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By Paul Van Dooren T
he literature of systems and control, especially that of multi-
input/multi-output linear systems, has always been rich in numer-
ical linear algebra problems. As a result of fruitful interaction
between these areas of expertise, numerous numerical algorithms
have been developed for solving specific problems related to sys-
tems and control theory. The linear algebra community has been

pleased that their tools are of substantial use, and the control community has
been pleased that numerical analysts find control problems of sufficient chal-
lenge to show interest in them. The interaction between the two groups led to
the development of several numerical libraries for reliably solving numerical
problems posed by the control community. One of the most advanced numeri-
cal software projects addressing such issues is the NICONET project (see
http://www.win.tue.nl/niconet/niconet.html), which is partly responsible for the
SLICOT library (see [1]).

The interactions are mainly in the area of linear time-invariant systems,
which can be modeled as a set of differential equations 
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u(t), (1)

or difference equations

P(D)y(k) = Q(D)u(k). (2)

Here P(·) and Q(·) are polynomial matrices of appropriate
dimensions, u(·) ∈ Rm is the vector of inputs, y(·) ∈ Rp is
the vector of outputs, and both are functions of time.
When the time variable is the continuous variable t, the
operator is the differential operator d/dt; when the time
variable is the discrete variable k, the operator is the
advance operator D. 

In systems and control theory, one often uses state-
space models as an equivalent representation of these
dynamical systems. In such models the relation between
inputs and outputs is described by means of a state
x(·) ∈ Rn and a system of first-order differential or differ-
ence equations 

λEx(·) = Ax(·) + Bu(·),
y(·) = C x(·) + Du(·), (3)

where λ represents either the differential operator d/dt or
the difference operator D. Here E and A are real or com-
plex n × n matrices and B, C , and D are real or complex
n × m, p × n, and p × m matrices, respectively. By applying
the Laplace transform or the z-transform to (3) and elimi-
nating the state x(·), one obtains the transfer function T(λ),
which, for zero initial state vector x(0), describes the rela-
tion between inputs and outputs

T(λ) = C (λE − A)−1 B + D, y(·) = T(λ)u(·).

Comparing this expression with the system of differential/dif-
ference equations described in (1) and (2) yields the relation

T(λ) = P−1(λ)Q(λ).

Polynomial matrices, rational matrices, and state-space
models are key representations of linear time-invariant
systems, and they obviously lead to matrix problems with
more structure than, for example, the classical standard
eigenvalue problems encountered in numerical linear alge-
bra. In the following sections, we review some of the most
important developments in this area and discuss their
numerical aspects.

Conditioning and Stability
To explain the concepts of numerical stability of an algo-
rithm and conditioning of a problem, we consider the
problem of computing the eigenvalues of an n × n complex
matrix A. It is well known that there always exists an

invertible transformation T such that

A = T AJT−1,

where the bidiagonal Jordan form AJ has the eigenvalues
of A on its diagonal and possibly ones on the first super-
diagonal corresponding to each nontrivial Jordan block of
A [2]. It is also well known that any algorithm attempting
to compute this decomposition yields computed quantities
AJ and T (that is, the results that are stored in the com-
puter) for which the backward error �AJ defined by

A + �AJ = T AJT
−1

(4)

cannot be bounded for all matrices A [3], [4]. This proper-
ty is mainly due to the fact that the transformation matrix
T has a condition number

κ(T) :=
∥∥∥T

∥∥∥
2

∥∥∥T−1
∥∥∥

2

that can be arbitrarily large for some matrices A.
But there also exists a unitary matrix U such that

A = U AS U∗,

where the triangular Schur form AS has the eigenvalues 
of A on its diagonal as well. The condition number
κ(U) := ‖U‖2‖U∗‖2 now equals one [3]. This fact is crucial
for showing that the backward error �AS defined by

A + �AS = U AS U
∗

(5)

can be bounded by ‖�AS‖2 < εc‖A‖2 for all matrices A,
provided it is computed with an appropriate algorithm [3].
Here c is a constant reasonably close to one, and ε is the
precision of the machine used for the computations (see
[5] for more details). In this case, the computed decompo-
sition corresponds exactly to a slightly perturbed matrix
A + �AS . An algorithm for which such a property holds is
said to be backward stable. If one is interested in comput-
ing the eigenvalues of A, one is better off using the Schur
form (5) rather than the Jordan form (4), since there is a
backward stable algorithm for computing (5) from which
the eigenvalues of (the slightly perturbed) A can be direct-
ly obtained. By doing so, we computed the exact eigenval-
ues of a nearby matrix A + �AS !

Backward stability does not imply that we obtained the
desired result (the eigenvalues of A in this case) to high
accuracy. Rather, the accuracy depends on how perturba-
tions on the data (namely �A) affect the result X we are
interested in (the eigenvalues of A in our example). The
size of the perturbation is commonly measured by the
(absolute) condition κ[f(A)] of the computed object
X = f(A) given by
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κ[f(A)] = lim
δ→0

sup
‖�A‖2≤δ

[∥∥∥X − X
∥∥∥

2
/δ

]
, X = f(A + �A).

One can view the quantity κ[f(A)] as the worst case deriv-
ative of the computed function f(A) in any direction �A,
or in other words, the sensitivity of this function versus
small perturbations. When the above limit exists, one
derives an approximate bound for the error �X on the
computed result of the form

‖�X‖2 ≤ κ[f(A)].‖�A‖2 + O
(
‖�A‖2

2

)
. (6)

When κ[f(A)] is not bounded, the above inequality does
not make sense and the problem of determining X from A
is ill posed (as opposed to well posed when κ[f(A)] is
bounded). When κ[f(A)] is finite and relatively large or rel-
atively small, the problem is badly conditioned and well
conditioned, respectively. For the eigenvalue problem it is
known that the eigenvalues of a symmetric matrix A are
well conditioned, whereas the eigenvalue problem of a
matrix with a nontrivial Jordan structure (for example,
without a full set of eigenvectors) is ill posed [3].

Notice that backward stability is a property of an algo-
rithm, while conditioning is associated with a problem and
the specific data for that problem. As indicated in (6), the
errors �X in the result depend on both the stability of the
algorithm used and the conditioning of the problem being
solved. A backward stable algorithm has a uniform bound
for ‖�A‖2 , which is good since the error �X depends
essentially on the condition of the problem only. An unsta-
ble algorithm, on the other hand, may yield a large error
�X even when the problem is well conditioned. For more
details on this section, see [4]–[6].

State-Space Models 
and Coordinate Transforms
State-space models are far from unique for a given transfer
function and its associated input/output behavior. A class
of transformations that does not affect the transfer func-
tion are the system equivalence transformations

{E, A, B, C , D} 
⇒
{

Ê, Â, B̂, Ĉ , D̂
}

:= {S ET, S AT, S B, C T, D}, (7)

where S and T are constrained to be nonsingular. For stan-
dard state-space models (where E = I), equivalence trans-
formations (7) become similarity transformations since
Ê = ST must be the identity

{A, B, C , D} 
⇒
{

Â, B̂, Ĉ , D̂
}

:=
{

T−1 AT, T−1 B, C T, D
}

.

(8)

Although these state-space models are not the only
ones used for systems and control purposes, they are the
models that have been most heavily studied as far as

numerical algorithms are concerned (see [7]). If the sys-
tem is given in one of these forms, one typically has to
analyze its properties (such as the frequency response,
poles/zeros, stability, and robustness) and then design a
particular controller to improve some characteristics or to
satisfy certain design criteria (tracking, robustness, and
optimality criteria). Many analysis and design problems
are now well understood and their theoretical solution is
often described in terms of canonical forms (such as the
Jordan or the Kronecker canonical form [7]), which have
been defined for state-space models of multivariable linear
systems. These forms are typically sparse since they are
described with a minimum number of parameters. There-
fore, they often allow one to efficiently characterize all
solutions to a particular problem, which is appealing.
Unfortunately, these forms are also sensitive to computa-
tion, and they can invoke a coordinate transformation that
is poorly conditioned [7]. 

For most analysis and design problems encountered in
linear system theory, one can make use of special forms
that can be obtained under transformations that are well
conditioned, such as unitary or orthogonal transformations
[8]. Such transformations have become a major tool in the
development of reliable numerical linear algebra algo-
rithms. One motivation for well-conditioned transforma-
tions is the numerical sensitivity of the problem at hand.
The sensitivity (or conditioning) of problems in linear alge-
bra can often be expressed in terms of norms, singular val-
ues, or angles between spaces, and each of these quantities
is invariant under orthogonal transformations. These trans-
formations therefore allow one to reformulate the problem
in a new coordinate system that is more appropriate for
solving the problem, without affecting its sensitivity. A sec-
ond reason is the numerical stability of the algorithm used
for solving the problem. Most decompositions involving
orthogonal transformations can be obtained by a sequence
of Givens or Householder transformations that can be per-
formed in a numerically stable manner. The concatenation
of such transformations can also be applied in a backward
stable manner because numerical errors resulting from pre-
vious steps are maintained in norm throughout subsequent
steps. In fact, these transformations (and their inverse)
have two-norm equal to one.

We explain this stability property below by analyzing
the poles of a single-input/single-output system given in
standard state-space form, where E = I, S = T−1 and
m = p = 1. For such models the poles are the eigenvalues
of the matrix A (provided the realization is minimal), and
the classical form describing the fine structure of these
eigenvalues is the Jordan canonical form. We choose the
similarity transformation (8) where ÂJ = T−1 AT is in 
Jordan canonical form. For convenience, we give the trans-
formed system { ÂJ, B̂ J, Ĉ J, D̂ J} in the form of the com-
pound matrix
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[
ÂJ B̂ J

Ĉ J D̂ J

]
:=




λ1 1 0 0 0 0 0 ×
0 λ1 1 0 0 0 0 ×
0 0 λ1 0 0 0 0 ×
0 0 0 λ2 1 0 0 ×
0 0 0 0 λ2 0 0 ×
0 0 0 0 0 λ3 0 ×
0 0 0 0 0 0 λ4 ×
× × × × × × × ×




.

Since we chose a single-input/single-output example, there
is only one Jordan block associated with each individual
eigenvalue; for multiple-input/multiple-output systems this
does not have to be the case. This form not only describes
the poles of the system but contains more information,
such as the partial fraction description of the transfer
function. A disadvantage of the form is that it requires a
state-space transformation T to transform A into its Jor-
dan form ÂJ , and that the norms of T and T−1 cannot be
bounded in general. On the other hand, when one restricts
T to be orthogonal, then so is T−1, and both are bounded
in norm. Under such transformations, one can always
reduce A to triangular form, called the Schur form, which
also has the eigenvalues on its diagonal, given by

[
ÂS B̂S

Ĉ S D̂S

]
:=




λ1 × × × × × × ×
0 λ1 × × × × × ×
0 0 λ1 × × × × ×
0 0 0 λ2 × × × ×
0 0 0 0 λ2 × × ×
0 0 0 0 0 λ3 × ×
0 0 0 0 0 0 λ4 ×
× × × × × × × ×




.

(9)

If one is interested in computing only the poles of the sys-
tem, it is well known that the latter form is numerically
more reliable and actually requires less computation than
the Jordan form [3].

There are other classes of orthogonal coordinate trans-
formations such as the Hessenberg and staircase forms
[8]. These forms have been proposed for solving a variety
of problems such as computing zeros, finding minimal
realizations, solving pole-placement problems, construct-
ing observers, and computing frequency responses (see
[7] and references therein). In each of these problems, the
use of orthogonal or unitary transformations is crucial for
guaranteeing the reliability of the computed result.

Trading Speed for Accuracy
For reasons of efficiency, one may want to use nonorthog-
onal but well-conditioned transformations that reduce the
dynamics matrix A to a special form, such as block-diago-
nal [9]. One example is the tridiagonal realization of an nth

order scalar transfer function G(λ) = C (λ I − A)−1 B + D
given by

[
ÂT B̂T

ĈT D̂T

]
:=




α1 γ2 β1

β2 α2
. . . 0

. . .
. . . γn

...

βn αn 0

γ1 0 . . . 0 α0




. (10)

Almost all scalar transfer functions have such a realiza-
tion; a necessary and sufficient condition is that the n × n
Hankel matrix H built on the moments Hi, j := C Ai+ j−1 B of
every system realization {A, B, C , D} of G(λ) must have an
LU factorization without pivoting [10]. Let us compare
realizations for the system

[
A B

C D

]
:=




−3.01 −3.03 −1.03 −(0.01+10−11) 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

1 4.5·10−2 6.75·10−4 3.3375·10−6 0


 .

(11)

Since the four (rounded) eigenvalues λi of A are
{−0.0100,−0.9998,−1.0001 ± 0.0002J}, there is a cluster of
three eigenvalues around −1. Although these three eigen-
values are close to each other, they are by no means iden-
tical, relative to the machine precision ε, which, for this
example, is approximately 10−16. A Jordan form realization
of this system is given by


 ÂJ B̂ J

Ĉ J D̂ J


 :=




λ1 0 0 0 r1
0 λ2 0 0 r2
0 0 λ3 0 r3
0 0 0 λ4 r4

1 1 1 1 0


 , (12)

where the coefficients ri turn out to be large (r2, r3, and r4

are of the order 106 and r3 and r4 are complex). The cause
of these large entries is the proximity of the three eigenval-
ues. Even with methods that try to recognize clusters of
eigenvalues and hence identify the Jordan canonical form
in a more robust manner [11], [12], there is still the prob-
lem that the transformation to Jordan canonical form is not
a continuous function of the parameters of the system, and
therefore gives rise to numerical difficulties. On the other
hand, the tridiagonal realization has entries of reasonable
size because the transformation yielding (10) is well condi-



tioned. In other words, the transformation for placing the
system (11) in Jordan form is badly conditioned, while the
transformation for placing it in tridiagonal form has an
acceptable condition number. When computing the step
responses of systems (10) and (12), the response calculat-
ed from the Jordan form representation in this example is
at least six digits less accurate than the response calculat-
ed using the tridiagonal representation.

Trading Simplicity for Accuracy
A typical control action used to influence the behavior of
the system is linear state feedback, which consists of feed-
ing back a linear function F x(·) of the state to the input
u(·). Replacing the input u(·) by F x(·) + u(·) yields

λx(·) = (A + BF )x(·) + Bu(·)
y(·) = (C + DF )x(·) + Du(·).

This control action is typically used to modify the dynam-
ics of the system and, more particularly, the eigenvalues
of the matrix A + BF . If the pair (A, B) is single input and
controllable, then it is well known that one can arbitrarily
choose the closed-loop spectrum, or, equivalently, the
characteristic polynomial of A + BF , and the feedback
matrix F is unique [13]. For such systems there always
exists a similarity transformation T yielding a transformed
pair (At, Bt) := (T−1 AT, T−1 B) , which is in controller
canonical form

At =




−an−1 −an−2 · · · −a1 −a0
1 0

. . .
. . .
. . .

. . .

1 0




, Bt =




1
0
...
...

0




.

The characteristic polynomial of At (and hence of A) is
then given by

a(z) := det(z In − At) = zn + an−1zn−1 + · · · + a1z + a0.

Transforming also the feedback Ft := F T yields the trans-
formed closed-loop matrix At + Bt Ft = T−1(A + BF )T ,
which has the same eigenvalues as A + BF since both
matrices are related by a similarity transformation. It is
clear that by choosing 

Ft = [an−1 − fn−1, . . . , a0 − f0]

the matrix At − Bt Ft has the same form as At , but with ai

replaced by fi. Hence 

f(z) := det(z In − (At + Bt Ft)) = zn + fn−1zn−1 + · · · + f0.

This discussion shows that the closed-loop eigenvalues of
every controllable single input pair can be arbitrarily

assigned and at the same time suggests a simple method
for constructing F . A computational method for implement-
ing this technique is due to Ackermann and is implemented
in the MATLAB Control Toolbox in the function acker. The
algorithm first constructs the controllability matrix

T1 =
[

B AB · · · An−1 B
]
,

which transforms (A, B) to

[ A1 | B1 ] :=
[

T−1
1 AT1 | T−1

1 B
]

=




−a0 1

1
... 0

. . .
...

...

1 −an−1 0




giving the characteristic polynomial of A. A further trans-
formation

T2 =




1 an−1 . . . a1
. . .

. . .
...

. . . an−1
1




yields the requested form (At, Bt). This algorithm is a typi-
cal example of the use of canonical forms requiring a badly
conditioned transformation (T = T1T2 in this case). It is well
known that the transformation T1 can be badly conditioned.
Let us take a random (A, B) pair with only ten states and
one input. If we then try to assign random eigenvalues that
are symmetric with respect to the real axis, Ackermann’s
method of the MATLAB Control Toolbox yields a feedback
matrix of poor quality. Indeed, when recomputing the eigen-
values of (A + BF ) one finds only three digits of accuracy!
One can show that the main reason for this loss of accuracy
is the poor condition number of the controllability matrix
T1. The culprit is thus the choice of method and not the
implementation of the algorithm. Moreover, if one assigns
eigenvalues for a 20th-order system, not a single digit of
accuracy can be expected anymore, and the stabilizing feed-
back does not work at all!

There are now better algorithms that have been shown
to possess good numerical properties [14], [15] with com-
plexity comparable to that of Ackermann's method. More-
over, the sensitivity is now much better understood [5],
and reliable implementations are available in SLICOT [1].

Invariant Subspaces
and Design Problems
Many design problems in systems and control can be
reduced to the solution of an eigenvalue problem [16], [17]
or, more precisely, to the calculation of certain spaces
spanned by eigenvectors and generalized eigenvectors. It
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is crucial to construct orthogonal bases for such spaces,
and the basic decomposition that leads to this construc-
tion is the generalized Schur form for general n × n pencils
λE − A. Of principal interest are regular pencils (that is,
with det(λE − A) not identically zero), for which one can
define generalized eigenvalues as the roots of
det(λE − A) = 0. We state the decomposition for the case
that E and A are real matrices.

Generalized Schur Form [18]
There exist orthogonal transformations Q and Z that
transform a regular pencil λE − A to

QT(λE − A)Z = λES − AS,

where ES is upper triangular and AS is block upper trian-
gular with a 1 × 1 diagonal block corresponding to each
real generalized eigenvalue and a 2 × 2 diagonal block cor-
responding to each pair of complex conjugate generalized
eigenvalues (such matrices are called quasi-triangular).
This decomposition exists for every ordering of eigenval-
ues in the quasi-triangular form.                              

If E = I one recovers the standard (quasi-triangular)
Schur decomposition AS = UT AU based on an orthogonal
similarity transformation by taking U = Z = Q. Notice that
if E is invertible one also has

QT AE−1Q = AS E−1
S , Z T E−1 AZ = E−1

S AS ,

which are both quasi-triangular matrices. Then Q and Z of
the generalized Schur form can be obtained from the stan-
dard real Schur forms of AE−1 and E−1 A, but this detour
should be avoided when E is badly conditioned. One of the
most important uses of this form is the computation of
orthogonal bases for eigenspaces. Consider a (block) trian-
gular decomposition where we partition the invertible
matrix X conformably as in

X−1 AX =
[

A11 A12
0 A22

]
, X = [X1X2] .

Then AX1 = X1 A11 , which implies that the range space
X := ImX1 of the matrix X1 satisfies the invariant sub-
space condition

AX ⊂ X .

When X is an orthogonal matrix (as in the Schur decompo-
sition), the columns of X1 are orthogonal. The correspond-
ing concept for the generalized eigenvalue problem λE − A
is that of a deflating subspace defined by the condition

dim(AX + EX ) = dim X .

For invertible E this condition is equivalent to
E−1 AX ⊂ X and hence each deflating subspace of λE − A
is an invariant subspace of E−1 A. The first k columns of

the right transformation Z [18] are therefore an orthogonal
basis for a deflating subspace of the pencil λE − A. We
refer to [18], [3], and [19] for a rigorous discussion. The
use of these eigenspaces in control shows up in the solu-
tion of several matrix equations. 

We illustrate this technique with a standard eigenvalue
problem (that is, E = I). Suppose one wants to solve the
q × p quadratic matrix equation

M21 − X M11 + M22X − X M12X = 0 (13)

for the q × p matrix X . This equation is equivalent to

[
Ip 0

−X Iq

] [
M11 M12
M21 M22

] [
Ip 0
X Iq

]
=

[
M̂11 M̂12

0 M̂22

]
, (14)

where M̂11 := M11 + M12X, M̂12 = M12, M̂22 := M22 − X M12 ,
and M̂21 = 0. But (14) is a similarity transformation on the
(p + q) × (p + q) matrix M partitioned in the four blocks
Mij i = 1, 2, j = 1, 2. The block triangular decomposition
says that the eigenvalues of M are the union of those of M̂11

and of M̂22 and that the columns of 
[

Ip
X

]
span an invariant

subspace of the matrix M corresponding to the p eigenval-
ues of M̂11 [17]. Let us suppose for simplicity that M is sim-
ple, that is, that it has distinct eigenvalues. Then every
invariant subspace of a particular dimension p is spanned
by p eigenvectors of M . Therefore, let 

[
X11

X12

]
be a matrix

whose columns are p eigenvectors of M , and thus is a basis
for the corresponding invariant subspace. If, moreover, X11 is
invertible then the columns of 

[
Ip
X

]
with X = X21X−1

11 span
the same subspace and hence X is a solution of the quadrat-
ic matrix equation (13). One shows that the eigenvalues cor-
responding to the selected eigenvectors are the eigenvalues
of M̂11 after applying the transformation (14). This approach
actually yields all solutions X provided M is simple and the
matrices X11 defined above are invertible. However, the
approach requires the computation of all eigenvectors,
which are obtained from a diagonalizing similarity transfor-
mation. One shows that when M has repeated eigenvalues,
one should compute its Jordan canonical form to find all
solutions of the quadratic matrix equation (13) [7]. The dis-
advantage of this approach is that it involves the construc-
tion of a transformation T that may be badly conditioned. 

Every invariant subspace also has an orthogonal basis,
and in general these basis vectors are not eigenvectors, since
eigenvectors need not be orthogonal to each other. Such a
basis is exactly obtained by the Schur decomposition (9).
One can always compute an orthogonal similarity transforma-
tion that quasi-triangularizes the matrix M. If we then parti-
tion the triangular matrix with a p × p leading block as in 

[
U11 U12
U21 U22

]T [
M11 M12
M21 M22

] [
U11 U12
U21 U22

]
=

[
M̃11 M̃12

0 M̃22

]
,

(15)
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then it follows that the columns of 
[

U11

U21

]
also span an

invariant subspace of M , while the columns of 
[

Ip
X

]
with

X = U21U−1
11 span the same subspace, provided U11 is

invertible [17]. The advantage of this approach is that it
uses numerically reliable coordinate transformations in
(15), while the disadvantage is that only one invariant sub-
space is directly obtained that way. In certain applications,
it turns out that one needs only a particular invariant sub-
space. Typical examples arise in applications involving
continuous time systems:

� the algebraic Riccati equation X BR−1 BT X − X A −
AT X − Q = 0 from optimal control. Here the rele-
vant matrix is

M =
[

A −BR−1 BT

−Q −AT

]

and the matrix M̃11 must contain all eigenvalues of M
in the open left-half plane 

� the Lyapunov equation AX + X AT + Q = 0 occur-
ring in stability analysis. Here

M =
[−AT 0

Q A

]

and M̂11 = −AT

� the Sylvester equation AX − X B + C = 0 where 

M =
[

B 0
C A

]

and M̂11 = B.
In each of these cases one has a well-defined spectrum

in mind for the matrix M̃11 after transformation, and so
only one invariant subspace must be computed. We point
out that Lyapunov and Sylvester equations can be viewed
as special linear cases of the quadratic Riccati equation,
which is extensively discussed in [17] and [7]. The efficient
calculation of the linear equations is discussed in [20] and
is based on the Schur forms of A and B. This so-called
Schur approach was proposed in a number of papers 
(see references in [7]) and is now the recommended tech-
nique for solving these problems, although improvements
are still being found in this area. The generalized eigenval-
ue counterpart involves deflating subspaces and arises in
applications involving discrete-time systems and general-
ized state space systems. We refer to [7] for more details.

Structured Matrix Problems
In systems and control theory there are many linear alge-
bra problems that have a special structure and for which
one would like to have numerical algorithms that not 
only have a small backward error (in the sense given earli-
er) but at the same time preserve the structure of the
problem. The following examples are typical:

� Hamiltonian and symplectic eigenvalue problems
originating from optimal control. The optimal con-
trol, optimal filtering, and spectral factorization

problems can all be reduced to generalized eigenval-
ue problems with the specific structure

λ


 0 I 0

− I 0 0
0 0 0


 −


 0 A B

AT Q S
BT ST R


 ;

λ


 0 I 0

F T 0 0
GT 0 0


 −


 0 F G

I Q S
0 ST R


 .

Although stable algorithms have been developed for
these problems [21], [22], [19], it is only recently
that structure-preserving stable algorithms were
obtained as well [23]. 

� Matrices with Toeplitz and Hankel structure

T =




T1 T2 · · · Tn

T2
. . .

...
...

. . .
...

Tn · · · · · · T1


 , H =




H1 H2 · · · Hn

H2 . .
. ...

... . .
. ...

Hn · · · · · · H2n−1




often arise in identification and least squares fitting
of system models to input/output or spectral data
collected from system measurements. For such prob-
lems there are fast algorihms that have been proven
to be backward stable [24], [25], but unfortunately
not in a structured sense [26]. There is still much
work going on in this area [27]. 

� Eigenvalue problems with cyclic structure

λE − A :=




−A1 λE1
. . .

. . .

−AK−1 λEK−1
λEK −AK


 (16)

appear in the study of periodic systems. There are
now stable structure-preserving algorithms for a
large subclass of these problems (see [28] for a sur-
vey). We discuss this problem further below. 

� Polynomial models can be reduced to generalized
state-space models in which the poles and zeros are
described by pencils of the type


λ I − I

. . .
. . .

λ I − I
P0 . . . PK−2 PK−1 + λPK


 . (17)

There are only partial results available for such
problems as we indicate below.

We now take a closer look at the last two items, which
illustrate that exploiting structure allows one to significantly
reduce the complexity of the algorithms. If, moreover, the
algorithms are backward stable in a structured sense (that
is, the backward error has the same structure as the original
data) then the sensitivity can only improve relative to
unstructured problems, and often does so significantly [26].
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Periodic Eigenvalue Problems
These problems typically occur in the context of discrete-
time, linear time-varying systems

Ekxk+1 = Akxk + Bkuk,

yk = Ckxk + Dkuk, (18)

arising, for example, from the discretization of a continu-
ous-time periodic system. A periodic system is a set of dif-
ference equations (18) where the coefficient matrices vary
periodically with time, that is, Ek = Ek+K for all k and like-
wise for A, B, C , and D. The period is the smallest value of
K for which these identities hold. It was shown in [29] that
a periodic system of period K has a well-defined solution
for appropriately defined boundary conditions provided
the pencil λE − A in (16) is regular. In case Ek is invertible
for all k, it follows that, for some constant c,

det(λE − A) = c det
(
λK In − �K,1

)
,

where �K, J := E−1
K AK · · · E−1

2 A2E−1
J AJ and �K,1 is the so-

called monodromy matrix of the periodic system. For more
details on the relation between generalized eigenvectors
and eigenvalues of these pencils we refer to [28]. A key
decomposition for computing these generalized eigenval-
ues and eigenvectors is the periodic Schur form, which we
state again for the case of real matrices.

Periodic Schur Form [30], [31]
Let the n × n matrices Ek and Ak, k = 1, . . . , K be such that
the pencil λE − A is regular. Then there exist orthogonal
transformations Qk and Zk, k = 1, . . . , K such that

QT (λE − A)Z =




− Â1 λÊ1
. . .

. . .

− ÂK−1 λÊK−1
λÊK − ÂK


 ,

where

Q := diag{Q1, . . . , QK }, Z := diag{Z1, . . . , ZK },

and the transformed matrices Âk and Êk are all upper
triangular, except for one matrix—say, Â1 —that is
quasi-triangular.

The relation with the standard Schur form is that if the
matrices Ek are invertible, then the monodromy matrix
�K,1 is transformed by the orthogonal similarity Z1 to its
Schur form

�̂K,1 : = Ê−1
K ÂK · · · Ê−1

1 Â1

= Z T
1

(
E−1

K AK · · · E−1
1 A1

)
Z1 = Z T

1 �K,1Z1.

Since all matrices except one are triangular, it follows that
all transformed monodromy matrices �̂K+k−1,k are quasi-
triangular as well, and with the same ordering of eigenval-

ues. From the generalized Schur form it follows that the
ordering of the eigenvalues can be chosen arbitrarily and
hence that there exists a periodic Schur form associated
with every eigenvalue ordering. An important feature here
is that the backward errors can be completely mapped
back to the original data, that is, we compute the periodic
Schur form of a slightly perturbed pencil of the same struc-
ture as (16) but with perturbed matrices Ak + �Ak and
Ek + �Ek, k = 1, . . . , K . This property is known as struc-
tured backward stability.

The transformations Zk and Qk can also be applied
directly to the system (18). Defining a new state x̂k := Z T

k xk

and multiplying the state equation of (18) by QT
k , yields the

equivalent system

Êkx̂k+1 = Âkx̂k + B̂kuk,

yk = Ĉkx̂k + Dkuk, (19)

where B̂k := QT
k Bk, Ĉk := CkZk, and Êk and Âk are upper

triangular, except for Â1, which is quasi-triangular. This
system is expressed in a very special coordinate system,
namely, the lower equation in (19) (or the lower two
equations if Â1 has a bottom 2 × 2 block) is now decou-
pled from the rest of the system. Since the ordering of
the eigenvalues in the Schur form can always be chosen
arbitrarily, one can choose this decoupled subsystem to
be the subsystem with the smallest eigenvalue in
absolute value and hence the easiest to integrate numeri-
cally [30]. Once the lower component of the state has
been computed, it can be substituted into the next com-
ponent, which is then decoupled from the rest of the sys-
tem, and so on. This coordinate system is thus appealing
for simulation purposes.

The periodic Schur form has several other applications
in control problems involving periodic discrete-time sys-
tems [32], [28]. In the optimal control of such a periodic
system one considers the problem

Minimize over uk : J =
∞∑

k=1

zT
k Qkzk + uT

k Rkuk

subject to : Hkzk+1 = Fkzk + Gkuk,

where the matrices Qk, Rk, Fk, Gk, Hk are periodic with
period K . To solve this variational problem, one needs to
solve Hamiltonian equations that are periodic homoge-
neous systems of difference equations (18) in the state zk

and costate λk of the system [28]. The correspondences
with (18) are

xk :=
[

λk

zk

]
, Ek :=

[−GkR−1
k GT

k Hk

F T
k 0

]
, Ak :=

[
0 Fk

HT
k Qk

]
.

For finding periodic solutions to the underlying periodic
Riccati equation one has to find the stable invariant sub-
spaces of the monodromy matrices �K+k−1,k [33]. Clearly,
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the periodic Schur form is useful here as well as the
reordering of eigenvalues [30].

In pole placement for periodic systems, the periodic
Schur form and reordering are useful for extending Varga's
pole placement algorithm [15] to periodic systems. Addi-
tional applications of the periodic Schur form are the solu-
tion of periodic Lyapunov and Sylvester equations [34],
[29]. Since these are special cases of periodic Riccati equa-
tions, they can also be solved by using the periodic Schur
form. The computation of zeros of periodic systems is relat-
ed to that of finding a minimal realization of such systems,
and appropriate algorithms need to be designed [28].

Polynomial Models 
The zero structure of an m × n polynomial matrix

P(λ) := P0 + λP1 + · · · + λK PK

is the set of zeros of the polynomials ei(λ) defined by
means of the Smith canonical form of P(λ) given by




e1(λ)

. . . 0r,n−r

er(λ)

0m−r,r 0m−r,n−r


 := M(λ)P(λ)N(λ),

where each polynomial ei(λ) divides ei−1(λ) for
i = 2, . . . , r and M(λ) and N(λ) are unimodular transfor-
mations, that is, polynomial matrices with constant but
nonvanishing determinant. The integer r is the normal
rank of the polynomial matrix, which is the rank of the
polynomial matrix evaluated at every value λ in the com-
plex plane, except the set of zeros.

Although the construction of the Smith form is based on
elementary column and row operations, these transforma-
tions are numerically unstable as shown in the following
small example. A typical row operation to be performed in
the Smith form calculation of

P(λ) =
[

δ λ

λ λ

]
,

where δ is small but nonzero, is
[

1 0
−λ/δ 1

]
P(λ) =

[
δ λ

0 λ − λ2/δ

]
.

The coefficients in the left transformation matrix, and
therefore also the numerical errors induced by them,
diverge when δ becomes small. For this low-dimensional
example the effect seems tractable, but in general an accu-
mulation of such effects renders the reduction to Smith
canonical form numerically unstable.

The alternative here is to compute the zero structure as
the generalized eigenvalues of the linearized form (17). It is
known [35] that all of the information contained in the

Smith form of P(λ) can be retrieved from the Kronecker
canonical form [16] of (17) and that there exists an orthogo-
nal decomposition that computes this information in a sta-
ble manner. However, the backward error perturbs the
zero entries of (17), causing potential problems. It is shown
in [35] that errors can be mapped back to the individual
matrices Pi, i = 0, . . . , K , but the best obtainable bounds

‖	Pk‖ ≤ εc max
i

‖Pi‖2

may be unsatisfactory when the coefficients Pi have
strongly varying norms. In [36] a second-order polynomial
matrix is given for which the generalized Schur form
applied to (17) gives eigenvalues that are not computed in
a backward stable manner.

Today, there are several algorithms available that deal
directly with polynomial matrices rather than use reduc-
tions to generalized eigenvalue problems of the type (17)
[37]. Some of these techniques are based on elimination
algorithms involving unimodular transformations. As indi-
cated earlier, these algorithms may have very poor stabili-
ty properties on particular examples. Other techniques are
based on the solution of structured linear systems of
Toeplitz or Hankel type and generally have good numerical
properties [38]. Currently, there is no detailed numerical
analysis of these algorithms, and they should therefore be
used with care.

Concluding Remarks
In this article we surveyed several numerical methods aris-
ing in systems and control and pointed out general princi-
ples that lead to numerically reliable algorithms for solving
a large range of problems in this area. Algorithms that use
orthogonal or unitary transformations were emphasized
because they often lead to reliable numerical algorithms.
We focused on those problems for which good algorithms
are available, and for which robust software implementa-
tions are available. It is crucial to have robust numerical
software available to implement these ideas, and the
NICONET project aims at providing exactly that. Moreover,
the underlying software library SLICOT is freely available
for noncommercial use. For more details we refer to [1].
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