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FACTORIZATION OF A RATIONAL MATRIX
THE SINGULAR CASE. '

Paul Van Dooren

We study the problem of minimal factorization of an ar-
bitrary rational matrix R(A), i.e. where R(A) is not necessarily
square or invertible. Following the definition of minimality
used here, we show that the problem can be solved via a generali-
zed eigenvalue problem which will be singular when R{(A) is sin-
gular. The concept of invariant subspace, which has been used in
the solution of the minimal factorization problem for regular
matrices, is now replaced by a reducing subspace, a recently in-
troduced concept which is a logical extension of invariant and
deflating subspaces to the singular pencil case.

INTRODUCTION

The minimal factorization problem of a general mxn ra-
tional matrix R(X) has circuit theory as one of its origin [5]
[730383, but can also be encountered in areas such as control
theory [361, filtering [2], etc... The factorization problem
S consists of finding two rational matrices R1(A) and RZ(A), res-

pectively of dimensions mxr and rxn, such that
ROV = Ry(X) . Ry(R) (0.1)

In circuit theory, this corresponds to breaking up a circuit with
n inputs and m outputs into a cascade of two circuits with respec-
tively r inputs and m outputs, and n inputs and r outputs

—— e e
moo: R(A) : n
(0.2)
provm— | - Em—
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Recently [41, a complete description has beern obtained of the
solution of the minimal factorization problerm for a regular ra-
tional matrix (i.e. m=n=r and det L[R(+)]/ ;. The condition of
minimality of the factorization (0.1) is, in the regular case,

simply that the McMillan degrees ﬁ1 and 12 of the two factors

add up to &, the McMillan degree of R{:)

S iy = (0.3)
(In general, we always have that Syt o L wnaoh justifies
the term "minimal”.) This condition guarantees tnat all the struc-
tural elements (i.e. poles, zeros and minimal indices) of R{)
are retrieved in the two factors R1(&) and R.7-,. The approach

used in 4] is geometric and based on a minimal .tate-space rea-

Tization of R(»)
R(M) = C(31.- AT B« © (0.4)

The poles and zeros of R(x) are then described b/ the eigenva-

lues of A and A~ 2 A—BD_iC, respectively, anc tn-+ conditions for
factorizability are phrased in terms of the i1nva-:ant subspaces
of the two operators A and A". Different types o extensions ha-

ve also been obtained in [31L610311 and were bas=d on the same

principles.

In order to extend these results t¢ tie singular case
(i.e. R{4) not necessarily square or invertible:, we first look
at the condition of minimality for a factorizat:.n of the type
(0.1) where R(x) is mxn, R1(?) is m@r and B0 1w ren. We show
that the structural elements of R(:)- whick are “uw its poles,
zeros and left and right minimal indices since = is singular -
are distributed over the two factors if r eguals “he normal rank

r, of R(%) or, in other words, if r is also minimal. Indeed, in
general one has for factorization of the type {0 1, that r = g

If the condition

r = r (0.5)
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is not added to the degree condition (0.3), then some of the
structural properties of R(}) may be Tost in the factorization
and the factorization is not considered anymore to be "minimal".
This is illustrated in the next section.

Secondly, the operator AY s replaced by a pencil AE-A in the
singular case. Indeed, R()) may now have a defectuous set of
finite zeros, which are then replaced by infinite zeros and/or
left and right minimal indices [33]1 . The standard eigenvalue
problem (SEP) A" has thus to be replaced by a generalized eigen-
value problem (GEP) ZE-A. The recently introduced concept of
reducing subspaces is recalled in Section 3.

The factorization problem is then solved in terms of the SEP
21-A - describing the poles of R(X) - and the GEP XE-A - descri-
bing the zeros of R(XA, - using the geometric ideas of [4]. We al-
so extend these results to the cascade factorization problem and
briefly state some related problems in the area of linear system
theory.

The following notation will be used throughout the pa-
per. We use A* for the conjugate transpose and AT for the trans-
pose of a matrix A. A complex (real) square matrix A is called
unitary (orthogonal) when AA-1 (ATA:I). When no explicit dis-
tinction is made between the complex and the real case, we use
the term unitary and the notation A* for the real case as well.
Script is used for vectorspaces. H  will denote the spaces ¢"
or R", depending on the context of the problem. AX is the image
of X under A ; Im A and Kex A are the image and kernel of A,
repectively, X+Y and X ® ¥ are the sum and the direct sum, res-
pectively, of the spaces X and VY. When the columns of a matrix
X form a basis for the space X, this is denoted X = <X>. The
space spanned by the null vector only is denoted by {0}.

1. Eigenstructure of a rational matrix

Here we remind in a few words some results about the
structural elements of rational matrices and their state-space
realizations and we discuss the conditions of minimality of a

factorization in terms of these elements.
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DEFINITION 1.1

A rational matrix R(X) is called #wvguiar at o if the
constant matrix R(A) is square, bounded and invertible at a. o

From the work of McMillan [161 , it follows that for
an arbitrary mxn rational matrix R(Xx), there exist decomposi-

tions of the type

O —
(h-a) 1
Ma(k) R{X) Na(A) = \\\\\\\ ) Cr,n—r (1.1)
(h=y) r
0 0
m-r,r m-r,n-r
where Md(k) and Nu(x) are regular at o and the {-.(x) j{i=1,...,r}
form a non-decreasing seguence, and
r 94 -
(1/%)
MO0 RODN () - TSN e (1.2)
(179 "
l Opn-r,r Coorn-r

where M (%) and N_(A) are regular at infinity and the {o, (=) |
i=1,...,r} form a non-decreasing sequence. The right hand sides
of these decomposition are unigue and yield the following defini-

tion.

DEFINITION 1.2 [32]

The indices oj(a) at a (finite or infinite) point a,
defined as in (1.1), (1.2), are called the structural indices
of R(x) at this point «. a

At almost all points o these indices are trivially
zero [161. This shows that R(a) has rank r almost everywhere,
which is therefore called the noamal rank of R(:). The points
a with nontrivial indices are the poles (when -.(a) < 0) and
zenos (when Gi(a) > 0) of R(x). We then have
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DEFINITION 1.3 [161[201]
The polar degree :p(u) and zero degree \Z(a) at a point

a is defined as

When the normal rank r is smaller than m and/or n, one

defines the vectorspaces

=
—
X
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called the right and left nullspaces, respectively, of the ra-
tional matrix R(x). These are vectorspaces over the field of ra-

tional functions in % of dimension

nuHr o d1m.Nr(R(k)):n—r, null . d'm.wg(R(k))=m—r

{

respectively, when R(X) is a mxn rational matr:x of normal rank

r [91. These dimensions are also called the rir3ht and left nulli-
ty of R(X), respectively, and the matrix R{ ) s said to be right
and left invertible, respectively, when the corresponding nulli-

ty if zero. Moreover, it is always possible for a vectorspace

S over the field of rational functions in -, *to choose a poly-

nomial basis

{p1(x) s e pk( ) (1.6)

Let us define the index d, of a polynomial vector pj(k) as the
maximum polynomial degree in its components, then (1.6) is called
a mindmad poelynomial basis for S if the sum of the indices di

is minimal over all polynomial bases for S. These indices are
invariant for a given space S, except for their ordering [9].
When corresponding to the spaces Nr(R) and N((R), they are called
the night and €e4t mindmat indices of R{ ). This now leads to the
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following

DEFINITION 1.4
The right and left null orders of R(:) are defined as

the sums of the right and left minimal indices, respectively

§ (R)Y = ¥ r. S.(RY = Vo (1.7)
% 1 £ . 1 o
Under edlgenstructure of a rational matrix we now under-
stand all the structural elements described above, i.e. the polax
and zeto structune and the adight and {edqt nilt space sthucture.
Let now the rational matrix R(-) be bounded at infinity,

then it can be realized by a quadruple {A,B,C,D

R(A) = C(x 1.-A)"" B+D (1.8)

Note that R(x) in (1.8) has no poles at infinity since R(=) is
bounded at infinity. This can always be obtained by a bilinear
transformation on X, which does not affect factcorizability. The
quadruple {A,B,C,D} may be chosen of the same field H as the
coefficients of R(x). In the sequel we implicitly assume H to be
the field of complex numbers € and we mention the case R only
when it needs a special treatment. Using the above definitions

of poles, zeros and minimal indices of a rational matrix, we have
the following theorem 12102010331 relating the structure of R(X)
to that of the pencils

v -A ! B
N A L A [
S () & DAaL-AT; s () 4 l (1.9)
-C D
THEOREM 1.1 [331]
Let the quadaupfe {A,B,C,D} be a wmaitenal realdzation
04 the national mataix R(x) and Let Sp(l) and Sz(a) be as de-
f{ined above Ln  (1.9). Then
i) the poles {pi} of R(X) ane the zewos 4 Sp(f) and 30

arne thean nontrivaal Lndices.
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ii)  the zexos {Zi} of R(XN) ane the zenvs of Sz(k) and s¢ anre

thein nontradvial Aindices.

111) the Left minimal indices {Ki | 1=1,...,nu11(} and xight
minimal indices {ri | i=1, . .,null s o R(») and SZ(A) are
the same [m|

This relation between the structural elements of R(Ai)
and of the pencils sp(x) and S_(X) reducesthe eigenstructure pro-
blem of a rational matrix to the problem of retrieving the Krone-
cker structure of two pencils, i.e. to two eigenvalue problems.
In Section 4 it 1is shown how to exploit this for providing a geo-
metrical solution to the factorization problem. From the above
relation one also derives the following result

THEOREM 1.2.

Let dp(.), 62(.) denote the tcetat potatr and zero de-
ghees, hespectlvely, o4 a rational matrnix R(})), then the McMLL-

man degree &(.) 04 a ratilonal matrix equals

S(R) = 6, (R) = 6, (R) + 5, (R} + 5 (R) (1.10)

PROOF. See [331]. =

The following conditions are then easily shown to be
sufficient for the preservation of the eigenstructure in a fac-
torization.

THEOREM 1.3.

The edgenstructure o4 the rational matwax R(X) L4 ne-
trnieved in the factons R1(A) and R,(X) o4 the 4actonization
(0.7) 44

and

the noamal rank of R(X).

PROOF. From (1.10)(1.11) it follows that
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§ (R) =6 (R1) + F (RZ) (1.13)

This implies that none of the poles of R1 and R2 are cancelled
with zerosin the product (0.1). Therefore the poles of R()) are
invariably retrieved in the two factors Ry and R.. From (1.12)
it follows that r is also the normal rank of R1 and R2 and thus
that R1 is left invertible and R2 right invertible. It then
immediately follows that

The left minimal indices of R1 are thus those of R and the right
minimal indices of R, are those of R, since these indices are
completely characterized by the corresponding null spaces [9].
Finally, from (1.10)(1.14) it now follows that

and, as in the case of the poles, this also guarantees that the
zeros of R(x) are invariable retrieved in the two factors. =

Notice that the above conditions are not necessary as
illustrated by the following counter example {condition (1.12)
is not satisfied)

2

1/ 1 1/x 0
= . (1.16)
1732 0 1/ 173
Here all poles are at A=0 and zeros at ) = -, The polar and ze-
- - { = = Vo= . =
ro degrees are 6p(R) = 6Z(R) = 2, 6p\R1) = JZ(R1; =1, SD(RZ)

SZ(RZ) =1. R1(A) is a regular matrix, but both R(>) and RZ(A)
have a constant left null space of dimension 1, indicating a sin-

gle left minimal index equal to zero
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61(R) = 31(R2) = 0. The eigenstructure of R(* ) is thus indeed
retrieved in its two factors, although only condition (1.11) is
fulfilled. Both conditions {1.11) and (1.12) are satisfied in

the factorization

1728

1712

where again poles and zeros are distributed in the same manner
over the two factors, but now RZ(A) is regular and 51(R) = £1(R1)
= 0. In the sequel such factorizations where both conditions
(LAY aad (1 .12) ave satisfied, will be termed wmondimad .

REMARK 1.1

The term "preserved" ought to be clarified here : the
left and right minimal indices of R()) are indeed invariably re-
trieved in R1(X) and RZ(X), respectively, while the poles and
zeros of R(x) are distributed over the two factors with preser-
vation of their total multiplicity, but not necessarily of their
structural indices as described in definition 1.2 (see the above

example). o

2. Kronecker structure and zero pencil

In this section we relate Theorem 1.1 to the Kronecker
structure of the pencil SZ(A) and define the "zero pencil" of a
realization, which will play a fundamental role in the sequel.
Under Kronecker structure of a m n pencil AS-T with
entries in H we understand here all the invariants of AS-T under
equivalence transformations (i.e. invertible column and row trans-
formations). The Kronecker structure of -S-T is retrieved in its
Kronecker canonical form [101]
; S et T T '
MAS-T)P=2S -T = diagil, ,...ol, » L s.u.nl  » LI-AN,AI-J}
c cC ¢ { r
1 S 1 t (2.1)

where 1) L, is the (k+1)xk bidiagonal penc1]
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and 11) N is nilpotent and both N and J are in Jordan canonical
form. The Kronecker structure of the pencil -5-T 15 then given by:
d.
i) the 4indite elementary diviscas (>—ui) J of 5-T, reflected
by the Jordan blocks of size dj at %y in J.
d.
1) the (nfinite elementany divisoxs {p) o of -5-T, reflected by

the Jordan blocks of size dj at 0 in N.
iii)the Left and night Kronecken indices - (y,.
T

{r1,...,rt} of xS-T , reflected by the blouks L; and Lr R
i J

., - and
g

respectively.

The Kronecker structure of a pencil AS-T and its structural ele-
ments as defined in section 1 are closely related [321033] as
shown below.

THEOREM 2.1 q.

i) Each finite elementary divisct -- ) Jog 2S-T
connesponds exactly to a {(positive] Lndex dj oy

i1) Each 4injinite elementary devescr (u) 3 of xS-T
cornesponds exactly to a (non-negative] Ladex (d_-1) at =.

iii) The €edt and night Kronecker Gideces cf AS-T

are exactly Lts Left and rndght mindmal (ndeces.

PROOF. See [3210331]. 0

The difference between efementary dcvetcees (i.e. the
multiplicity of a generafized edlgenvafue as defired by the Kro-
necker structure) and structural indices (i.e. the multiplicity
of a zexo as defined in Section 1) lies thus only in the point
at infinity and they only differ by 1. Let now U be any inverti-

ble transformation compressing the rows of the last block column
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of the system matrix SZ(A) of a rational matrix R(\)

where U has linearly independent rows. Then tne following holds,

THEOREM 2.2.
The Kronecker Atructure ¢4 the pencdd VE-A and SZ(A>
are the same, except forn the {nfini{te etementany divischrs and

wight Krnonecken indices, which are neduced bu 1 <n E-A.

PROOF See [241[29] o

THEOREM 2.3.

The genernafdized edgenvalues ¢4 the pencdl AE-A ane the
zeros o4 R(Y) , multipticities counted. Mone specifically, one

has that each Jordan chadin o4 Length d at a cevtadin genernalized
edLgenvatue o4 AE-A cornnesponds to a structfwrat «ndex d at that

zerno o4 R(A).

PROOF. Follows readily from Theorems 1.1, 2.1 and 2.2.
Indeed, for the finite zeros, the (positive) structural indices
of R(r) and SZ(X) are the same (Theorem 1.1), and are also equal
to the Jordan chain Tengths of SZ(A) (Theorem 2.1) and of AE-A
(Theorem 2.2). For the infinite zeros, the positive structural
indices of R(A) and Sz(k) are still the same (Theorem 1.1}, but
the corresponding Jordan chains of SZ(~) are 1 larger (Theorem
2.1) while those of ME-A are then again equal (Theorem 2.2) o

Notice that AE-A is not uniquely defined since nei-
ther are the coordinate system for the realization {A,B,C,D} or
the transformation U used in (2.3). For a given realization
{A,B,C,D} , AE-A only depends on the choice of transformation U

since

\E-A = Uy .S, 00 [1} (2.4)
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where U1 is the top block row of U and spans the left null space

of the compound matrix [B} . Because of the Tatter U, is unique-
D

ly defined up to an invertible left transformat-:on.
REMARK 2.1
For the case D invertible, a specific choice of Ul’

1

namely [I., -BD™ 1 yields the pencil

A= A = Xl .-(A-BD” 'C) (2.5)

for hé—A. This is a familiar result which was also used to treat
the factorization problem in the regular case [3]1. In practice,
though, one would prefer to use a unitary transformation U in
{2.3) because of the advantageous numerical properties inherited
from such a choice (see also Remark 3.1). The rows of U1 would
then be an orthonormal basis for the left nullspace of (31 =
(D]

When, on the other hand, a state-space transformation
is performed, one obtains the following result.

THEOREM 2.4

When a state-space transéoamatceen T« peaboamed on the
neafization (A,B,C,D1 ¢f R(X), £.c.
1

A,B,C,D} 7, 18, o7, o (2.6)

then the pencils AI-A and ME-A axe ftransdcoovned as

VI-A S ISEYIE -t (2.7a)

AE.-A.= *RET - RA” (2.7b)

whenre R (5 an {pventible transf{ormation dependora cn the chodce

o4 transbfonmation dn (2.3).

PROOF. The result for XI-A is trivial. For AE-A, let
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E-A |0 ]
...... = U S_(+) (2.8)
- Z
* D
- - . -1
VB -AL O . T ] . T 1
I t - PR T
* :
D, . i
’ | (2.9)
— 3y
C s |
n

be the corresponding reductions (2.3) in the two coordinate sys-
tems. When partitioning U and V conformably with the left hand
sides of (2.8) and (2.9), we find that their tio part U, and V.,
respectively, both span the Teft null space of ;B . Therefore
there exists an invertible transformation R, dwaé%ling on the

choice of U and Ut in {(2.8)(2.9), such that

Ve = R U, (2.10)
Comparing (2.8)(2.9)(2.10) one than finds (2.7n}. o
As follows from Remark 2.1 and Theorems 2.3 and 2.4,
several properties of the pofe cperates A and o-¢ operatex ATL31,
carry over in the singular case to the pencils [2.7a) and (2.7b).

It is then also to be expected that, in the singular case, they

play an important role in the analysis of the poles and zeros of

the factors of R(X), as is shown in the next section. The pencils
yI-A and AE-A are therefore termed the ~oic v 0l and zZere pen-

cif, respectively, of the rational matrix R({ .

3. Reducing subspaces

In this section we develop the geometrical background
of the generalized eigenvalue problem, needed *“ur computing mini-

mal factorizations.
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The concept of #reducing subspace 12811291 reviewed in
this section, separates the Kronecker structure of an arbitrary
pencil into that of two subpencils. These 'substructures' will be
exactly those of the two factors R1(R) and RZ(') to be computed.

By ~(S,T), we denote the spectrun of tne pencil 2S-T ,
i.e. the collection of generalized eigenvalues, multiplicities
counted. By E(S,T) we denote the complete krvneower structune of
the pencil XxS-T, i.e. all the structural elements as described

by the Kronecker canonical form (see Section 2).

REMARK 3.1

A11 the decompositions used for explicitating the geo-
metric concepts defined in this section are chosen to be unitary,
although there is no need for it. The reason for this choice 15
that stable numerical methods for computing these spaces are
based on these "unitary" decompositions [1711231024102510261029]
(see also (13101410351 for alternative methods). =

Let X and ¥ be subspaces of Hn and Hos respectively,
such that

y = SX o+ TX (3.1)

Let ¢ and k be their respective dimensions and construct the uni-

tary matrices Q and Z, partitioned as

=107y | I,1 3 Q = roC, ?_él (3.2)
r X
such that, in the given coordinate system
X = <Zy> 5 Y = <Q,» (3.3)

* *
Then it follows from (3.1) that Qy S Z, = 0y T Z, = 0 and thus

11 "
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In this new coordinate system,X and V¥ are now represented by

X = < > 3 v = < > (3.5)

The map AS-T restricted to the spaces X and vV, 1ts spectrum and

its eigenstructure are also denoted by

S - _ ! <A -7 S — |
1S5,=Ty=(AS T)’X’y,“(Szz,Tzz) MSSTY gy bl 00 Top) sE(S,Th

(3.6)

Notice that the orthogonal complements t of % and yL of ¥ also
* *

yield a triangular decomposition of the pencil S -T . Indeed

by taking the conjugate transpose of {(3.4) and rearranging the

blocks, one obtains

-* -~ %
S22 0 Too 0
* N * *
[22\21] (157 -T7) [02\01} - e . (3.7)
21 Sy T2 T

* *
In analogy to (3.6), the map XS -T restricted to the spaces yL

and X'L , its spectrum and its eigenstructure are denoted in terms

of the subpencil A§11 - T11, or also, using a “"dual" notation
STy L OS=T) (S s T ) (5.7
(R yL;Xl [ (RN VL,XL (3.8)
E(S E(5,T)

- = ‘
11 11) V'L,X'U
In [291 , it is shown that a pair of subspaces ¥X,¥ as in (3.1)

always satisfies the inequality

dim.¥ > dim.X - dim. N (3.9)

When equality 1s met, i.e. when
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y = SX + TX ; dim.Y = dim.X - dim.Nr (3.10)

the spaces are called a pair of (adght] weductug rubspaces of the
pencil AS-T. Notice that, because of (1.5), we then automatical-
ly have

sk oo sty L dimlxd - dim vl - dn., (3.11)

L

For this reason the spaces Vl,X are called a pair of le4t redu-
cing subspaces of xS-T. Notice also that all the subspaces in
(3.10) and (3.11) can be retrieved from X only, which is there-

fore called a reducing subspace of A5-T.

REMARK 3.2

The development of reducing subspaces followed in [29]
was based on upper block triangular forms in contrast with the
lower block triangular form (3.4) used here. This is inessential
since the spaces can be defined in a coordinate free manner, but
it will prove useful in the sequel. m

In (291 we proved that the above generalization is a
logical one since it carries over properties of deflating and
invariant subspaces to the singular pencil case. These properties

are recalled in the following theorem (for a proof see [291)

THEOREM 3.1

a) Let X,V be a pain 04 subspaces satcsqyeng (3.1)

I,y ol ] GseT)
are nlght and fedt dnventible, espectively, 444

Then the neduced pencifs (2S-T)

Lt 45 a pairn o4 treducdng subspaces. Fow such a padin

the following spectral neductacn s then vbtadned
A(S,T)=A(S,T) U 1S, T) (3.12)
X,y v, x -
whene U denctes union with any comnn elements

hepeated.
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b) 14, wmcereoven, fhe weduced svoeotse are ddsjodint

M(S’T)!X,V n VL,XL‘ A T N (3.13)
then we alsc have the {cfévwong  cgenstauctune
weduction

ECS,TI=E(S,T) [y y Uy (L1 (5T) (3.14)
and the conresponding paces o4 woalit and Ledt
reducang subspaces X,V and Vi;\*'xﬁv then the

undque paits with spectrur

ful - /\“(S’T)\IX,V ; ‘2 VAT .

nespectively. o

REMARK 3.3

In [2810291 it is shown that the set of all possible
reducing subspaces X form a lattice with "smallest" element
Xmin and "largest" element Xmax (the same nolcs for the corres-
ponding VY spaces). From Theorem 2.2 in [281, »t also follows
that for a pencil 2S_-T_in Kronecker canonical form (2.1), a
reducing subspace XC must be a direct sum »f the columnspace of
all LT blocks and of an (arbitrary) invariant subspace of

N+ J.'For an equivalent pencil 3S-T = . ~'t>(-TC)P_1

a reducing
subspace X then of course is given by P X This also explains
the Tattice structure of these spaces. C

In the next section reducing subspaces of the zero pen-
cil AE—A are used to solve the factorization groblem. In this
context we can make here already the following remarks.

REMARK 3.4

a) Notice that a representation ¢ of a reducing sub-
space X of JE-A is not affected by the degree of freedom in the
construction (2.3) of AE-A. This follows from Theorem 2.4 since
for a given coordinate system, any two zern pencils are related

by a left transformation R only.
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b) Instead, when a state-space transformation T is
performed on the realization {A,B,C,D> of R(-}, - .e.

I e -1

+A,B,C,D: {T AT, T "B, CT, | (3.16)

then representations Xp of an dinvariant subspace \p of »I-A, and

X, of a reducing subspace X, of (any) “E-A, are transformed 5i-

muftanecusly as

X IT_1X ; X I T-wn'\' (3.17)

according to Theorem 2.4 again.
¢) Using the notation (3.8) on 5-T7 = ’Z{~) as in
(2.3), we have that with X = Kex S and V = TXx one can write

S_(+) (3.18)
VL,xi! :
since Kex S = Im ? } and TX = Im {EJ . The degrees of freedom
n
mentioned in Theorem 2.4 are reflected here in tre possible choi-

ce of representation for %L and Xl'. a

4, Factorization.

Here we give necessary and sufficient conditions for
the existence of a minimal factorization (0.1} ((.3) (0.5), ba-
sed on the spectral subspaces defined in the orevious section.
Algorithms are thereby obtained to generate any prossible facto-
rization of a given matrix.

It follows from conditions (0.3) (0.5) that no pole
zero cancellations occur between R1(}) and R, -1 1f the facto-
rization is minimal. The poles (respectively zercs) of R(X) are
then those of R1(k) and Rz(x). Therefore the factors Ri(x) may
have no infinite poles and can thus be realized as
Ry = D+C (0D, <A )T By 5 ie0,2 (4.1)

1 ) x 11 1
1

We then have the following two results whose ovrocfs (see [41)

also hold for nonsquare matrices.
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LEMMA 4 .1

Let the factons Ri(x

then a realization for R(X)

a2l

C & [C1

<

1

PROOF. See [41
THEOREM 4.1

A transfen bunction R(X)

(0.1)(0.3)(0.5) if4 it

A =
C =
wAth
12 8
rank
22 D
PROOF
If : If rank condition (4.4)

1}
X ~—
—
— .
o
~—

B

\D1c2] D
P
Sy

Van Dooren

be neavized as An (4.1)

Ro(+) «s given by

Y2 1
o (4.2)
}
L 8, y;
:[D1D2} m
n
@]

lias a movomal factordization

has a neallzat(on

exists a factorization of the type

(4.3)

)

'm
o, (4.4)
is satisfied, then there
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Az By By ‘
- e D) it (6.8
Cyy D D,
T"
n

Now put C1:C11, 822822, then {A11,B1,C1,D1} and ‘AZZ,BZ,CZ,DZ}
are realizationsof factors R1(k), RZ(A) according to Lemma 4.1.
Conditions (0.3) and (0.5) are clearly satisfied.

Only if : If there exists a factorization R1(A).R2(k)
satisfying (0.3) and (0.5), then let (4.1) be a realization of
the factors. The realization (4.2) of Lemma 4.1 then satisfies
(4.3)(4.4). =

In 041 D was assumed to be square and i1nvertible. The
existence of such a {actorable #ealization (4.3)(4.4) was analy-
zed with the invariant subspaces of A and A—BD_TC. The following
theorem extends this result to the case where D i< not necessa-
rily square or invertible, by now considering the pencils AI-A
and AE-A defined above (note that the reducing subspaces of

AE-A become the invariant subspaces of A-p"~ !

C when D is square

and invertible). The following lemma links the rank condition

of the previous theorem to the concept of reducing subspaces.
LEMMA 4.2

Let fhe nealdzation {A,B,C,D} be pattcticned as

Ary A2 By |
A = 0 A22 822 ¥‘2 . (4.6)
| C11 oy ‘ D J m
—— A~ —
61 62 n

and Let AE-A be the zenro pencil of this realczatcen, then

S

0 .-
X, :Im[I } L5 a deflating subspace of XE-A (44
2
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rank . =r

whene r s the noamal wank 04 R(X)

PROOF

Van Dooren

If @ Let rank condition (4.7) be satisfied, then there exist

a unitary transformation V such that

*
A2 By 11 Y3 A Byl 0
*
Vo, =
* *
Ly D RERREE “Copp D L=
Notice that m-r = HU]]( because of Theorem 1.1. This
into :
1. -A -A
r "

WA 0 l 9 %
(

0 1, A B,

s, 22 2
¥ ~Co o, |

CyHm=Yr

(4.8)

can now be embedded

and further reduced by an additional transformati»sn on the two lower block

rows to the form (where D has Tinearly independent rows)
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XE114A11 0 0 }F1+nu11{
* AE o, -A 0

4,4,4,4,4,_,m,224,224,~,T }52+m—nu11 (4.10)
* * D t

I3
According to (3.7)(3.11), the space Vizlm [ 1*”“]]t} is thus a left redu-

0
0
cing subspace, and XZ = Im a (right) reducing subspace of the zero
I,
.. 72
pencil AE-A of the realization (4.6)(4.7).
Only if :
0
Let XZ be spanned by . Then there exists a unitary transformation U,
L.
w2

conformably partitioned with the realization {A,B,C,D: such that

R * * *
Sprnutly AP Uy Upg [Usy ) [P Ay Ao | By
ATV us 1o S 8 (4.11)
12 22 32 ' 5, 22 2?2
Spmenully e — . S ] -
Uy Upz 1 Ugg Cyg o D
g —— —
61 62 m
A yyAy 0 0 ]y enull
* Ay Ay 0
——————————— — - i2+m—nu11
* * b
\—‘_‘—J e Ja——
61 62 n

This form is obtained by first compressing the rows of the last block column
[B§1, Bgz, DT]T as in (2.3), and then updating the left transformation in
order to obtain the lower block triangular form of E-A corresponding to XZ,

as in (3.4). From this is follows that U21:O since

THUN  S  E (4.12)
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Therefore we have that the §1+nu11€ rows of [U L;1J are linearly

independent and that :

Mz By :
- r * *
s1+nu1TC4 [U11 U31} =0 (4.13)
C22 D m
62 n
This implies that
Ao By
rank . < m—nu]]l = r (4.14)
C22 D

The inequality can not hold, though, since this would imply, through Lemma
4.1, the existence of a factorization with smaller normal rank than r. Con-
dition (4.7) is thus satisfied. o
This now allows to give a spectral description of the existence
of a factorization of a rational matrix.
THEOREM 4.2.

Let 21-A and AE-A be the pode and ot pencdds o4 a realdzation
{A,B,C,D} o4 R(x) . Then R(*) has a factosaoce =owiizaticn 1At,BV
Ct,D% = 5T—1AT, T-1B,CT,DL {44 thewe oxesr v ivvendent subspaces
Xp and X such that
(@) A e X, () dim. (EX,+AX )=din.X,-nul 1 (1ii) ot X = i (4015)
PROOF.

If @ Because of (iii), the transformation 7= [Xp L X where

the columns of Xp and X, span the spaces X and X, 15 invertible. Since (i)

p
holds, the transformed system {At,Bt,Ct,DtF has the *orm
A A2 B11f
Ay = By o (4.16)
0 ) By, ]
C, :[C1 ! CZZ] ; D, ﬁ[ D J
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In this coordinate system the pole pencil iI-A, has the required form (4.3)

and the rank condition (4.4) is satisfied because of {ii) and Lemma 4.2.
Only if I

Let (4.3)(4.4) be a factorable realization of R(:). Clearly Xp =Im ]

0
satisfies (i) in that coordinate system.
0
Since rank condition (4.4) holds, XZ: Im I satisfies "ii) because of
:52
Lemma 4.2. The third condition (iii) is also clearly satisfied. a

5. Cascade factorization

Extending the results of the previous section to several factors,

one is led to the problem of minimal cascade factorization :
R(:) = Ry() . Ry(A) v v v R (5.1)

where all Ri(k) have small degree. This factorization i¢ said to be mdinimal

when the degrees ©. of the factors Ri(k) add up to the degree & of R(})

(5.2)

and when all the intermediate factors Ri(%), i=2,...,k-1, have dimensions
r<r, with r the normal rank of R(%). Such factorizations are obtained by

repeating the factorization described in the previous section (k-1) times.

[t easily follows that the minimality conditions still imply the absence
of pole/zero cancellations between the factors R,( ) in (5.1}, The poles {res-
pectively zeros) of R(x) are then those of the factors Pi(-J; the Teft null

space of R(%) is that of R1(k) and the right null space of R(-) is that of
Rk(l). Since here also the factors Ri(k) have no infinite poles, they can

be realized as follows

L -1
Rj(\) = D1+C1-(>‘;151_ - AH) B (5.3)

The following lemma [30] holds also for the nonsquare case :

LEMMA 5.1,
Lot the factons Ri(K) be neafized by (5.3) <ov i=1,...,k and

dedine
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Aps 483Dy - Dy Oy (for i< ) (5.4a)
I

By 28305y - Dy (5.4b)
A

Cis 20 Di_y € (5.4¢)
A

Dy 20 ... D, (5.4d)

Then the product (5.1) 48 nealized by {A,B,C,D} weth

Ao Py Bl
Ab | o "__ § Bl g (5.5a;3b)
Ark B 'k
¢t [C11 Chi] 3 0 & (O] ~ (5.5c;d)
B S e
PROOF. See [301 . 0

Let us now define for the realization (5.5) the compound matrices

A1,j+1 - A1,k 81’1
5 : : J=1,. k=1 (5.6)

A. . ... A. B. .

JsJ+1 Jsk JsJd

Ciut g1 Sk Dy

The following theorem discusses the existence of a cascade factorization
(5.1)(5.2) for a realization in the form (5.5).

THEOREM 5.1

Let R(X) be a mxn  proper reguban transder matadx. Then R(A)
has a gactorization (5.1) with factons Ri(x) o4 degrevs i L44 At has a
minimal realdlzation {A,B,C,D} c¢f the form (5.5) wath
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(3 )
rank [ }: r  for j-=t,...,k-1 (6.7)

PROOF .
Only if : Let the factors Ri(k) of the factorization (5.1) be

realized as in (5.3) and take the realization (5.4)(5.5) for R(:). Using (5.4)
one easily checks that :

“31D2 D,

PASIATIN G B, D;
[c 3 NG } b . Cj+1’ J+WCJ+2‘ "Dj+1 . Dk-1ck
J Dy Uy ] (5.8)

[ DD, . D,

This proves the rank condition (5.7) since the factors RJ ) have dimensions
rxr for j=2,...,k=1.

If @ For k=2, this is Theorem 4.1. We now prnve by induction
that it holds for larger k if it also holds for k'=k-1. Partition (5.5) as :

(1) (1) _
Mg | A (B 1
A= B2 | — k (5.9)
0 Al B '
22 2 Lo ]
A
(1 A [ n(1)
cz[cm\c)]DE[D [
%1 S n
Then condition (5.6) for j=1 says that this matrix can be ‘actorized as :
1 A(1) 8(1) 8,
o T T (5.10)
(| ) ¢
m{ [ C D] D,
5 N v

Putting C1:C1 1 this yields :



730 Van Dooren

0 Ady B, |
(5.11)

¢c-| ¢, | 0,c ] o<l DD} |
From Theorem 4.1 it follows that this corresponds to a factorization
R(M = Re(x) . R'(Y) (5.12)

with

(5.13)

The system {Aéz, Bé, Cé, Dé} now has a block structure as in (5.5) but with
k'=k-1 blocks on the diagonal of Aéz. Because of (5.10,, the rank condition
(5.7) for j=2,...,k-1 imposed on {A,B,C,D} are equivalent to the correspon-

ding rank conditions on the subsystem {Aéz, Bé, Cé, Dé for j=1,...,k'-1.
Since the theorem is assumed to hold for k', we thus have that the blocks

of {Aéz, Bj, C5, Dy) satisfy (5.4) for k'. Using (5.11;, it is easily seen
that (5.4) now also holds for k, which completes the induction step. o

Notice that (5.9)-(5.13) also suggests an algorithm to construct
factors Ri(k) = Df+Ci(AI$.-AT 1.)_1 Bi from a realization “A,B,C,D} satisfy-

ing Theorem 5.1. Indeed, let the unitary matrix

Upp | Uy | oy
Uy = (5.14)
U21 U22 tm
[ R )
S,+m-r r
1
satisfy
(1 (1

§ ° a UHJ U12 O) E,: EE cr L DAY Yy

NEDN BER) e T oo ||y [ 1 %]
21 22 2 2 _gg (5.15)
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Such a unitary matrix is easily constructed with Householder transformations.
Then with B1 4 U12, C1 ) C1 1 D1 4 U22 we have constructed the factor

R1(A) =Dy + C1( 161-A1,1)_ B, according to (5.9)-(5.13).

If we perform this unitary transformation in an "embedded form" 01 on the

system matrix of (5.9), we have :

* * } Al e()
Upp | 0] Yy M P ATLE
0 Id‘ 0 0 ML-AS, By =
i * _ 1 T
Uy, 0 Uss C1 1 C D
(5.16)
AE1’1 !\1’1 0 0
* Alﬁ.-Aéz B,
’ < 1o
Notice also that AE1 1-A1 1 is in fact the zero pencil of the realization
{ A1,1,B1,C1,D1} since
* * B . ~ 0
Upy i Va1 MRy ‘ PR
v, | U <, | oD N I (517
12 22 1 1 r

Continuing the above ideas recursively we finally obtain that a sequence
of "embedded" unitary transformations 01 on the system of (5.9) yields :

k=1 - oceeocUpe

(5.18)
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My Ay '
O |
*
I R P R 0 0
,,,,,,,,,,,,,,, BN o
* -
PR | By
k

} * \ -C! D!
! k K

The factors R, (1)=D.-C. (A1, -AH)_1 B, are extracted at each sta-

ge for i=1,...,k-1 and the " last factor Rk\', s realized by the
leftover quadruple {Akk’ Bk’ CL, Lx . Its zerc pencil can be
obtained by compressing the rows of the compourd matrix {Bkw
DkJ
e Rk 4 By T
Uk e ’ o o R ¢ DJ (5.19)
k i

where D has lTinearly independent rows. This, ot course, could
also be embedded in the form (5.18). It would yield the zero
pencil of R{%), but in block triangular form, where each >E11—Aj1
is the zero pencil of the corresponding factor Rj(k). The poles
and zeros of these factors are thus given by the (generalized)
eigenvalues of the pencils kI—Ai,j and 'E1,w'A',1' The construc-
tion of these factors only reguires unitary trgnsformations aon
the system matrix of R{4). This algorithm can therefore be shown
to be backward stable [34]

Since the factors Ri(k) can easily be obtained from a
realization satisfying Theorem 5.1, we call th's a cascaded rea-
lization. We now analyze the existence of such a realization for

a given R{%), which is defined by an att(¢ts1%s minimal realiza-
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tion {A,B,C,D} . The results are inspired from [301[311.

THEOREM 5.2,
Let AI-A and AE-A be the pole and zeqe pencdds o4 a

mindmal realization {A,B,C,D} o4 R(A) . Thewn R{ ) has a mind-
mad cascade factorndization (5.1)(5.2) 444 thewe vxest (k-1)
pains o4 Andependent spaces nested as follows
{0} < X1 c X2 c ... cC Xk—1 c H. (5.20)
de V13 VZD ... D Vk—1 5 0 (5.21)

and such that the following conditions are satdis~ced fon each

paLn

(1) A X, (i) dim(ég+Avi):d1m Vimnull, (i1 Xy @y, o= A

PROOF.
If : Let us define X, 2 Vo = His Xp = Y, = 10} and
S; & Xy n v,y for i=1,...,k. It follows then from (5.20)(5.21)

i i
and (5.22 iii) that

X1 = X 1 &)Si
for i=1, s k-1 (5.23)
- D
y1 i+1 © i+
and hence, by induction, that
X5 = Sy ® . @)Sj
for i=1,...,k-1 (5.24)
— [ I
Vi = S5 . ¢/Sk

Let Ei, n; and 61 be the dimension of XT’ Vi and Si’ respecti-

vely. It follows from (5.22 iii) that

S @S, ® ... ®S = H, (5.25)
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We thus can choose a coordinate system in which Si is spanned
by the columns of

I, for i=1,...,k (5.26)

whence Xi and V1 are spanned by the columns o*

i and 0 , rec«pectively

L

In this coordinate system the pole pencil -1-7 has the required
form (5.5) and the rank conditions (5.6) are <atisfied because
of (5.22 ii) and Lemma 4.2.

Only if : In the coordinate system ¢f (5.5) the spaces
X; and V. defined as in (5.24)(5.26) clearly <atisfy all condi-
tions because of (5.7) and Lemma 4.2 0

COROLLARY 5.1

14 R(x) has a nealdizatien 1A,B,.,D and 44 {n this
cecaddinate system the columns o4 Sj ate vascs e the subspa-
ces S, ¢f Theorem 5.2, then crovat, 1Y, o1, D) és a casca-
ded nealization when T = [511...i5kl , ad e when T A4S o4 that
type.

PROOF.

Under this transformation new bases for Sj are given
by (5.26) as required in Theorem 5.2 (if and cnly if). o

From (5.5) it follows that the cnhair (5.22 i) of inva-
riant subspaces of A determines the choice of poles in the fac-
tors Ri(k), through the constituting subspaces S, of (5.24).
From (5.18)(5.19) the same holds for the chain (5.22 ii) of re-
ducing subspaces of E-A and the choice of zeros in the factors
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Ri(k). Condition (5.22 iii) finally says whether or not a mini-
mal cascade factorization with this distribution of poles and
zeros over the factors Ri(x), exists. As discussed in [301 the
mathematical condition (5.22 iii) should be replaced by a quan-
titative condition which is a more realistic criterion for nume-

rical practice. The choice suggested in [30]1 is cond. TO’ where

4 0 | 0
TO 2 [51 | ... | SK ] (5.27)

and where the Sj are an orthonormal basis for the Si of Theorem
5.2, thus satisfying Corollary 5.1. It is <hown in [30] that
if cond. TO is above some threshold, one should rather not per-
form the cascade factorization with that choice of poles and
zeros in the factors, because of its inherent numerical diffi-
culty. Condition (5.22 iii) is then "essentially” not satisfied.
We conclude with a final remark on the numerical im-
plications of the approach proposed here.
Numerical algorithms for computing reducing subspaces with spe-
cified spectrum have been derived in [241026]0291] and are known
to tue backward stable, just as the methods for computing inva-
riant subspaces with specified spectrum [2310241. Sensitivity
results can also be found in [2210281[34]). In order to compute
a cascade factorization with a given distribution of poles and
zeros one proceeds as follows. Starting from a given realization,
construct AE-A and decompose A and ZE-A in their upper and lower
Schur forms [341[24]

4y . g
x . i
UALUS=A = l (5.28)
0 A
£ 0 AL 0
L8y S agy
. . ..
- / - A N -
0 (ME-A)Z & aE-A 2 &0 - 5
* Er * Ar

(5.29)



736 Van Dooren

where AEP-AP and xE,-A, are singular pencils containing the

right and left null gpaﬁe structure of iészs (241 . The central
part of (5.29) is the regular part of kES—AS and the rafiq's
aii/éii’ i=1,...,k are the generalized eigenvalues of XE-A and
thus the zeros of R(Xx). We then construct the product of the uni-

tary transformations Z and U
Vaz o o.oou (5.30)

Then perform a block LU factorization (without pivoting outside

the block partitioning)
v o Q, - Q (5.31)

where the block sizes are conformable with the degrees 83 of the
factors Ri(x) to be constructed. Then, performing the state-space

transformation

T.Z.0Q,=U.4 (5.32)

it can be checked that in the new coordinate system of {At,Bt,
0

D} , the spaces S; = Im Id satisfy the construction of
1'
0
Theorem 5.2, and thus yield a factorable realization of the form
(5.5)(5.7). Notice that all the steps to obtain VE-A, AS and

AE-AS can be performed in a backward stable manner [341024]

Cios

The only possible unstability comes from the construction of the
state-space transformation T in (5.31)(5.32) and its application
in order to obtain {At,Bt,Ct,D} . For this reason, a threshold
is imposed on the pivots encountered in the LU decomposition,
such that the factorization is rejected when instability occurs
the eigenspaces are then not suited for constructing a minimal
factorization (5.1) because their angles are too skew (see [4]
[302 for a more elaborate discussion on this). In that case
another distribution of poles and zeros over the factors Ri(x)
has to be tried out. This is done by updating the decompositions
(5.28) and (5.29) in order to reorder the eigenvalues [231[261,
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thereby yielding a different V in (5.31) and 2 d-fferent state-
space transformation T. After the state-space transformation T
(i.e. a numerically acceptable one) has been ser*ormed, one again
needs only (stable) unitary transformations for *he actual cons-

truction of the factors Ri(%) as was remarked in 5.18) {(5.19).

REMARK 5.1,
Notice that the reducing subspaces x_ of E-A have a
minimal and maximal element X . , X as discus.ed in Remark
min ma X
3.3. Their dimensions are equal to 6€ and R respectively,

where 5@ and 62 are as defined in Section 1. It *hen readily
follows that 6[(R) and SP(R) = S(R)-bﬁ(R)-\Z(R/ are lower bounds
for the degrees 6(R1) and S(Rk) of the left and ri1ght factors,

according to Theorem 1.2. 9

6. Related problems in linear system threory

Several topics in linear systems theory are related to
that of minimal factorization, either because they are a special
case of it, or because the problem can be reduced to a factoriza-
tion problem and hence the technigques used to so ve it are simi-
lar. A direct application is the problem of spertral factoriza-
tion, occurring in several areas [110210510181(3:1. The problem

there is to find a factorization

Z(s) + 27(-=s) = R(s) . R'(-". (6.1)

where Z(s) is a given positive real rational matrix and where
R(s) is requested to have its poles and zeros in the left half
plane (the formulation here is in continuous time : the discrete
time version of the problem is similar). The techniques used for
treating the singular case [11[510381 are ratner complicated
with respect to the simple geometric approach obtained here (see
also [261[2710281).

A dual problem to the above one is tha*t of optimal
control [1120153018102110361 : given the stabilizable system
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i+1 i i
(6.2)
Y = C x; + D
find the control u;= =K x, minimizing the functional
g *
J = E Yi ¥; (6.3)
1=0

(here again a continuous time version of the problem can be for-
mulated in similar terms). The link of this problem with spec-
tral factorization if discussed in e.g. [18]1, where also other
related problems are mentioned. Methods to solve this problem
with techniques similar to those discussed in this paper are
given in [2610271(281].

Another area where factorizations of a certain type
occur is control systems design [81[1910361 . There, minimal

factorizations of the type
R(X) = Ry(x) Ry(:) (6.4)

are required where the condition &= 81 + ‘2 is relaxed in the
sense that the degree condition has to be satisfied for the fi-
nite points only. This problem could be treated in a similar
fashion to the one discussed here in this paper. [t is interes-
ting to note that a possible way to solve this problem is via
the use of (A,B)-invariant subspaces [8], introduced in [371.
In [281 it is shown that in fact several of the geometrical con-
cepts defined in [371 are special cases of reducing subspaces
defined on an appropriate pencil. This makes the bridge between
seemingly different approaches for tackling factorization pro-
blems. This connection also clarifies the similarity of the
numerical algorithms derived for tackling these different pro-
blems [25102610271L281,

REMARK 6.1. Notice that all the matrices occurring
in these applications are real and that one also wants the sepa-
rate factors to be real. This can be ensured when complex conju-
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gate poles or zeros are grouped together in the factors [410301.
The only difference in the analysis here, is that the Schur
forms (5.28)(5.29) now have to be replaced by so-called real
Schur forms [34101710241 . Some factors will then necessarily
have at least degree two. The software to reorder these real
Schur forms is also available [231026]. o
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