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A GENERALIZED EIGENVALUE APPROACH FOR SOLVING RICCATI
EQUATIONS*

P. VAN DOOREN?t

Abstract. A numerically stable algorithm is derived to compute orthonormal bases for any deflating
subspace of a regular pencil AB - A. The method is based on an update of the QZ-algorithm, in order to
obtain any desired ordering of eigenvalues in the quasitriangular forms constructed by this algorithm. As
applications we discuss a new approach to solve Riccati equations arising in linear system theory. The
computation of deflating subspaces with specified spectrum is shown to be of crucial importance here.
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1. Introduction. The computation of deflating subspaces with a specified spectrum
has not received a great deal of attention until it was recently applied to the solution of
the optimal control problem of a linear discrete time system [5], [15]. Before the
development of reliable algorithms for the generalized eigenvalue problem [13}, [16],
these problems were often reduced to an equivalent standard eigenvalue problem and
gave rise to the computation of invariant subspaces with a specified spectrum (8], [14],
[17],[21]. The matrix involved in this standard eigenvalue problem does not consist of
given data but has to be computed, which unfortunately requires inverses of possibly
ill-conditioned matrices. la [5], [12], [15] the use of a generalized eigenvaluce problem
is recommended as a safer alternative, and attention is drawn to the abscnce of
appropriate software for computing deflating subspaces of a regular pencil. In this paper
we try to fill this gap, and we also exploit this new tool in a class of related problems
arising in linear system theory. We thereby develop a new approach to tackle these
problems in a numerically sound way.

In the rest of this section we briefly review some notions that we will need in later
sections. The material covered here can be found, e.g., in [ 13], [18], [19], [20].

Notation will be as follows. We use uppercase for matrices and lowercase for
vectors and scalars. R and C are the fields of real and complex numbers, respectively.
We use A™ (resp. x*) for the conjugate transpose of a complex matrix A (resp. vector x)
and A’ (resp. x') for the transpose of a real matrix A (resp. vector x). |- |, denotes, the
spectral norm of a matrix and the Euclidean norm of a vector. A complex (real) square
matrix A is called unitary (orthogonal) when A*A =1 (A'A =]). When no explicit
distinction is made between the complex and real case, we use the term unitary and the
notation A* for the real case as well.

Recently, more attention has been paid to the generalized eigenvalue problem

(GEP):
93] Ax = ABx,
where B is not necessarily invertible but where the pencil A\B — A is regular, i.e.,

2) det (AB—A)#0.
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When the coefficients of the matrices A and B belong to C, there exist unitary
transformations Q and Z reducing the n x n pencil AB — A to the upper triangular form

T N S
3) Q*(AB-A)Z=2B-A=2 SRR I o
0 5’”1' 0 . ﬁnn

The ratios A, = d,,/b; are called the generalized eigenvalues of the pencil AB —A. The
set {A1, "+, A} is called the spectrum of AB— A and is denoted by A(B, A); it may
contain repeated elements. Notice that A, may be infinite (when b, = 0) but it is never
undetermined (i.e., A, = 0/0), since 4, =5, =0 implies det (AB -A)=0 and hence
det{(AB - A)=0. As a consequence the matrix 4,8 ~b,A is singular. The vectors x;
satisfying

(4) (4B ~b,A)x, =0

are called generalized eigenvectors of AB — A corresponding to A, If the eigenvalue
A; = 4,/ b, has a larger multiplicity than the number of independent solutions x, of (4),
then one can define generalized principal vectors %; of AB — A corresponding to A;. Since
we do not need this concept in the sequel, we do not go into further details about it.

In the real case the decomposition (3} also exists but involves complex matrices Q,
Z, A and B when A(B, A) contains complex elements. Under orthogonal trans-
formations Q and Z, AB — A can be transformed to the quasi upper triangular form

. éll DY * AAll e *

(5) QAB-A)Z=AB-A=A - AP

where the diagonal pencils ,\é,-,- -A,,« have sizes d; =1 or 2 and the é,,» are upper
triangular. If d; = 1 then A(B,, A,) is real (possibly infinite). If d; =2 then A(B,, A,)
contains two (finite) complex conjugate numbers. The spectrum of AB — A is the union
of the sets A(B., A,«,-), as can be seen from an additional (unitary) reduction of (5) to (3)
An algorithm has been derived recently to obtain decompositions of the type (3) and (5)
in a numerically stable way [13]. When B =, (1) boils down to the standard eigenvalue
problem (SEP):

(6) Ax = Ax.

It is readily verified that the decompositions (5) and (3) then reduce to the classical
Schur decompositions of the real or complex matrix A, respectively. We therefore call
(3) and (5) generalized Schur decompositions of the regular pencil AB — A. In the sequel
we drop the term ‘“‘generalized’” when no confusion is possible from the context. The
notion of eigenvector in the GEP can be extended to the notion of deflating subspace
of a regular pencil AB — A, satisfying

@) dim (B¥ + AZ) =dim %,
where dim & denotes the dimension of a subspace &. Let & have dimension [, and
suppose that the / first columns of the unitary matrices Q and Z, partitioned as

®) z=[z)z) ©0=[2/e:]

i n-l I n-l

span the spaces ¥ and AZ + B¥, respectively. Then it follows from (7) that Q3AZ, =
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Q*BZ,=0,or

Bl Bl [Aul Anl}
Q*(AB—-A)Z =i A - = .
9 0 | B 0 A },.71
T Y

n-t
Conversely, if (8), (9) hold then the columns of Z, span a deflating subspace & according
to £7). For =1, Z is an eigenvector of AB —A corresponding to the eigenvalue
A(B\1, Ay,). For any |/, A(ﬁll, Au) is a subset of A(B, A) and is denoted as A(B, A)|#
(the spectrum of AB —A restricted to #). The deflating subspace & is uniquely
determined by A(B, A)|# when this subset is disjoint from the rest of A(B, A) (¥ is then
spanned by the eigenvectors and principal vectors corresponding to the spectrum
A(B, A)|#). All this also holds for the real case. For the case B = I, the definition (7) of a
deflating subspace reduces to the definition of an incvariant subspace Z of A, since
dim (¥ + AZ)=dim Z is equivalent to AZ < Z. Notice also that in the SEP Q is equal
to Z in (8), (9).

It follows now immediately from (9) that the Z-matrix in the Schur decomposition
(3) yields orthonormal bases for deflating subspaces of dimension 1 to n — 1, since the
right-hand side of (3) has a block partitioning of the type (9) for /=1, --,n —1. This
also holds for the “‘real’” Schur decomposition (5) for those / that are conformable with
the block partitioning in (5), namely

(10) I=Y d fori=1, - k-1.
i=1

In this paper we consider the computation of a deflating subspace Z with prescribed
spectrum A(B, A)|lg ={uy, - - -, w;}. From the above it follows that the / first columns of
Z in (3) form an orthonormal basis for such a space Z if and only if the sets
{A;=du/bili=1,-++,Iyand {w:li =1, - -, [} are equal except for the ordering of their
elements. In the real case, this also holds for the matrix Z in (5) when / satisfies (10). The
complex elements in {&;}i = 1, - - -, [} must therefore appear in conjugate pairs.

The problem thus reduces to obtaining decompositions of the type (3) and (5) but
with prescribed ordering of the eigenvalues occurring on the diagonal. In the next
section we show how to solve this problem by deriving a method to interchange the
order of the eigenvalues in the decompositions (3) and (5), which were previously
obtained by the QZ-algorithm. The method is proved to be numerically stable. In § 3 we
apply this new tool to derive new methods for solving Riccati equations arising in linear
system theory. In these methods, deflating subspaces with specified spectrum (namely,
all the eigenvalues inside the unit circle or all the eigenvalues in the left half-plane) have
to be computed. In § 4 we give some numerical examples.

2. Reordering. It is clear that the 1 x 1 and 2 x 2 diagonal blocks in the decom-
positions (3) and (5) can be reordered in an arbitrary way by using a method to
interchange two consecutive blocks only. This idea was used, e.g., in the SEP to obtain
standard Schur forms with an arbitrary ordering of the eigenvalues [8],[17], [21]. The
method described hereafter can be viewed as a stable generalization of it to the GEP.
(An unstable generalization was attempted in [15].) We thus want to find unitary

transformations Q and Z such that
A“ Alz a All Alz
*A = *[—_—] A= [_*,_‘_\] s
(11a) Q*AZ =Q 0 ™ V4 0 »

By | Bz + [Bu| Bi2] .
oz-afegee -4
(11b) Q*B Q 0 | B 01 B,
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where A(Bll, A“) = A(ézz, Azz) and A(Bzg, Azz) = A(éu, /in), and where the
dimensions d, and d, are either 1 or 2.

Moreover, we want the transformations Q and Z to be numerically stable. In order
to prove this, we use a standard error analysis [23] of (possibly complex) transforma-
tions of the type

(12a) arv=a*"]-[7]
Y2 0
where G is the (possibly complex) Givens transformation
(12b) G=[C —f], ccHsi=1,
L s ¢

constructed to annihilate y,. Let ¢, § (defining G)and 7, be the computed versionsof ¢, §
and §,, respectively, and let ¢ be the machine precision of the computer; then a
backward error analysis yields (for a standard construction of such transformations)

sy Gryve)=[7]. lea=6-ella

Here we assume that the 0 element is not computed but put equal to zero. When
performing the transformation G*z = 7 for an arbitrary vector z, we have, similarly,

. 7
(14) Grerer=|3]  llekz6-elila
2
In the sequel %; denotes the class of matrices representing Givens transformations
between columns or rows ; and j. We prove that, by using transformations in this class
for the reduction (11), the backward error can be bounded with respect to

(15) A =max {|Al,, |Bl.}.

Case 1. d; =d,=1. This may occur in both decompositions (3) and (5). We thus
assume that the matrices can be complex. We have the following configuration:

(162) Q*AZ=O*[a“ a12]2=[au aAlZ] A
0 ass 0 az;
bii by bu bis
16b *BZ = *[ ]z:[ .-]=§.
(16b) Q Q 0 by 0 b

We can assume without loss of generality that |2, = ]a.,] (if this is not the case the role
of A and B should be interchanged). A construction of Q and Z such that the order of
the eigenvalues is interchanged follows then immediately from (8), (9). Indeed, we
have A(b23, as2) = A(B,4, d11) if the first column z, of Z is an eigenvector of AB—A
corresponding to A(b2a, a2;) or
ol
x|,

0

an - (a3:B — b3 A)Z = [

Notice that the last row of H =(a:.B — b5, A) is zero:

n-ly )
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In order to obtain (17), we thus can choose a Z € %, annihilating x, in (18). It follows
from (17) that Bz, and Az, are parallel, and (16) is then obtained by choosing a Q € %;,
annihilating x, in Bzy:

(19) | Q*BZ=O*[x x]=[" x].

X2 X 0 x
The assumption |b,2|/|azsl = |611l/d,\/ = 1 implies that 6, #0, and Q*Az, can then
only be parallel to Q*Bz, if Q*AZ is indeed upper triangular.

We now prove the numerical stability of the method. As in (13), (14), computed
elements are denoted by an upper tilde (). Using the analysis (13) (14) above, it is easy
to prove that allthe e, i =1, - - - , 9 below are of the order of the machine accuracy ¢ of
the computer.

An error analysis of (17), (18) yields

o~ - [0
(20) (ang - bzzA +F)Z = [ for ”F”z = 81"(1223 - bzzA”z,

o
0 0
and of (19) yields

b

512]
P .= e5A,
0 b or |E,ll. = €2A

(21 O*(B +Eb)Z°=[

We prove that there also exists a backward error E, such that
aun do2

(22) é*(A+Ea)z'=[ !
0 aax

] for |E.l> = 3.
An error analysis of Q*AZ using (14) yields
. s [du di -

23) O*A+E)Z = [ A } for |IEL|l» = £4A.

az az
We only have to prove that d;; = £ A in order to obtain (22) by putting 521_qual to zero.
. Let us therefore denote the (2,1) elements of Q*(ay;B —b;,A)Z, Q*BZ and
Q*AZ by n,, n; and n3, respectively. They clearly satisfy the relation
(24) a; n2—bn M=

From (20), (21) and (23) it follows that

(25a) |m| = es{laz| Bl + b2 All},
(25b) In2| S €6,
(25¢) ld21] = |ns| +&7A.

Using (25) and the assumption |b2;| = |a2,] in (24) we obtain
103l = [mallazal/|baal + |n1l/] 622
s =rcA+es{A+A} =54,
(26b) ldo| = (eg+€7)A = e5A.

This shows the importance of the assumption |b2;| 2 |a3,] in order to guarantee the
stability of the algorithm. In case |b2,| <|a2|, Q is constructed to reduce A to triangular
form instead of B, and a similar analysis is then possible.

(26a)
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Casell.d,=2,d,=1. We now have the following configuration (all matrices are
real):
arr a2 43T rdy 42 dis
(27a) QAZ = O'[au ay a»|Z={ 0 dx» 523J =A,
0 0 aszszd L 0 (332 (333
by b2 b13‘ '511 512 513
(27b) O'BZ = O’i 0 bzz b23 ZzZ = 0 bzz b23J =B
0 0 b;;d L 0 0 533

We assume that |b33] = ]as;|. If this is not the case, we can always interchange the role of
A and B by transforming the first two columns of A and the last two columns of Ain
order to annihilate a,; and ds; and to create b, and b3,.
It follows again from (8), (9) that A(bs3, a33) = Al b, d: 1) if the first column z, of Z

is an eigenvector of AB — A corresponding to A{bs3, ass;). Therefore we have (with R
any invertible row transformation):

0

R'(a33B—b33A)Z=[O * ].
0

Notice that the last row of H = (a;38 — b33A) is zero and that we can choose R € 9, to
annihilate the (2, 1) element of H. We then have

X2 X X
R'H=[0 Xy x}.
0 0 O

In order to obtain (28) we thus can choose Z =2,-Z,, with Z,€ %,; and Z,e %,
annihilating x, and x,, respectively. Q is then constructed to have B = Q'BZ in upper
triangular form. We therefore take Q = Q, - Q,, where Q, € %, is chosen to annihilate
the (3, 2) element created by Z, (i.e., Q1 BZ, is upper triangular) and where Q, € 4, is
chosen to annihilate the (2, 1) element created by Z, (i.e.,, Q3Q1BZ,Z, is upper
triangular). B now satisfies (27b). Since |633]/[ass| = |6111/11,/ = 1, we have &y, # 0 and
because of (28), Q'Az, and Q’'Bz, are parallel. This ensures that A=Q'AZ also
satisfies (27a).

We now prove the numerical stability of the method. Using (13), (14) it can be
checked thatallthee, i =1, -+, 4 below are of the order of the machine accuracy . An
error analysis of (28), (29) yields

(28)

(29)

0 x «x
(30) Ii'(a:;;B—b:nA +F)2122=[0 0 x] for HF||2=51||a33B —b33A"2,
0 00

and of the constructed product Q3QBZ,Z, yields
b.ll 512 513

Q0. (B +Eb)ZIZZ=[ 0 b bzs] for [E,ll, = €24A.
0 0 bss

(31)
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We prove that there also exists a backward error E, such that
a.ll a~12 dl}
(32) OEO,I(A +Ea)Z1ZZ=[ 0 a~22 a.zg} for ”Ea”2=E3A.
O 532 d33

An error analysis of Q,Q1AZ,Z, yields

' . an dy di
(33) QéQi(A+Ec)leZ=[521 axn 523} for [|[E.|| = e4A.

dy; diy di

We only have to prove that the elements d;,, { = 2, 3 are e-small, in order to obtain (32)
by putting d;; =0, i =2, 3. This is easily proved using similar reasoning to (24)—(26).
Here again the assumption |b33| Z|ass! is crucial in the proof of backward stability.
Therefore, in the case |b33/ <|as3|, the roles of B and A have to be interchanged.

Case 111. d, =1, d.=2. This case is dual to the previous case and can be reduced
to it by pertransposition (transposition over the antidiagonal).

Case IV.d,=d;=2. A detailed configuration of (11) is then

ay a;; apz Ay Fﬁn dy; di3 dis
(34a) Q'AZ =0 a1 Az Q3 A4y, 7= Gy dap dys dos =A
0 0 azs Qzy dss dss ’
. 0 0 ass a44j L 0 0 dsy das
bin bz bz bid] F‘n 512 513 514
' 0 b2 bax b 0 522 523 524 A
34b '‘BZ=0Q' Z= 2 =B,
( ) Q Q 0 0 b33 bas 0 0 b33 bis
0 0 0 bu| O 0 0 bu

where all the elements are real and B and B are invertible. In order to have
A(B33, Azy) = A(él - A 11) the first two columns of Z must span the deflating subspace
of AB — A corresponding to A(Bj;, Aj;) or, equivalently, the two (complex) eigen-
vectors corresponding to the eigenvalues A, and A; of A(Bj2, Az). Such a Z also
satisfies

00
(35) (Al -B'A)YA,I-B'A)Z = g g x|,
0 0

and could be constructed through (35). Unfortunately, this approach is not recom-
mended from a numerical point of view because of the occurrence of B~' and of the
product (AT —B_IA)(A_J —B'lA). An error analysis of (35) would yield a negligible
relative error for this product but not for A and B individually.

A different approach is therefore recommended here, namely the double shift
Q2Z-step. Implicitly, this is a double shift QR-step working on the matrix AB ', butthe
actual implementation avoids the construction of AB ' and works instead directly on B
and A [13]. For our 4 x 4 pencil (34) the scheme can be implemented economically with
Givens rotations:

o Construct @, € 4,; and Q; € ¥, according to the ‘‘double shift technique”, and
construct Z,€ %3 and Z,e %, such that Q3Q1BZ,Z, is upper triangular.
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Q2Q1AZ,Z, and Q2Q\BZ,Z, then look like

x x|fx x x «x

(36) x x x x{{0 x x «x
X4 x x{{0 0 x «x

x3 x5 x x{/0 0 0 «x

o Construct Qs € %4, Qi€ %5 and Qs € %14, annihilating x3, x4 and xs, respec-
tively in (36). Construct Zy€ %s4, Zs€ %53 and Zse %54 such that Q'BZ, with Q =
Q:Q:0;Q:Qs and Z=2,72,Z,Z,Z5, is upper triangular. Q'AZ is now upper
Hessenberg and Q'BZ upper triangular. This form is clearly maintained by a QZ-step.
In order to obtain (34) we want moreover that d;, =0 and A(ézz, Az‘z) =A(Bi1, AL
According to the properties of the double shift method [13], this will be the case when
{A1, A1} = A(B11, A1y) is chosen to determine the double shift (i.e., Q; and Q,), and if in
addition a3, # 0. Since in (34) the latter is not satisfied, we first perform a QZ -step with
random shift such that a;; # 0, and we then perform a second QZ -step with double shift
based on {A,, A,}.

The numerical properties of the QZ -step are discussed in [13]. The algorithm is
backward stable, but under the presence of rounding errors the element d5; may not be
negligible. Several QZ -steps with double shift {A|, A} are then performed, and @3, is
shown to converge very fasttozero[13]. Only in pathological cases is more than one step
required to obtain |[ds.] = e A.

Operation count. The combination of a pair of left and right Givens trans-
formations Q,, Z,, requires approximately 12n operations (1 operation = 1 addition + 1
multiplication). The number of operations for the different cases is then (for Case IV we
assume only 2 QZ -steps are needed):

Case I: 12n.

Case Il and III: 32n (average).

Case IV: 120n.

Since Cases II and III correspond to two interchanges of eigenvalues and Case IV to
four interchanges, we finally have an average of 20n operations for interchanging two
adjacent eigenvalues.

When a deflating subspace with a specified spectrum {u;,- -, u;} has to be
computed and a QZ -decomposition is already available, then at most { - (n —{)=<n /4
such interchanges are required (namely when all i, i =1, - - -, [ are in the bottom right
corner). A reasonable estimate is thus Sn° operations for computing a specific deflating
subspace from a QZ -decomposition, while the latter requires approximately 25n°
operations. In order to obtain all possible orderings of eigenvalues in the QZ de-
composition, and thus all possible deflating subspaces (if no eigenvalues are repeated),
n!such interchanges are required [9]. That is to be expected since it is a combinatorial
problem.

3. Riccati equations. In this section we apply the above ideas to the solution of
certain Riccati equations arising in linear system theory. We first briefly restate the four
problems we will focus on, and we refer to the literature for a more complete discussion.
We will everywhere assume that the matrices involved are real, since this is usually
the case in practice. Extensions to the complex case are trivial.

Problem 1. Optimal control: continuous time case [11][12][24]. Given the stabil-
izable system

(37 x(t)= Annx () + B,nu(t),
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find the control u(¢) = —Kx(¢) minimizing the functional

ac

(38) J= j L' (0) Qo (1) + (1) Ryt (1)] dl
Q

where (A, Q)isdetectable, Q =Z0and R =0. When R is invertible this problem reduces
to the computation of the unique nonnegative definite solution P of the algebraic
Riccati equation

(39) Q+A'P+PA-PBR'B'P=0.

K is then equal to R "'B'P. Equivalently [12], one can compute the invariant subspace
Z. of the matrix

A —BR"B']
-0 —-A’ ’
where A(H)|s, contains all the stable eigenvalues (i.e., Re (A)<0) of H. If [f(;] is a basis
for this subspace, then P = X>X'.

Problem 11. Optimal control problem: discrete time case [5][7](15]. Given the
stabilizable system

(40) | H- [

(41) Xis1=Fonxi + Gomitiy

find the control ¥; = — Kx, minimizing the functional

(42) j: Z [x;Ormxi‘Full'Rmrnui]y
i=0

where (F, Q) is detectable, Q=0 and R 20.

When R is invertible [7], this problem can again be converted to the computation
of the unique nonnegative definite solution P of the (discrete time) algebraic Riccati
equation

(43) P=FPF-F'PG(R+G'PG)"'G'PF +Q.

K is then equal to (R + G’PG) ™' G'P. This is also equivalent to solving for the *‘stable”
deflating subspace Z, of the pencil [S][15]
A[I GR“G’] _[ F 0]

0 F' -Q Ir
where this time the stable eigenvalues are those inside the unit circle. If [§;] is a basis for
%.,then P= X, X"

Problem 111. Spectral factorization: continuous time case [2]. Given an mxm

“‘positive real” rational matrix Z (s), i.e.,

(44)

(45) Z(s) analytic and Z(s)+Z*(s)Z0 inRe(s)>0,

find a “‘spectral factorization”
(46) Z(s)+Z'(-s)=R(s) R'(-s),
where R(s) has only stable poles and zeros (i.e., Re (s) <0).

When Z(s) is given by a minimal realization C(s[, —A) 'B+D and (D +D’) is
invertible, then this problem reduces to the computation of the unique positive definite
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solution of the algebraic Riccati equation 2]
B(D+D)'B+P[A-B(D+D')'CY
+[A-B(D+D) 'CJP+PC'(D+D")'CP=0.

This is again equivalent to the computation of the stable invariant subspace &, of the
matrix

(47)

A-B(D+D)'C B(D+D)'B’
48) H=[A 20 it |
-C'(b+DY ' C -[A-B(D+D')y C]
Problem 1V. Spectral factorization: discrete time case [1][4]. Given an mXxm
“positive real’ discrete time matrix Z(z), i.e.,

(49) Z(z)analytic and Z(z)+Z*(z2)z0 for|z{>1,
find a spectral factorization
(50) Z(2)+Z(z7H)=R(z) R(z7")

where R(z) has only stable poles and zeros (i.e., inside the unit circle). Again, when
Z(z)is given by a minimal realization H(zI, ~F) G +7J and (J +J') is invertible, the
problem can be reduced to the computation of the unique positive definite solution P of
the {discrete time) Riccati equation [4]

D P =FPF'+(G~FPH')(J +J' ~ HPH')"(G'— HPF").

.
In analogy to (43), (44), one can prove that this is equivalent to computing the stable
deflating subspace & of

[1 -GU+J)'G ]_[F—G(J+J’)"H o]
0 F-HU+'G) L-AU+I'H I

-

(52)

This, however, was not found in the literature.

Note that in order to be able to write down the Riccati equations, we need certain
matrices to be invertible. This also holds for the equivalent SEP’s and GEP’s, since they
are derived from the Riccati equations. Yet, if the matrices to be inverted happen to be
badly conditioned, each of these approaches may encounter serious numerical
difficulties when computing these inverses. We now present a way to circumvent this by
an embedding technique. If D is invertible in the pencil

AE-A Bl}s
(53) [/\F-—C D|}m
;.\F,,_J -
then
(54) [1 -BD_‘].[AE—A B]_[A(E—BD"F)—(A—BD"C) 0]
0 I AF-C DI~ AF-C DI

Let U be an orthogonal transformation reducing [5]to [ 3] with D m x m and invertible.
Partition U conformably with (53); then we have

[Un U _[AE—A B _[AE—A 0]
] 7.7 5l

5
(53) Uy Uzl LAF-C D



EIGENVALUE APPROACH FOR RICCATI EQUATIONS 131

Since the rows of [ U1,{U,2] and [I| — BD ~']both are a basis for the left null space of [ 5],
they are related by an invertible row transformation which clearly must be U.;:

(56) Unlll-BD 1= [Uy|Us.]
From (54) and (55) it then follows that
(57) Un[AE-BD'F)—~(A-BD 'C)]=AE - A.

Therefore the deflating subspaces of AE — A and of A(E —BD 'F)—(A—BD~'C) are
the same. According to (7), deflating subspaces of a regular pencil are indeed not
affected by an invertible row transformation on the pencil. This technique was also
applied in [22] (with E =1 and F =0) for developing a stable way to compute the
deflating subspaces of Al — (A —~ BD ~'C) or, in other words, the invariant subspaces of
A ~BD'C. This can now be applied to the above four problems. In each of them the
pencil (53) takes the form (we always have p =2n)

Problem I:
I 0 0 A 0 B
(58) AMO T 0]—[—0 -A" 0.
L0 0 O 0 B R
Problem II:
I 0 0 F 0 -G-
(59) AlO F' Ojl—[—Q I 0 1.
|0 G O 0 0 R
Problem III:
I 0 0 A 0 B
(60) A[O I O}—[O -A' C’ j,
0 0 0 C -B' D+D’
Problem IV:
I 0 0 F 0 -G .
61) AlO F' 0}—[0 I -H :I
0 G O H 0 —-J+J1)

For each of these pencils a 2n X 2n pencil AE — A can thus be derived via (55), and its
stable deflating subspace &; is the one required in the above four problems. This
procedure does not involve the inversion of a possibly ill-conditioned matrix. Only
orthogonal transformations are used as well in the construction of AE - A as in the
computation of the deflating subspace &,. This guarantees the numerical stability of the
method. Unfortunately this is not completely satisfactory yet, since the performed
errors do not necessarily respect the structure of the pencils (58)—(61). An (unsuccess-
ful) attempt to restrict the orthogonal transformations to those respecting the structure
of the matrices they act upon can be found in the literature for Problems [ and III, butin
the formulation (40) and (48), respectively [14].

An important remark here is that in the new formulation (58)-(61) no inverses
occur any more, and that perhaps this new formulation also gives the correct answer
when these inverses do not exist. This would follow from limiting arguments if both the
exact solution of the problem and the computed solution from the GEP’s (58)-(61) are
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continuous. This is true for the eigenvalue problem if the spectrum A(E, A)iI, is
separated from the rest of the spectrum AE-A [20], and this holds under some weak
assumptions in each problem (stabilizability, detectability, positive realness). The
continuity of the solution R{s) of Problem IIl is discussed in [ 1, p. 243]. It also holds for
the more general "'minimal factorization problem™ [3] for which the above embedding
technique was originally derived [22]. It is therefore reasonable to assume that it also
holds for the other three problems. This is still under current investigation.

During the elaboration of this research, the author’s attention was drawn to the
work of A. Emami-Naeini and G. Franklin [6]. Via an independent approach they
arrive at the same form (59,. No proof is provided, though, that the method also works
for singular R. The authors of [6] are presently working on that problem.

4. Numerical examples. In this section we give two examples illustrating the
reordering of eigenvalues in order to compute a certain deflating subspace with
prescribed spectrum. We use a PDP 11-34 computer with double precision. The
machine precision is then £ = 1.5 10", Two routines are used for the reordering of the
Schur form [25]. EXCHQZ exchanges two adjacent blocks in a real Schur form and
ORDER uses this routine to reorder all the eigenvalues inside the unit circle to the top
or bottom of the real Schur form, depending on the value of a parameter IFIRST. This
last routine is easily adapted for any region which is symmetric with respect to the real
axis. This condition is necessary because the pencils considered are real and complex
conjugate eigenvalues need thus to stay together in the real Schur form.

Example 1.
0o 0o 0 o o o 1] [t'o 0o 0o 0 0 0 0
—O_T:—.S".E—E 4 6 0 0 0 B—E—f_f)—io 0 0 0 0
0 :_‘_2,_;3_L_0__0 0 5 0 o:_<_)__1_;_<~)-o 0 0 0
| | | t
S Bt
0o 0 0 o 0:' 4 2.5’E0 0 0 0 O_OE_l__(;I:O
(62) 0 0 0 0 0/-10 4,0 0 000 0,0 1,0
0 0 0 0 0"0_“51:-2: 0 0 00 0 0 05_14

The first four eigenvalues {0,.3—~j.2, .3+/.2, .5} are outside the unit circle. The last
four ones {c0,4—j5,4+;5,2} are outside the unit circle. Calling ORDER with
IFIRST = 1 interchanges the order of these sets of eigenvalues. The first four columns of
the transformation Z required for this then span the unstable subspace %, of A —AB;

see Table 1.
When again calling ORDER but now with IFIRST = -1, we retrieve the ordering

of A —AB and the four first columns of the updated Z look like Table 2.

This is & -close to the real stable deflating subspace Z, of A — AB, which is spanned
by [&]. This result is to be expected because of the numerical stability of our method and
because the space &, of A —AB is well-conditioned. When the gap between the spectra
A(B, A)l#, and A(B, A)|g, is large, both spaces ¥, and %, are indeed well-conditioned
(see [20]).

Example 11. Consider Problem II with

o P o) o0 9 #em
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00  POOOOOOVOO0OO0000 D 00 P0O000O000000000000°0 00 P0O0000O0000000000°0 00  PO000000000000000°0
00  POOLGOOOO00OOO000 0 SI— PROGYSYOLSTILLSEI 0~ L1- PPIGESOHIS69PPE9PL0— 00  POO0O0000000000000°0
91— PPYIITEBIROS086850— S1— PYSE619L68L06EYST O 91— PPROYESSBOPEROPOL'O 00  POOO0O0OOO000000000°0
91— PLIOOLISSEEESTIOPY O 91— PPBOYESSEOPEROYOL 0 L1- P968IBOLILG6ISHLIE0— 00  POOOOOOOO00000000°0
00 P66666666666666660 SI= PIYOLO9ELESLOPSITO L1- P60OOLLOYYEYOYRILLTO 00  P0O0O00000000000000°0
Sl— PIEBIILLIYPIEYP6IITO- 00 PIY91LOTOY8BITRIG() 00 PLETSLOLIIROT66VC0—- 00 POCO00G0O000000000°0
9l—  POSLEILSCTOHLIYOTYLO 00 PLETSLOLZIROTO6YT 0~ 00  PTPILLOTO9889TRIGO— 00  POOO0OOO00O0000000°0
00 P0OOO0CO00000000000 0 00 P0O0O00000000000000°0 00 P0O0000000000000000 10 P0O0O0O0O0OOOOO00000T O
T d14av ]
00 P6S16666061LTYP6R°0 00  POOOOOO0OO0000000 0 00  PO00O00000000000000 00 P0O000G000000000000°0
00  P0O0O00000000000000°0 00 POYLIYRITYYITORELO 00  PYrel1vR6¥0198ISL60— 00 PO0O00000000000000°0
00  POOCOOOO0OO0O00000000 00 PO6YSOYLEGYIB0T96'0— 00  P600OLOBSLEPELSRYI'0O— 00 P0O000000000000000°0
00 P0OOO00O0000000000°0 00 POOO0OOO000000000°0 00 POO0O0OO00OO0O0000000 0 10 PO0O00000000000001°0
00 POOOOOOOOOON0DONO'D 00 POLBOSLOSTIESTO661'0— 00  PTSI0BLITISB66T01°0 00 P0O0O000000GO0000000
00 P0O000000000000000°0 00 PLITTR6LOYIEYSETI0— 10—  PSTLOTSSLEQD6LB8L9'0— 00  POOOOOOO0O0O0O000 0
00 POO0O0O0000OVDOO0OO0O 0  TO—  PREIRIIE096999L 50 00  PROYOTLIORILIVLOLO 00  P0O0O0OOOO000BO0O00 D
00  POLSO666YSOSEITLYY' 0 00 POO000OO0O0000000 0 00 PO0O00000000000000°0 00  PO000000000000000°0

| d1dv ]
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The pencil (59) then looks like

1 0 0 0 0 2 -1 0 0 -1
0 1 0 0 O 1 6 0 O 0
(64) A 10 O 21 0]-140 0 1 0 0
0 0 -1 0 O 0 -1 0 1 0
0 0 1 0 0 0 0 0 O 0

An orthogonal row transformation can then be constructed in order to construct a
defiated pencil AE — A following (55):

ﬂ 01 0 0]t 00O

: 00 -1 0/l0o -1 01

(63) Moo 21/ Jo 01 of
00 10/{0 000

L -

The QZ-algorithm permutes the two last columns of (65) to obtain the real Schur form

0 1 0 o] [t 0 O O]
0 00 -1{1l0 -1 10
6 A - ,
(66) 001 2//0 001

000 1]l0 0 0 O

which displays the eigenvalues {x, , 0, 0}. In order to obtain the stable subspace %, of
AE - A we reorder these eigenvalues and obtain, as a basis for Z,,

0 -J2/2
X, -V2/2 0
7 = O(e).
(67) [Xz] 0 V2,2 +Ole)
-v2/2 0

We then find, up to machine accuracy, the answer P = I. One can check that this is the
correct answer to Problem II by using another method [7]. This example illustrates that
the embedding technique gives a correct result even when R is singular, Moreover the
problem is perfectly well-conditioned as well for the construction of AE — A, as for the
computation of Z, and P.

We finally want to draw attention to the fact that the number of operations
required for the construction of AE — A from the pencils (58)-(61) is comparable to the
amount of work required to construct the pencilis (40}, (44}, (48), (52). From thenon, the
new approach takes the same amount of computations for Problems [l and IV and only
slightly more (less than the double) for Problems I and III. The stability of the method
and its better conditioning therefore make this new approach particularly attractive.

Acknowledgments. I want to thank A. Emami-Naeini, G. Franklin and A. Laub
for drawing my attention to this problem and for several helpful discussions. A.
Emami-Naeini also suggested Example II.
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ERRATUM: A GENERALIZED EIGENVALUE APPROACH
FOR SOLVING RICCATI EQUATIONS*

P. VAN DOOREN+

In the above paper, some errors appeared in the treatment of the spectral
factorization problems for both the continuous-time and the discrete-time case.

The corrections to be performed are the following. Formulas (46), (47), (50) and
(51) have to be replaced by their ‘‘dual” forms which appear below:

(46) : Z(s)+Z'(-s)=R'(-s) R(s),

) C'(D+D")'C+P[A-B(D+D")'C]
+[A-B(D+D")'CYP+PB(D+D")'B'P=0,

(50) Z(z2)+Z'(z")=R'(z"") - R(2),

(51) P=F'PF +(H'-F'PG)J +J' - G'PG)"\(H - G'PF).

Acknowledgment. The author is grateful to Bert van Gent who pointed out these
errors.
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i Philips Research Laboratory, B-1170 Brussels, Belgium.
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