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1. Introduction

In this paper, we consider the problem of factorizing the n× n matrix

Jn =

⎡
⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎤
⎥⎥⎦

into the binary matrices. Namely, we restrict ourselves to square n × n factors Ai that
have all their elements in {0, 1}, i.e. that are adjacency matrices of graphs with n nodes.
We are thus looking for the solutions of

m∏
i=1

Ai = A1A2 . . . Am = Jn

and in particular, the case when all the factors are identical, i.e. we investigate the binary
solutions to the equation

Am = Jn.

The g-circulant binary solutions to Am = Jn were studied through a convenient
representation by Hall polynomials [1,3,2,4]. Remind that a matrix is called g-circulant if
each row is obtained from the previous one by shifting all its elements of g positions to the
right. In particular, it has been proved [1] that some g-circulant solutions are isomorphic
to a De Bruijn matrix, originally defined in [5]. Nowadays, there are very few results [6]
about the general binary solutions to Am = Jn. However, these general solutions are of
interest in many problems. Indeed, a solution of Am = Jn is the adjacency matrix of
a directed graph for which given any two nodes u and v, there is a unique directed path
of length m from u to v. In [7], it has been shown that these graphs allow to construct
a class of algebras. Moreover, in the framework of the finite-time average consensus
problem, the binary solutions to Am = Jn represent all the communication topologies
whose interaction strengths are all equal to 1/ m

√
n and that reach the consensus at

time m. In particular, the De Bruijn matrices are of this type and have been shown [8]
to be one of the quickest strategies to reach the average consensus. In the present paper,
we show how the binary roots of Jn with minimum rank are related to the De Bruijn
matrices.

The outline of the paper is as follows: in Section 2 we state some properties on the
binary roots of Jn and on the De Bruijn matrices, which are well known roots of Jn. In
Section 3, we study the commuting factors of the matrix with all ones. We prove that
under some conditions on the commuting factors, these are isomorphic to a row permu-
tation of a De Bruijn matrix. In Section 4, we prove that any binary root with minimum
rank is isomorphic to a row permutation of a De Bruijn matrix, whose row permutation
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is represented by a block diagonal matrix. In Section 5, we provide a characterization of
the binary solutions to A2 = Jn with minimum rank, which partially solves Hoffman’s
open problem of characterizing any binary solution to A2 = Jn. Finally, in Section 6, we
provide a class of roots, not necessarily g-circulant, which are isomorphic to a De Bruijn
matrix.

For convenience, the rows and columns of a matrix of dimension n will be indexed
from 0 to n− 1 and ei,n (0 � i � n− 1) denotes the n× 1 unit vector with 1 in its i-th
position. The vector 1n denotes the n× 1 vector of all 1’s.

The Kronecker product of two matrices A, B is denoted A⊗B.
When there is no ambiguity, the square matrix of dimension n with all ones will be

denoted by J instead of Jn.
Any n×n binary matrix A is seen as the adjacency matrix of a graph G with n nodes.

One then says that the matrix A represents the graph G.
Any graph is said to be p-regular if it has out and in-degree p.

2. Matrix roots of Jn and De Bruijn matrices

In this section, we prove some properties of the binary roots of the square matrix Jn
of all ones. Moreover, we remind some properties on the De Bruijn matrices which are
a class of solutions to the equation Am = Jn.

Lemma 2.1. Let Am = kJn, where k �= 0 and A ∈ {0, 1}n×n, then A represents a p-regular
graph, the trace of A is p, p and k are positive integers and pm = kn.

Proof. Clearly, the spectrum of kJn is given by

Λ(kJn) = {kn, 0, . . . , 0}.

The spectrum of any m-th root A must therefore be equal to

Λ(A) = {p, 0, . . . , 0}, pm = kn,

but since A is a binary matrix its trace, which is then equal to p, must be a nonnega-
tive integer. Moreover, the elements of Am must be equal to k, which is therefore also
a non-negative integer. Since we ruled out k = 0, both p and k must be positive integers.
Since p is then the only strictly positive eigenvalue of A, its left and right Perron vectors
must again be proportional to 1n:

A1n = p1n, AT1n = p1n,

which implies that A is p-regular. �
The De Bruijn matrices are well known to meet these properties, especially when

k = 1.
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Definition 2.2. The De Bruijn matrix of order p and dimension n is an n × n matrix
defined as:

D(p, n) := 1p ⊗ In/p ⊗ 1T
p ,

where In/p is the identity matrix of dimension n/p and 1p is the p × 1 vector with all
ones. Moreover, n = pm for some integer m.

Example 2.3. The De Bruijn matrix D(2, 8) of order 2 and dimension 8 is

D(2, 8) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Below we remind some well known properties of the De Bruijn matrices.

Lemma 2.4. The i-th power of the De Bruijn matrix D(p, n) (with n = pm) is equal to

D(p, n)i = D
(
pi, n

)
= 1pi ⊗ Ipm−i ⊗ 1T

pi

for i � m and equal to

D(p, n)i = pi−mJn

for i � m.

A direct consequence of this lemma is the following.

Corollary 2.5. The De Bruijn matrices D(p, n) are such that

D(p, n)m = Jn, ∀n = pm,

D(p, n)m = kJn, ∀kn = pm.

The De Bruijn matrices D(p, n) for which n = pm are thus m-th roots of Jn. In the
next section, we will show in particular that under a certain condition on the rank of
the m-th roots of Jn, these are isomorphic to a row permutation of a De Bruijn matrix.
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3. Factorizations into commuting factors

In this section we describe the factorization problem into two commuting factors over
the n× n binary matrices:

AB = BA = Jn, A,B ∈ {0, 1}n×n. (1)

We assume that the factors A and B represent regular graphs, say with in- and
out-degree p for A and in- and out-degree l for B. We then have Theorem 3.2. In the
proof, we use the following terminology.

Let P1 and P2 be two permutation matrices. Saying the permutations of P1 are ab-
sorbed in P2 means that we pose P2 := P1P2.

The notation A[a : b, c : d] refers to the submatrix of A with the rows of A indexed
from a to b and the columns of A indexed from c to d.

Definition 3.1. Two matrices A and B are said to be isomorphic if they are permutation
similar, that is, if there is a permutation matrix P such that PAPT = B. We write
A ∼= B.

Theorem 3.2. Let A and B be two regular graphs satisfying (1), then pl = n. Moreover,
rank(A) = n/p (resp. rank(B) = n/l) if and only if there is a permutation matrix P

such that

A ∼= PD(p, n)
(
resp. B ∼= PD(l, n)

)
.

Proof. First of all, notice that we can suppose without loss of generality that the en-
tries a00 and b00 of A and B respectively both equal 1. Indeed, since BA = J , there
exist i, j such that bij .aji = 1. Hence, there are permutation matrices Pi, Pj such that
the matrices B̃ = PiBPT

j and Ã = PjAPT
i have their element (0, 0) equal to 1. Moreover,

ÃB̃ = B̃Ã = J,

and if Ã (resp. B̃) is isomorphic to a matrix of the form PD(p, n) (resp. PD(l, n)), then so
it is for A (resp. B). Consider therefore that a00 = b00 = 1. Since each column of B has l
nonzero elements, there exists a row permutation P2 such that P2Be0,n = [1T

l , 0, . . . , 0]T .
Therefore, the block A1 of the first l columns of APT

2 satisfies

A11l = 1n, 1T
nA1 = p1T

l .

For such matrices there is a row permutation P1 such that

P1A1 = 1p ⊗ Il.

This implies that pl = n. Furthermore, since a00 = b00 = 1 we may assume that eT0,nP1 =
eT0,nP2 = eT0,n. We thus have now
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(
P1APT

2
)
(e0,p ⊗ Il) = P1A1 = 1p ⊗ Il,

(
P2BPT

1
)
e0,n = e0,p ⊗ 1l

and obviously we also have
(
P1APT

2
)(
P2BPT

1
)

=
(
P2BPT

1
)(
P1APT

2
)

= J.

It is then straightforward to see that in P2BPT
1 all elements (i, j) with 0 � i � l− 1 and

j > 0 such that j ≡ 0 mod l are zero. As a consequence, there is a permutation matrix P

which permutes the n− l last rows of P2BPT
1 in such a way that

(
PP2BPT

1
)
e0,n = e0,p ⊗ 1l,

(
PP2BPT

1
)
el,n = e1,p ⊗ 1l

and
(
P1APT

2 PT
)
(e0,p ⊗ Il) = 1p ⊗ Il.

Further in PP2BPT
1 all the entries (i, j) with l � i � 2l − 1 and j �= l such that

j ≡ 0 mod l are zero. Repeating this process on the last n − 2l rows of PP2BPT
1 and

absorbing all row permutations in P2 we have permutation matrices P1, P2 such that
(
P1APT

2
)
(e0,p ⊗ Il) = 1p ⊗ Il

and for any i ≡ 0 mod l,
(
P2BPT

1
)
ei,n = ei/l,p ⊗ 1l.

In addition, since (P2BPT
1 )(P1APT

2 ) = J , there is a permutation matrix P such that,

eT0,n
(
P2BPT

1 PT
)

= eT0,p ⊗ 1T
l and

(
PP1APT

2
)
(e0,p ⊗ Il) = 1p ⊗ Il.

Absorbing P in P1, since (P1APT
2 )(P2BPT

1 ) = (P2BPT
1 )(P1APT

2 ) = J , we notice that
every block P1APT

2 [0 : l − 1, i : i + l − 1] (i ≡ 0 mod l) has exactly a 1 in each row and
each column. Consequently, there is a permutation matrix P such that

(
P1APT

2 PT
)
(e0,p ⊗ Il) = 1p ⊗ Il,

(
eT0,p ⊗ Il

)(
P1APT

2 PT
)

= 1T
p ⊗ Il.

Let us absorb P in P2. We thus have

P1APT
2 =

⎡
⎢⎢⎢⎢⎢⎣
Il Il · · · Il

Il
...
Il

⎤
⎥⎥⎥⎥⎥⎦ ,

where every block is of size l.
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It follows from rank(A) = l = n/p that all blocks in P1APT
2 must be Il. Therefore,

we can update P1 and P2 so that

P1APT
2 = D(p, n).

Since A and B are commuting factors, we have the same result for B. This concludes
the proof. �

From the proof of Theorem 3.2, notice that in any case rank(A) � n/p and rank(B) �
n/l.

Remark 3.3. The commuting factors may not have a minimum rank. Consider the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 1 1 1 0 0 0 0
1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is a solution to A2 = J9. However, rank(A) = 4 > 9/3.

Remark 3.4. From Theorem 3.2, we could wonder whether the factors with minimum
rank are in particular isomorphic to a De Bruijn matrix. The matrix

A = diag(I9, Q2, Q3)D(3, 27),

with

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a solution to A3 = J27 with a rank equal to 27/3. However, since rank(A2) = 4 �= 3 =
rank(D(3, 27)2), A is not isomorphic to D(3, 27).
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Theorem 3.2 can be generalized to the case of any number of commuting factors of Jn.

Corollary 3.5. Let {Ai}i∈I be a finite set of n×n binary matrices, each of them pi-regular
such that all their products commute, i.e. for any permutations σ1, σ2,

∏
i Aσ1(i) =∏

i Aσ2(i), and satisfy

∏
i∈I

Ai = Jn.

Then,
∏

i∈I pi = n. Moreover, for any i ∈ I, rank(Ai) = n/pi if and only if there is
a permutation matrix P such that

Ai
∼= PD(pi, n).

Proof. First of all, we prove that
∏

i�2 Ai is a binary matrix. Indeed, it is clear that all
the entries of

∏
i�2 Ai are nonnegative integers. Suppose that entry (i, j) of

∏
i�2 Ai is

greater than one. Then, since A1 is p1-regular, column i of A1 has at least one nonzero
element, say aki = 1. Therefore, entry (k, j) of A1(

∏
i�2 Ai) is greater than one, which

is a contradiction since
∏

i∈I Ai = Jn.
Moreover,

∏
i�2 Ai is (

∏
i�2 pi)-regular. Indeed,

(∏
i�2

Ai

)
1n = p2

(∏
i�3

Ai

)
1n = · · · =

(∏
i�2

pi

)
1n.

We identically show that

1T
n

(∏
i�2

Ai

)
=

(∏
i�2

pi

)
1T
n .

Theorem 3.2 shows then the result for A1. The same argument repeated on each factor
completes the proof. �

Theorem 3.2 can also be applied to the particular case of the binary roots of Jn. We
thus have the following result.

Corollary 3.6. Let A be a binary matrix satisfying

Am = Jn.

Then A is p-regular. Moreover, rank(A) = n/p if and only if there is a permutation
matrix P such that

A ∼= PD(p, n).
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Proof. From Lemma 2.1, we know that A is p-regular. With the same argument as
in the proof of Corollary 3.5, we can show that Am−1 is a binary matrix. Further,
since A1n = p1n and 1T

nA = p1T
n , we deduce that Am−1 is pm−1-regular. Theorem 3.2

completes the proof. �
From the proof of Theorem 3.2, we deduce that even in the case of an m-th root A

of Jn, rank(A) � n/p. Remark 3.3 shows that the rank of A may be greater than n/p and
Remark 3.4 shows that A may be nonisomorphic to the De Bruijn matrix even though
A has a rank equal to n/p.

Notice that the previous corollary does not provide a full characterization of the roots
with minimum rank since not any row permutation of the De Bruijn matrix is a root
of Jn. In the following section, we complete the result of Corollary 3.6 by showing that P
can always be chosen as being a block diagonal matrix.

4. Roots of Jn with minimum rank and De Bruijn matrices

From the proof of Theorem 3.2, we have deduced that any binary solution A to
the equation Am = Jn (remind that A is then p-regular) has a rank of at least n/p.
Moreover, we have shown in the previous section that any binary root with minimum
rank is isomorphic to a matrix of the form PD(p, n), where P is a permutation matrix.
In this section, we show that P can always be chosen as being a block diagonal matrix.

Lemma 4.1. Let A ∈ {0, 1}n×n such that Am = Jn and A p-regular. If rank(A) = n/p,
then A is isomorphic to a matrix of the form

B ⊗ 1T
p ,

where B is of the form
⎡
⎢⎢⎢⎣
In/p
Q2
...
Qp

⎤
⎥⎥⎥⎦ ,

with any Qi ∈ {0, 1}(n/p)×(n/p) a permutation matrix.

Proof. From Lemma 2.1, we know that trace(A) = p. So, we can assume without loss of
generality that a00 �= 0. Indeed, if it is not the case, since there exists a nonzero diagonal
entry (i, i), then there is a permutation matrix Pi such that A is isomorphic to

PiAPT
i

with entry (0, 0) which is nonzero.
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Since A is p-regular and since A2 is a binary matrix (this can be proved with the same
argument as in the proof of Corollary 3.5), there is a permutation matrix P such that

PAPT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
p

n︷ ︸︸ ︷⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1T
p 0 · · · 0
0 � · · · �
...

...
...

� · · · �
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

With the same argument we can update P such that:

PAPT =
[
Ip ⊗ 1T

p 0 · · · 0
...

...
...

...

]
.

Since the first row of A2 is then [1T
p2 0 · · · 0], we can update P such that

PAPT =

⎡
⎢⎢⎢⎢⎢⎢⎣
p blocks of size p

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ip ⊗ 1T
p 0 · · · · · · 0

0 Ip ⊗ 1T
p 0 · · · 0

...
...

. . .
...

0 0 0 Ip ⊗ 1Tp 0
...

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Moreover, since for any 1 � k � m−1, the first row of Ak is [1T
pk 0 · · · 0], by updating P ,

we see that A is isomorphic to

PAPT =

⎡
⎢⎢⎢⎢⎢⎣
n/p

⎧⎪⎪⎨
⎪⎪⎩

1 · · · 1
1 · · · 1

. . .
1 · · · 1

...

⎤
⎥⎥⎥⎥⎥⎦ .

Since A is p-regular with rank n/p, the rest of the matrix PAPT is made of rows
chosen among the first n/p ones. This matrix, isomorphic to A, has p blocks B1, . . . , Bp

with n/p rows each. Up to a row permutation, all these blocks are identical. Indeed, if
it was not the case, a block Bi would have two identical rows. Hence, there would be
a column such that in Bi, the sum of the elements in that column is greater than 1.
However,

(PAPT )m−1 =
[
Ip
...

]
⊗ 1T

n/p.

Consequently, (PAPT )m would not be a binary matrix, which is a contradiction.
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Therefore, there is a permutation matrix P such that

PAPT =

⎡
⎢⎢⎢⎣
In/p
Q2
...
Qp

⎤
⎥⎥⎥⎦⊗ 1T

p ,

where any Qi ∈ {0, 1}(n/p)×(n/p) is a permutation matrix. �
Theorem 4.2. Let A ∈ {0, 1}n×n be p-regular. If Am = Jn and rank(A) = n/p, then A is
isomorphic to a matrix

PD(p, n),

where P = diag(Q1, . . . , Qp) and any Qi ∈ {0, 1}(n/p)×(n/p) is a permutation matrix.

Proof. We have seen in the previous lemma that A is isomorphic to a matrix

⎡
⎢⎢⎢⎣
In/p
Q2
...
Qp

⎤
⎥⎥⎥⎦⊗ 1T

p

which can be written as

P (1p ⊗ In/p) ⊗ 1T
p ,

with P = diag(In/p, Q2, . . . , Qp). Hence, A is isomorphic to

PD(p, n). �
Of course, not all the matrices of the form PD(p, n) like in the previous theorem are

solutions to Am = Jn. Indeed, let us have a look at the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

0 0 1 1 0 0 0 0
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Therefore, the previous result is not a full characterization of the solutions with minimum
rank. However, in the next section, we prove that, if m = 2, the previous result is actually
a full characterization of the solutions with minimum rank.

5. A characterization of the binary solutions to A2 = Jn with minimum rank

In 1967, Hoffman [9] was interested in a characterization of the binary solutions to the
equation A2 = Jn. This is still an open problem and to our best knowledge, none subclass
of solutions has been characterized. In this section, we provide a characterization of the
solutions to A2 = Jn with minimum rank.

The goal of this section is to prove Corollary 5.6. To do so, we need the following
definitions.

Let Q be an n×n/p matrix with n = pm. Q is made of n/p p-row blocks C1, . . . , Cn/p.
C1 contains the first p rows of Q, C2 the p next ones, etc.

Definition 5.1. Let Q be an n×n/p binary matrix with n = pm. Its reduced p-form Q0
r is

an n/p× n/p matrix whose i-th row is the sum of the p rows in the i-th p-row block Ci

of Q.

Example 5.2. Q0
r is the reduced 2-form of Q

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
1 1 0 0
0 1 1 0
1 0 0 1
1 1 1 1
1 0 1 0
0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q0

r =

⎡
⎢⎢⎣

1 1 1 1
1 2 1 0
2 1 1 2
1 1 2 1

⎤
⎥⎥⎦ .

Remind that In/p denotes the identity matrix of dimension n/p.
Notice that the reduced p-form of Q can be written as Q0

r = (In/p ⊗ 1T
p )Q.

Let Q1, . . . , Qp be matrices of dimension n/p. The notation Q := [Q1; . . . ;Qp] refers
to the n× n/p matrix

Q =

⎡
⎢⎢⎢⎣
Q1
Q2
...
Qp

⎤
⎥⎥⎥⎦ .

Lemma 5.3. Let A, B be two matrices of the form A := [Q1; . . . ;Qp] ⊗ 1T
p and B :=

[R1; . . . ;Rp] ⊗ 1T
p , where any Qi and any Ri is a matrix of dimension n/p. Then,
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AB =
(
QR0

r

)
⊗ 1T

p ,

where Q := [Q1; . . . ;Qp] and R := [R1; . . . ;Rp].

Proof. Notice that any matrix of the form M(In/p ⊗ 1T
p ) can be written as

M
(
In/p ⊗ 1T

p

)
= (M ⊗ 1)

(
In/p ⊗ 1T

p

)
= M ⊗ 1T

p .

We can then write A = Q(In/p ⊗ 1T
p ) and B = R(In/p ⊗ 1T

p ).
Therefore,

AB = Q
(
In/p ⊗ 1T

p

)
R
(
In/p ⊗ 1T

p

)
= QR0

r

(
In/p ⊗ 1T

p

)
=

(
QR0

r

)
⊗ 1T

p . �
Definition 5.4. Let Q1, . . . , Qp be matrices of dimension n/p. Let Q be the n×n/p matrix
defined as Q := [Q1; . . . ;Qp]. The sequence {Qi

r} is such that Qi
r := ((In/p ⊗ 1T

p )Q)i+1.

Theorem 5.5. Let A ∈ {0, 1}n×n be a p-regular matrix. A is an m-th root of Jn with mini-
mum rank if and only if A is isomorphic to a matrix of the form diag(Q1, . . . , Qp)D(p, n),
where any Qi is a permutation matrix of dimension n/p, with Qm−2

r = Jn/p.

Proof. Let A be a matrix of the form diag(Q1, . . . , Qp)D(p, n) = [Q1; . . . ;Qp]⊗1T
p , where

any Qi is a permutation matrix of dimension n/p. As usually, pose Q := [Q1; . . . ;Qp].
By applying repeatedly Lemma 5.3, we notice that Am = (QQm−2

r ) ⊗ 1T
p . So, since Q

is made of permutation matrices, Am = Jn if and only if Qm−2
r = Jn/p. Theorem 4.2

concludes the proof. �
Corollary 5.6. Let A ∈ {0, 1}n×n be a p-regular matrix. A is a binary solution to A2 = Jn
with minimum rank if and only if A is isomorphic to a matrix of the form

PD(p, n),

where P = diag(Q1, . . . , Qp) and any Qi ∈ {0, 1}p×p is a permutation matrix.

Proof. Since any Qi is a p× p permutation matrix, it is clear that Q0
r = Jp. �

6. A class of roots of Jn isomorphic to a De Bruijn matrix

In [1], it is proved that some g-circulant binary roots of Jn are isomorphic to a
De Bruijn matrix. More specifically, the following result is shown.
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Proposition 6.1. Let A be a g-circulant binary solution to Am = Jn and A p-regular. If
gm = 0 (mod n), then A is isomorphic to the De Bruijn matrix D(p, n).

In this section, we extend the results of [1] by identifying another class of binary
solutions to Am = Jn isomorphic to a De Bruijn matrix.

Definition 6.2. A nice permutation matrix is built as follows: start with a p × p permu-
tation matrix. Then, replace all the zeros by a p× p zero matrix and each one by a p× p

permutation matrix. Repeat this m times. Then, you obtain a permutation matrix of
dimension pm. Such a matrix is called a nice permutation matrix.

An interpretation of a nice permutation matrix : an n× n matrix A such that n = pm

for some integers p and m is made of p n/p-row blocks; the first block contains the
first n/p rows of A, etc. In the same way, each of these blocks is made of p n/p2-row
blocks, and so on until we have 1-row blocks. So, we have a cascading block structure.
Multiplying A to the left by a nice permutation matrix performs block permutations
inside each set of p blocks with n/pi rows included in a SAME block of n/pi−1 rows.

Definition 6.3. A nice permutation of the De Bruijn matrix D(p, n) is a matrix of the
form PD(p, n), where P is a nice permutation matrix.

Definition 6.4. A nice permutation of level i (1 � i � m) permutes blocks of pi−1 rows
included in a same block of pi rows.

Definition 6.5. A nice permutation matrix of level i is a nice permutation matrix per-
forming only nice permutations of level i.

Notice that multiplying to the right a nice permutation D̃(p, n) of the De Bruijn
matrix D(p, n) by PT

i , where Pi is a nice permutation matrix of level i, is equivalent to
performing nice permutations of level less than i on the rows of D̃(p, n). This is illustrated
in the following example.

Example 6.6. Consider the following nice permutation matrix of the De Bruijn matrix
D(2, 8):

D̃(2, 8) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

0 0 0 0 0 0 1 1
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If P3 is the nice permutation matrix of level 3 which permutes the two blocks of 4
rows, we have:

D̃(2, 8)PT
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that if we take these nice permutation matrices P1 and P2 of level 1 and 2
respectively

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then P2P1D̃(2, 8) = D̃(2, 8)PT
3 .

The following lemma will be useful to prove that any nice permutation of the De Bruijn
matrix D(p, n) is isomorphic to D(p, n).

Lemma 6.7. Let D̃(p, n) be a nice permutation of the De Bruijn matrix D(p, n) (with
n = pm) and Pi be a nice permutation matrix of level i. Then, PiD̃(p, n) is isomorphic
to D̃(p, n).

Proof. By induction on level i.

– If i = 1, it is clear that PiD̃(p, n) = PiD̃(p, n)PT
i .

– Multiplying to the right PiD̃(p, n) by PT
i is equivalent to performing nice permuta-

tions of level less than i on the rows of PiD̃(p, n).
Hence, there is a nice permutation matrix P̃ performing only permutations of level
less than i such that

P̃PiD̃(p, n) = PiD̃(p, n)PT
i .
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Therefore, PiD̃(p, n)PT
i is a nice permutation of D(p, n). Since P̃T is a product of nice

permutation matrices of level less than i, by induction, we know that P̃TPiD̃(p, n)PT
i

is isomorphic to PiD̃(p, n)PT
i and therefore isomorphic to D̃(p, n).

As a consequence, since PiD̃(p, n) = P̃TPiD̃(p, n)PT
i , PiD̃(p, n) is isomorphic to

D̃(p, n). �
Proposition 6.8. Any nice permutation of the De Bruijn matrix D(p, n) is isomorphic to
D(p, n).

Proof. Any nice permutation of D(p, n) can be written as Pm . . . P2P1D(p, n), where
any Pi is a nice permutation matrix of level i.

So, from the previous lemma, it follows that such a matrix is isomorphic to D(p, n). �
Corollary 6.9. Any nice permutation of the De Bruijn matrix D(p, n) (n = pm) is an m-th
root of Jn, isomorphic to D(p, n).

The example in Remark 3.4 shows that not any root of Jn with minimum rank is
a nice permutation of a De Bruijn matrix.

7. An open problem

In this paper, we have shown that any m-th root of Jn with minimum rank is isomor-
phic to a row permutation of a De Bruijn matrix, whose row permutation is represented
by a block diagonal matrix (see Theorem 4.2). We have also shown that if m �= 2, then
the opposite is false.

In the future, it would be interesting to have a full characterization of all the binary
roots of Jn with minimum rank.
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