 September 2013
Accepted 11 January 2014
Available online 20 January 2014
Submitted by P. Psarrakos

MSC:

15A23
15 A 24
Keywords:
Matrix equation
Standard factorization
Binary matrix
De Bruijn matrix
Isomorphism

A B S T R A C T

In this paper, we consider the problem of factorizing the $n \times n$ matrix J_{n} of all ones into the $n \times n$ binary matrices. We show that under some conditions on the factors, these are isomorphic to a row permutation of a De Bruijn matrix. Moreover, we consider in particular the binary roots of J_{n}, i.e. the binary solutions to $A^{m}=J_{n}$. On the one hand, we prove that any binary root with minimum rank is isomorphic to a row permutation of a De Bruijn matrix whose row permutation is represented by a block diagonal matrix. On the other hand, we partially solve Hoffman's open problem of characterizing the binary solutions to $A^{2}=J_{n}$ by providing a characterization of the binary solutions to $A^{2}=J_{n}$ with minimum rank. Finally, we provide a class of roots which are isomorphic to a De Bruijn matrix.
© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

In this paper, we consider the problem of factorizing the $n \times n$ matrix

$$
J_{n}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

into the binary matrices. Namely, we restrict ourselves to square $n \times n$ factors A_{i} that have all their elements in $\{0,1\}$, i.e. that are adjacency matrices of graphs with n nodes. We are thus looking for the solutions of

$$
\prod_{i=1}^{m} A_{i}=A_{1} A_{2} \ldots A_{m}=J_{n}
$$

and in particular, the case when all the factors are identical, i.e. we investigate the binary solutions to the equation

$$
A^{m}=J_{n} .
$$

The g-circulant binary solutions to $A^{m}=J_{n}$ were studied through a convenient representation by Hall polynomials [1,3,2,4]. Remind that a matrix is called g-circulant if each row is obtained from the previous one by shifting all its elements of g positions to the right. In particular, it has been proved [1] that some g-circulant solutions are isomorphic to a De Bruijn matrix, originally defined in [5]. Nowadays, there are very few results [6] about the general binary solutions to $A^{m}=J_{n}$. However, these general solutions are of interest in many problems. Indeed, a solution of $A^{m}=J_{n}$ is the adjacency matrix of a directed graph for which given any two nodes u and v, there is a unique directed path of length m from u to v. In [7], it has been shown that these graphs allow to construct a class of algebras. Moreover, in the framework of the finite-time average consensus problem, the binary solutions to $A^{m}=J_{n}$ represent all the communication topologies whose interaction strengths are all equal to $1 / \sqrt[m]{n}$ and that reach the consensus at time m. In particular, the De Bruijn matrices are of this type and have been shown [8] to be one of the quickest strategies to reach the average consensus. In the present paper, we show how the binary roots of J_{n} with minimum rank are related to the De Bruijn matrices.

The outline of the paper is as follows: in Section 2 we state some properties on the binary roots of J_{n} and on the De Bruijn matrices, which are well known roots of J_{n}. In Section 3, we study the commuting factors of the matrix with all ones. We prove that under some conditions on the commuting factors, these are isomorphic to a row permutation of a De Bruijn matrix. In Section 4, we prove that any binary root with minimum rank is isomorphic to a row permutation of a De Bruijn matrix, whose row permutation
is represented by a block diagonal matrix. In Section 5, we provide a characterization of the binary solutions to $A^{2}=J_{n}$ with minimum rank, which partially solves Hoffman's open problem of characterizing any binary solution to $A^{2}=J_{n}$. Finally, in Section 6, we provide a class of roots, not necessarily g-circulant, which are isomorphic to a De Bruijn matrix.

For convenience, the rows and columns of a matrix of dimension n will be indexed from 0 to $n-1$ and $e_{i, n}(0 \leqslant i \leqslant n-1)$ denotes the $n \times 1$ unit vector with 1 in its i-th position. The vector $\mathbf{1}_{n}$ denotes the $n \times 1$ vector of all 1 's.

The Kronecker product of two matrices A, B is denoted $A \otimes B$.
When there is no ambiguity, the square matrix of dimension n with all ones will be denoted by J instead of J_{n}.

Any $n \times n$ binary matrix A is seen as the adjacency matrix of a graph G with n nodes. One then says that the matrix A represents the graph G.

Any graph is said to be p-regular if it has out and in-degree p.

2. Matrix roots of J_{n} and De Bruijn matrices

In this section, we prove some properties of the binary roots of the square matrix J_{n} of all ones. Moreover, we remind some properties on the De Bruijn matrices which are a class of solutions to the equation $A^{m}=J_{n}$.

Lemma 2.1. Let $A^{m}=k J_{n}$, where $k \neq 0$ and $A \in\{0,1\}^{n \times n}$, then A represents a p-regular graph, the trace of A is p, p and k are positive integers and $p^{m}=k n$.

Proof. Clearly, the spectrum of $k J_{n}$ is given by

$$
\Lambda\left(k J_{n}\right)=\{k n, 0, \ldots, 0\} .
$$

The spectrum of any m-th root A must therefore be equal to

$$
\Lambda(A)=\{p, 0, \ldots, 0\}, \quad p^{m}=k n
$$

but since A is a binary matrix its trace, which is then equal to p, must be a nonnegative integer. Moreover, the elements of A^{m} must be equal to k, which is therefore also a non-negative integer. Since we ruled out $k=0$, both p and k must be positive integers. Since p is then the only strictly positive eigenvalue of A, its left and right Perron vectors must again be proportional to $\mathbf{1}_{n}$:

$$
A \mathbf{1}_{n}=p \mathbf{1}_{n}, \quad A^{T} \mathbf{1}_{n}=p \mathbf{1}_{n}
$$

which implies that A is p-regular.
The De Bruijn matrices are well known to meet these properties, especially when $k=1$.

Definition 2.2. The De Bruijn matrix of order p and dimension n is an $n \times n$ matrix defined as:

$$
D(p, n):=\mathbf{1}_{p} \otimes I_{n / p} \otimes \mathbf{1}_{p}^{T}
$$

where $I_{n / p}$ is the identity matrix of dimension n / p and $\mathbf{1}_{p}$ is the $p \times 1$ vector with all ones. Moreover, $n=p^{m}$ for some integer m.

Example 2.3. The De Bruijn matrix $D(2,8)$ of order 2 and dimension 8 is

$$
D(2,8)=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Below we remind some well known properties of the De Bruijn matrices.

Lemma 2.4. The i-th power of the De Bruijn matrix $D(p, n)\left(\right.$ with $\left.n=p^{m}\right)$ is equal to

$$
D(p, n)^{i}=D\left(p^{i}, n\right)=\mathbf{1}_{p^{i}} \otimes I_{p^{m-i}} \otimes \mathbf{1}_{p^{i}}^{T}
$$

for $i \leqslant m$ and equal to

$$
D(p, n)^{i}=p^{i-m} J_{n}
$$

for $i \geqslant m$.

A direct consequence of this lemma is the following.

Corollary 2.5. The De Bruijn matrices $D(p, n)$ are such that

$$
\begin{array}{cl}
D(p, n)^{m}=J_{n}, & \forall n=p^{m} \\
D(p, n)^{m}=k J_{n}, & \forall k n=p^{m}
\end{array}
$$

The De Bruijn matrices $D(p, n)$ for which $n=p^{m}$ are thus m-th roots of J_{n}. In the next section, we will show in particular that under a certain condition on the rank of the m-th roots of J_{n}, these are isomorphic to a row permutation of a De Bruijn matrix.

3. Factorizations into commuting factors

In this section we describe the factorization problem into two commuting factors over the $n \times n$ binary matrices:

$$
\begin{equation*}
A B=B A=J_{n}, \quad A, B \in\{0,1\}^{n \times n} . \tag{1}
\end{equation*}
$$

We assume that the factors A and B represent regular graphs, say with in- and out-degree p for A and in- and out-degree l for B. We then have Theorem 3.2. In the proof, we use the following terminology.

Let P_{1} and P_{2} be two permutation matrices. Saying the permutations of P_{1} are absorbed in P_{2} means that we pose $P_{2}:=P_{1} P_{2}$.

The notation $A[a: b, c: d]$ refers to the submatrix of A with the rows of A indexed from a to b and the columns of A indexed from c to d.

Definition 3.1. Two matrices A and B are said to be isomorphic if they are permutation similar, that is, if there is a permutation matrix P such that $P A P^{T}=B$. We write $A \cong B$.

Theorem 3.2. Let A and B be two regular graphs satisfying (1), then $p l=n$. Moreover, $\operatorname{rank}(A)=n / p($ resp $\cdot \operatorname{rank}(B)=n / l)$ if and only if there is a permutation matrix P such that

$$
A \cong P D(p, n) \quad(\text { resp } . B \cong P D(l, n))
$$

Proof. First of all, notice that we can suppose without loss of generality that the entries a_{00} and b_{00} of A and B respectively both equal 1 . Indeed, since $B A=J$, there exist i, j such that $b_{i j} \cdot a_{j i}=1$. Hence, there are permutation matrices P_{i}, P_{j} such that the matrices $\tilde{B}=P_{i} B P_{j}^{T}$ and $\tilde{A}=P_{j} A P_{i}^{T}$ have their element $(0,0)$ equal to 1 . Moreover,

$$
\tilde{A} \tilde{B}=\tilde{B} \tilde{A}=J,
$$

and if \tilde{A} (resp. \tilde{B}) is isomorphic to a matrix of the form $P D(p, n)$ (resp. $P D(l, n)$), then so it is for $A($ resp. $B)$. Consider therefore that $a_{00}=b_{00}=1$. Since each column of B has l nonzero elements, there exists a row permutation P_{2} such that $P_{2} B e_{0, n}=\left[\mathbf{1}_{l}^{T}, 0, \ldots, 0\right]^{T}$. Therefore, the block A_{1} of the first l columns of $A P_{2}^{T}$ satisfies

$$
A_{1} \mathbf{1}_{l}=\mathbf{1}_{n}, \quad \mathbf{1}_{n}^{T} A_{1}=p \mathbf{1}_{l}^{T}
$$

For such matrices there is a row permutation P_{1} such that

$$
P_{1} A_{1}=\mathbf{1}_{p} \otimes I_{l} .
$$

This implies that $p l=n$. Furthermore, since $a_{00}=b_{00}=1$ we may assume that $e_{0, n}^{T} P_{1}=$ $e_{0, n}^{T} P_{2}=e_{0, n}^{T}$. We thus have now

$$
\left(P_{1} A P_{2}^{T}\right)\left(e_{0, p} \otimes I_{l}\right)=P_{1} A_{1}=\mathbf{1}_{p} \otimes I_{l}, \quad\left(P_{2} B P_{1}^{T}\right) e_{0, n}=e_{0, p} \otimes \mathbf{1}_{l}
$$

and obviously we also have

$$
\left(P_{1} A P_{2}^{T}\right)\left(P_{2} B P_{1}^{T}\right)=\left(P_{2} B P_{1}^{T}\right)\left(P_{1} A P_{2}^{T}\right)=J
$$

It is then straightforward to see that in $P_{2} B P_{1}^{T}$ all elements (i, j) with $0 \leqslant i \leqslant l-1$ and $j>0$ such that $j \equiv 0 \bmod l$ are zero. As a consequence, there is a permutation matrix P which permutes the $n-l$ last rows of $P_{2} B P_{1}^{T}$ in such a way that

$$
\left(P P_{2} B P_{1}^{T}\right) e_{0, n}=e_{0, p} \otimes \mathbf{1}_{l}, \quad\left(P P_{2} B P_{1}^{T}\right) e_{l, n}=e_{1, p} \otimes \mathbf{1}_{l}
$$

and

$$
\left(P_{1} A P_{2}^{T} P^{T}\right)\left(e_{0, p} \otimes I_{l}\right)=\mathbf{1}_{p} \otimes I_{l}
$$

Further in $P P_{2} B P_{1}^{T}$ all the entries (i, j) with $l \leqslant i \leqslant 2 l-1$ and $j \neq l$ such that $j \equiv 0 \bmod l$ are zero. Repeating this process on the last $n-2 l$ rows of $P P_{2} B P_{1}^{T}$ and absorbing all row permutations in P_{2} we have permutation matrices P_{1}, P_{2} such that

$$
\left(P_{1} A P_{2}^{T}\right)\left(e_{0, p} \otimes I_{l}\right)=\mathbf{1}_{p} \otimes I_{l}
$$

and for any $i \equiv 0 \bmod l$,

$$
\left(P_{2} B P_{1}^{T}\right) e_{i, n}=e_{i / l, p} \otimes \mathbf{1}_{l}
$$

In addition, since $\left(P_{2} B P_{1}^{T}\right)\left(P_{1} A P_{2}^{T}\right)=J$, there is a permutation matrix P such that,

$$
e_{0, n}^{T}\left(P_{2} B P_{1}^{T} P^{T}\right)=e_{0, p}^{T} \otimes \mathbf{1}_{l}^{T} \quad \text { and } \quad\left(P P_{1} A P_{2}^{T}\right)\left(e_{0, p} \otimes I_{l}\right)=\mathbf{1}_{p} \otimes I_{l}
$$

Absorbing P in P_{1}, since $\left(P_{1} A P_{2}^{T}\right)\left(P_{2} B P_{1}^{T}\right)=\left(P_{2} B P_{1}^{T}\right)\left(P_{1} A P_{2}^{T}\right)=J$, we notice that every block $P_{1} A P_{2}^{T}[0: l-1, i: i+l-1](i \equiv 0 \bmod l)$ has exactly a 1 in each row and each column. Consequently, there is a permutation matrix P such that

$$
\left(P_{1} A P_{2}^{T} P^{T}\right)\left(e_{0, p} \otimes I_{l}\right)=\mathbf{1}_{p} \otimes I_{l}, \quad\left(e_{0, p}^{T} \otimes I_{l}\right)\left(P_{1} A P_{2}^{T} P^{T}\right)=\mathbf{1}_{p}^{T} \otimes I_{l}
$$

Let us absorb P in P_{2}. We thus have
$P_{1} A P_{2}^{T}=\left[\begin{array}{c|c|c|c}I_{l} & I_{l} & \cdots & I_{l} \\ \hline I_{l} & & & \\ \hline \vdots & & & \\ \hline I_{l} & & & \end{array}\right]$,
where every block is of size l.

It follows from $\operatorname{rank}(A)=l=n / p$ that all blocks in $P_{1} A P_{2}^{T}$ must be I_{l}. Therefore, we can update P_{1} and P_{2} so that

$$
P_{1} A P_{2}^{T}=D(p, n)
$$

Since A and B are commuting factors, we have the same result for B. This concludes the proof.

From the proof of Theorem 3.2, notice that in any case $\operatorname{rank}(A) \geqslant n / p$ and $\operatorname{rank}(B) \geqslant$ n / l.

Remark 3.3. The commuting factors may not have a minimum rank. Consider the matrix

$$
A=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

It is a solution to $A^{2}=J_{9}$. However, $\operatorname{rank}(A)=4>9 / 3$.
Remark 3.4. From Theorem 3.2, we could wonder whether the factors with minimum rank are in particular isomorphic to a De Bruijn matrix. The matrix

$$
A=\operatorname{diag}\left(I_{9}, Q_{2}, Q_{3}\right) D(3,27),
$$

with

$$
Q_{2}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad Q_{3}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

is a solution to $A^{3}=J_{27}$ with a rank equal to $27 / 3$. However, since $\operatorname{rank}\left(A^{2}\right)=4 \neq 3=$ $\operatorname{rank}\left(D(3,27)^{2}\right), A$ is not isomorphic to $D(3,27)$.

Theorem 3.2 can be generalized to the case of any number of commuting factors of J_{n}.
Corollary 3.5. Let $\left\{A_{i}\right\}_{i \in I}$ be a finite set of $n \times n$ binary matrices, each of them p_{i}-regular such that all their products commute, i.e. for any permutations $\sigma_{1}, \sigma_{2}, \prod_{i} A_{\sigma_{1}(i)}=$ $\prod_{i} A_{\sigma_{2}(i)}$, and satisfy

$$
\prod_{i \in I} A_{i}=J_{n}
$$

Then, $\prod_{i \in I} p_{i}=n$. Moreover, for any $i \in I, \operatorname{rank}\left(A_{i}\right)=n / p_{i}$ if and only if there is a permutation matrix P such that

$$
A_{i} \cong P D\left(p_{i}, n\right)
$$

Proof. First of all, we prove that $\prod_{i \geqslant 2} A_{i}$ is a binary matrix. Indeed, it is clear that all the entries of $\prod_{i \geqslant 2} A_{i}$ are nonnegative integers. Suppose that entry (i, j) of $\prod_{i \geqslant 2} A_{i}$ is greater than one. Then, since A_{1} is p_{1}-regular, column i of A_{1} has at least one nonzero element, say $a_{k i}=1$. Therefore, entry (k, j) of $A_{1}\left(\prod_{i \geqslant 2} A_{i}\right)$ is greater than one, which is a contradiction since $\prod_{i \in I} A_{i}=J_{n}$.

Moreover, $\prod_{i \geqslant 2} A_{i}$ is $\left(\prod_{i \geqslant 2} p_{i}\right)$-regular. Indeed,

$$
\left(\prod_{i \geqslant 2} A_{i}\right) \mathbf{1}_{n}=p_{2}\left(\prod_{i \geqslant 3} A_{i}\right) \mathbf{1}_{n}=\cdots=\left(\prod_{i \geqslant 2} p_{i}\right) \mathbf{1}_{n}
$$

We identically show that

$$
\mathbf{1}_{n}^{T}\left(\prod_{i \geqslant 2} A_{i}\right)=\left(\prod_{i \geqslant 2} p_{i}\right) \mathbf{1}_{n}^{T}
$$

Theorem 3.2 shows then the result for A_{1}. The same argument repeated on each factor completes the proof.

Theorem 3.2 can also be applied to the particular case of the binary roots of J_{n}. We thus have the following result.

Corollary 3.6. Let A be a binary matrix satisfying

$$
A^{m}=J_{n} .
$$

Then A is p-regular. Moreover, $\operatorname{rank}(A)=n / p$ if and only if there is a permutation matrix P such that

$$
A \cong P D(p, n)
$$

Proof. From Lemma 2.1, we know that A is p-regular. With the same argument as in the proof of Corollary 3.5, we can show that A^{m-1} is a binary matrix. Further, since $A \mathbf{1}_{n}=p \mathbf{1}_{n}$ and $\mathbf{1}_{n}^{T} A=p \mathbf{1}_{n}^{T}$, we deduce that A^{m-1} is p^{m-1}-regular. Theorem 3.2 completes the proof.

From the proof of Theorem 3.2, we deduce that even in the case of an m-th root A of $J_{n}, \operatorname{rank}(A) \geqslant n / p$. Remark 3.3 shows that the rank of A may be greater than n / p and Remark 3.4 shows that A may be nonisomorphic to the De Bruijn matrix even though A has a rank equal to n / p.

Notice that the previous corollary does not provide a full characterization of the roots with minimum rank since not any row permutation of the De Bruijn matrix is a root of J_{n}. In the following section, we complete the result of Corollary 3.6 by showing that P can always be chosen as being a block diagonal matrix.

4. Roots of J_{n} with minimum rank and De Bruijn matrices

From the proof of Theorem 3.2, we have deduced that any binary solution A to the equation $A^{m}=J_{n}$ (remind that A is then p-regular) has a rank of at least n / p. Moreover, we have shown in the previous section that any binary root with minimum rank is isomorphic to a matrix of the form $P D(p, n)$, where P is a permutation matrix. In this section, we show that P can always be chosen as being a block diagonal matrix.

Lemma 4.1. Let $A \in\{0,1\}^{n \times n}$ such that $A^{m}=J_{n}$ and A p-regular. If $\operatorname{rank}(A)=n / p$, then A is isomorphic to a matrix of the form

$$
B \otimes \mathbf{1}_{p}^{T},
$$

where B is of the form

$$
\left[\begin{array}{c}
I_{n / p} \\
Q_{2} \\
\vdots \\
Q_{p}
\end{array}\right]
$$

with any $Q_{i} \in\{0,1\}^{(n / p) \times(n / p)}$ a permutation matrix.
Proof. From Lemma 2.1, we know that trace $(A)=p$. So, we can assume without loss of generality that $a_{00} \neq 0$. Indeed, if it is not the case, since there exists a nonzero diagonal entry (i, i), then there is a permutation matrix P_{i} such that A is isomorphic to

$$
P_{i} A P_{i}^{T}
$$

with entry $(0,0)$ which is nonzero.

Since A is p-regular and since A^{2} is a binary matrix (this can be proved with the same argument as in the proof of Corollary 3.5), there is a permutation matrix P such that

$$
P A P^{T}=[\overbrace{\left[\begin{array}{cccc}
\mathbf{1}_{p}^{T} & 0 & \cdots & 0 \\
0 & \star & \cdots & \star \\
\vdots & \vdots & & \vdots \\
& \star & \cdots & \star \\
& \vdots & &
\end{array}\right] ~ . . ~}^{n}
$$

With the same argument we can update P such that:

$$
P A P^{T}=\left[\begin{array}{cccc}
I_{p} \otimes \mathbf{1}_{p}^{T} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

Since the first row of A^{2} is then $\left[\begin{array}{llll}\mathbf{1}_{p^{2}}^{T} & 0 & \cdots & 0\end{array}\right]$, we can update P such that

$$
P A P^{T}=\left[p \text { blocks of size } p\left\{\begin{array}{ccccc}
I_{p} \otimes \mathbf{1}_{p}^{T} & 0 & \cdots & \cdots & 0 \\
0 & I_{p} \otimes \mathbf{1}_{p}^{T} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
0 & 0 & 0 & I_{p} \otimes 1_{p}^{T} & 0
\end{array}\right]\right.
$$

Moreover, since for any $1 \leqslant k \leqslant m-1$, the first row of A^{k} is $\left[\mathbf{1}_{p^{k}}^{T} 0 \cdots 0\right.$], by updating P, we see that A is isomorphic to

$$
P A P^{T}=\left[n / p\left\{\begin{array}{llllllllll}
1 & \cdots & 1 & & & & & & & \\
& & & 1 & \cdots & 1 & & & & \\
& & & & & & \ddots & & & \\
& & & & & & & 1 & \cdots & 1
\end{array}\right]\right.
$$

Since A is p-regular with rank n / p, the rest of the matrix $P A P^{T}$ is made of rows chosen among the first n / p ones. This matrix, isomorphic to A, has p blocks B_{1}, \ldots, B_{p} with n / p rows each. Up to a row permutation, all these blocks are identical. Indeed, if it was not the case, a block B_{i} would have two identical rows. Hence, there would be a column such that in B_{i}, the sum of the elements in that column is greater than 1. However,

$$
\left(P A P^{T}\right)^{m-1}=\left[\begin{array}{c}
I_{p} \\
\vdots
\end{array}\right] \otimes \mathbf{1}_{n / p}^{T}
$$

Consequently, $\left(P A P^{T}\right)^{m}$ would not be a binary matrix, which is a contradiction.

Therefore, there is a permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{c}
I_{n / p} \\
Q_{2} \\
\vdots \\
Q_{p}
\end{array}\right] \otimes \mathbf{1}_{p}^{T}
$$

where any $Q_{i} \in\{0,1\}^{(n / p) \times(n / p)}$ is a permutation matrix.

Theorem 4.2. Let $A \in\{0,1\}^{n \times n}$ be p-regular. If $A^{m}=J_{n}$ and $\operatorname{rank}(A)=n / p$, then A is isomorphic to a matrix

$$
P D(p, n),
$$

where $P=\operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right)$ and any $Q_{i} \in\{0,1\}^{(n / p) \times(n / p)}$ is a permutation matrix.

Proof. We have seen in the previous lemma that A is isomorphic to a matrix

$$
\left[\begin{array}{c}
I_{n / p} \\
Q_{2} \\
\vdots \\
Q_{p}
\end{array}\right] \otimes \mathbf{1}_{p}^{T}
$$

which can be written as

$$
P\left(\mathbf{1}_{p} \otimes I_{n / p}\right) \otimes \mathbf{1}_{p}^{T}
$$

with $P=\operatorname{diag}\left(I_{n / p}, Q_{2}, \ldots, Q_{p}\right)$. Hence, A is isomorphic to

$$
P D(p, n)
$$

Of course, not all the matrices of the form $P D(p, n)$ like in the previous theorem are solutions to $A^{m}=J_{n}$. Indeed, let us have a look at the matrix

$$
A=\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore, the previous result is not a full characterization of the solutions with minimum rank. However, in the next section, we prove that, if $m=2$, the previous result is actually a full characterization of the solutions with minimum rank.

5. A characterization of the binary solutions to $A^{2}=J_{n}$ with minimum rank

In 1967, Hoffman [9] was interested in a characterization of the binary solutions to the equation $A^{2}=J_{n}$. This is still an open problem and to our best knowledge, none subclass of solutions has been characterized. In this section, we provide a characterization of the solutions to $A^{2}=J_{n}$ with minimum rank.

The goal of this section is to prove Corollary 5.6. To do so, we need the following definitions.

Let Q be an $n \times n / p$ matrix with $n=p^{m}$. Q is made of $n / p p$-row blocks $C_{1}, \ldots, C_{n / p}$. C_{1} contains the first p rows of Q, C_{2} the p next ones, etc.

Definition 5.1. Let Q be an $n \times n / p$ binary matrix with $n=p^{m}$. Its reduced p-form Q_{r}^{0} is an $n / p \times n / p$ matrix whose i-th row is the sum of the p rows in the i-th p-row block C_{i} of Q.

Example 5.2. Q_{r}^{0} is the reduced 2-form of Q

$$
Q=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right], \quad Q_{r}^{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 0 \\
2 & 1 & 1 & 2 \\
1 & 1 & 2 & 1
\end{array}\right]
$$

Remind that $I_{n / p}$ denotes the identity matrix of dimension n / p.
Notice that the reduced p-form of Q can be written as $Q_{r}^{0}=\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right) Q$.
Let Q_{1}, \ldots, Q_{p} be matrices of dimension n / p. The notation $Q:=\left[Q_{1} ; \ldots ; Q_{p}\right]$ refers to the $n \times n / p$ matrix

$$
Q=\left[\begin{array}{c}
Q_{1} \\
Q_{2} \\
\vdots \\
Q_{p}
\end{array}\right] .
$$

Lemma 5.3. Let A, B be two matrices of the form $A:=\left[Q_{1} ; \ldots ; Q_{p}\right] \otimes \mathbf{1}_{p}^{T}$ and $B:=$ $\left[R_{1} ; \ldots ; R_{p}\right] \otimes \mathbf{1}_{p}^{T}$, where any Q_{i} and any R_{i} is a matrix of dimension n / p. Then,

$$
A B=\left(Q R_{r}^{0}\right) \otimes \mathbf{1}_{p}^{T}
$$

where $Q:=\left[Q_{1} ; \ldots ; Q_{p}\right]$ and $R:=\left[R_{1} ; \ldots ; R_{p}\right]$.
Proof. Notice that any matrix of the form $M\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right)$ can be written as

$$
M\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right)=(M \otimes 1)\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right)=M \otimes \mathbf{1}_{p}^{T}
$$

We can then write $A=Q\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right)$ and $B=R\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right)$.
Therefore,

$$
\begin{aligned}
A B & =Q\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right) R\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right) \\
& =Q R_{r}^{0}\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right) \\
& =\left(Q R_{r}^{0}\right) \otimes \mathbf{1}_{p}^{T} .
\end{aligned}
$$

Definition 5.4. Let Q_{1}, \ldots, Q_{p} be matrices of dimension n / p. Let Q be the $n \times n / p$ matrix defined as $Q:=\left[Q_{1} ; \ldots ; Q_{p}\right]$. The sequence $\left\{Q_{r}^{i}\right\}$ is such that $Q_{r}^{i}:=\left(\left(I_{n / p} \otimes \mathbf{1}_{p}^{T}\right) Q\right)^{i+1}$.

Theorem 5.5. Let $A \in\{0,1\}^{n \times n}$ be a p-regular matrix. A is an m-th root of J_{n} with minimum rank if and only if A is isomorphic to a matrix of the form $\operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right) D(p, n)$, where any Q_{i} is a permutation matrix of dimension n / p, with $Q_{r}^{m-2}=J_{n / p}$.

Proof. Let A be a matrix of the form $\operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right) D(p, n)=\left[Q_{1} ; \ldots ; Q_{p}\right] \otimes \mathbf{1}_{p}^{T}$, where any Q_{i} is a permutation matrix of dimension n / p. As usually, pose $Q:=\left[Q_{1} ; \ldots ; Q_{p}\right]$. By applying repeatedly Lemma 5.3, we notice that $A^{m}=\left(Q Q_{r}^{m-2}\right) \otimes \mathbf{1}_{p}^{T}$. So, since Q is made of permutation matrices, $A^{m}=J_{n}$ if and only if $Q_{r}^{m-2}=J_{n / p}$. Theorem 4.2 concludes the proof.

Corollary 5.6. Let $A \in\{0,1\}^{n \times n}$ be a p-regular matrix. A is a binary solution to $A^{2}=J_{n}$ with minimum rank if and only if A is isomorphic to a matrix of the form

$$
P D(p, n),
$$

where $P=\operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right)$ and any $Q_{i} \in\{0,1\}^{p \times p}$ is a permutation matrix.
Proof. Since any Q_{i} is a $p \times p$ permutation matrix, it is clear that $Q_{r}^{0}=J_{p}$.

6. A class of roots of J_{n} isomorphic to a De Bruijn matrix

In [1], it is proved that some g-circulant binary roots of J_{n} are isomorphic to a De Bruijn matrix. More specifically, the following result is shown.

Proposition 6.1. Let A be a g-circulant binary solution to $A^{m}=J_{n}$ and A p-regular. If $g^{m}=0(\bmod n)$, then A is isomorphic to the De Bruijn matrix $D(p, n)$.

In this section, we extend the results of [1] by identifying another class of binary solutions to $A^{m}=J_{n}$ isomorphic to a De Bruijn matrix.

Definition 6.2. A nice permutation matrix is built as follows: start with a $p \times p$ permutation matrix. Then, replace all the zeros by a $p \times p$ zero matrix and each one by a $p \times p$ permutation matrix. Repeat this m times. Then, you obtain a permutation matrix of dimension p^{m}. Such a matrix is called a nice permutation matrix.

An interpretation of a nice permutation matrix: an $n \times n$ matrix A such that $n=p^{m}$ for some integers p and m is made of $p n / p$-row blocks; the first block contains the first n / p rows of A, etc. In the same way, each of these blocks is made of $p n / p^{2}$-row blocks, and so on until we have 1-row blocks. So, we have a cascading block structure. Multiplying A to the left by a nice permutation matrix performs block permutations inside each set of p blocks with n / p^{i} rows included in a SAME block of n / p^{i-1} rows.

Definition 6.3. A nice permutation of the De Bruijn matrix $D(p, n)$ is a matrix of the form $P D(p, n)$, where P is a nice permutation matrix.

Definition 6.4. A nice permutation of level $i(1 \leqslant i \leqslant m)$ permutes blocks of p^{i-1} rows included in a same block of p^{i} rows.

Definition 6.5. A nice permutation matrix of level i is a nice permutation matrix performing only nice permutations of level i.

Notice that multiplying to the right a nice permutation $\tilde{D}(p, n)$ of the De Bruijn matrix $D(p, n)$ by P_{i}^{T}, where P_{i} is a nice permutation matrix of level i, is equivalent to performing nice permutations of level less than i on the rows of $\tilde{D}(p, n)$. This is illustrated in the following example.

Example 6.6. Consider the following nice permutation matrix of the De Bruijn matrix $D(2,8)$:

$$
\tilde{D}(2,8)=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

If P_{3} is the nice permutation matrix of level 3 which permutes the two blocks of 4 rows, we have:

$$
\tilde{D}(2,8) P_{3}^{T}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Notice that if we take these nice permutation matrices P_{1} and P_{2} of level 1 and 2 respectively

$$
P_{1}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad P_{2}=\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right],
$$

then $P_{2} P_{1} \tilde{D}(2,8)=\tilde{D}(2,8) P_{3}^{T}$.

The following lemma will be useful to prove that any nice permutation of the De Bruijn matrix $D(p, n)$ is isomorphic to $D(p, n)$.

Lemma 6.7. Let $\tilde{D}(p, n)$ be a nice permutation of the De Bruijn matrix $D(p, n)$ (with $n=p^{m}$) and P_{i} be a nice permutation matrix of level i. Then, $P_{i} \tilde{D}(p, n)$ is isomorphic to $\tilde{D}(p, n)$.

Proof. By induction on level i.

- If $i=1$, it is clear that $P_{i} \tilde{D}(p, n)=P_{i} \tilde{D}(p, n) P_{i}^{T}$.
- Multiplying to the right $P_{i} \tilde{D}(p, n)$ by P_{i}^{T} is equivalent to performing nice permutations of level less than i on the rows of $P_{i} \tilde{D}(p, n)$.
Hence, there is a nice permutation matrix \tilde{P} performing only permutations of level less than i such that

$$
\tilde{P} P_{i} \tilde{D}(p, n)=P_{i} \tilde{D}(p, n) P_{i}^{T}
$$

Therefore, $P_{i} \tilde{D}(p, n) P_{i}^{T}$ is a nice permutation of $D(p, n)$. Since \tilde{P}^{T} is a product of nice permutation matrices of level less than i, by induction, we know that $\tilde{P}^{T} P_{i} \tilde{D}(p, n) P_{i}^{T}$ is isomorphic to $P_{i} \tilde{D}(p, n) P_{i}^{T}$ and therefore isomorphic to $\tilde{D}(p, n)$.
As a consequence, since $P_{i} \tilde{D}(p, n)=\tilde{P}^{T} P_{i} \tilde{D}(p, n) P_{i}^{T}, P_{i} \tilde{D}(p, n)$ is isomorphic to $\tilde{D}(p, n)$.

Proposition 6.8. Any nice permutation of the De Bruijn matrix $D(p, n)$ is isomorphic to $D(p, n)$.

Proof. Any nice permutation of $D(p, n)$ can be written as $P_{m} \ldots P_{2} P_{1} D(p, n)$, where any P_{i} is a nice permutation matrix of level i.

So, from the previous lemma, it follows that such a matrix is isomorphic to $D(p, n)$.
Corollary 6.9. Any nice permutation of the De Bruijn matrix $D(p, n)\left(n=p^{m}\right)$ is an m-th root of J_{n}, isomorphic to $D(p, n)$.

The example in Remark 3.4 shows that not any root of J_{n} with minimum rank is a nice permutation of a De Bruijn matrix.

7. An open problem

In this paper, we have shown that any m-th root of J_{n} with minimum rank is isomorphic to a row permutation of a De Bruijn matrix, whose row permutation is represented by a block diagonal matrix (see Theorem 4.2). We have also shown that if $m \neq 2$, then the opposite is false.

In the future, it would be interesting to have a full characterization of all the binary roots of J_{n} with minimum rank.

Acknowledgements

The authors acknowledge support from the Belgian Programme of Interuniversity Attraction Poles and an Action de Recherche Concertée (ARC) of the Wallonia-Brussels Federation.

References

[1] Y. Wu, R. Jia, Q. Li, g-Circulant solutions to the $(0,1)$ matrix equation $A^{m}=J_{n}$, Linear Algebra Appl. 345 (2002) 195-224.
[2] S.L. Ma, W.C. Waterhouse, The g-circulant solutions of $A^{m}=\lambda J$, Linear Algebra Appl. 85 (1987) 211-220.
[3] F. King, K. Wang, On the g-circulant solutions to the matrix equation $A^{m}=\lambda J$, J. Combin. Theory Ser. A 38 (1985) 182-186.
[4] K. Wang, On the g-circulant solutions to the matrix equation $A^{m}=\lambda J$, J. Combin. Theory Ser. A 33 (1982) 287-296.
[5] N.G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch. Proc. 49 (1946) 758-764.
[6] M. Malyshev, V.E. Tarakanov, Generalized De Bruijn graphs, Math. Notes 62 (4) (1997) 449-456.
[7] N.S. Mendelsohn, An application of matrix theory to a problem in universal algebra, Linear Algebra Appl. 1 (1968) 471-478.
[8] J.-C. Delvenne, R. Carli, S. Zampieri, Optimal strategies in the average consensus problem, Systems Control Lett. 58 (2009) 759-765.
[9] A.J. Hoffman, Research problems 2-11, J. Combin. Theory 2 (1967) 393.

[^0]: * Corresponding author. Tel.: $+32(0) 10478032$; fax: $+32(0) 10472180$.

 E-mail addresses: maguy.trefois@uclouvain.be (M. Trefois), paul.vandooren@uclouvain.be (P. Van Dooren), jean-charles.delvenne@uclouvain.be (J.-C. Delvenne).

