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Abstract.

In this paper we give a numerical method to construct a rank m correction BF (where the
nxm matrix B is known and the m xn matrix F is to be found) to a nx»n matrix 4, in order to
put all the eigenvalues of A4+ BF at zero. This problem is known in the control literature
as “deadbeat control”. Our method constructs, in a recursive manner, a unitary transformation
yielding a coordinate system in which the matrix F is computed by merely solving a set of linear
equations. Moreover, in this coordinate system one easily constructs the minimum norm solution
to the problem. The coordinate system is related to the Krylov sequence A~ 'B, A~2B, A™*B,....
Partial results of numerical stability are also obtained.

1. Introduction.

The problem of “deadbeat control” arises in the area of discrete-time control
systems, where one considers the following system of difference equations:

1) “ Xiv1 = Ax;+ Bu,.

Here, n is the dimension of the “state-vector” x; and m the dimension of the
“input-vector” u;. The problem of deadbeat control is to find a “state feedback”
u; = Fx;+v, such that the resulting system:

(2) : X;+1 = (A+ BF)x;+v;

has a nilpotent matrix (A+ BF), ie. (A+ BF)* = 0, for some minimal power k.
The solution of the homogeneous part of the system (2) then “dies out” after k
steps [9], whence the name “deadbeat control”. Because of the relation with
control theory, we will frequently use its jargon to denote concepts that are
familiar to this area (such as “feedback”, “controllable subspace”, etc.).
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This problem has been considered by several authors and several efforts have
been undertaken recently to come up with numerically reliable methods to solve
the problem [4,5,7,11,12,21]. The method presented in this paper is very
similar to the one developed in [11, 12]. In our special case, though, a simplified
algorithm can be obtained which allows analysis of the numerical behavior of
the method and permits the construction of the minimum norm solution to the
problem.

2. Problem (re)formulation.

The method described in this paper is based on the use of unitary
transformations only. These transformations are chosen because of their
invariance property with respect to certain norms:

lUAV| = ||All for U, V unitary, ie U'U=UU =1, VvV =VvV =1
where ||-|| stands for both the spectral and Frobenius norms [16], and a prime
denotes the conjugate transpose of a matrix. As shown in the next sections, this
guarantees that the errors produced by the algorithm do not blow up -
therefore resulting in a numerically reliable algorithm - and also that the
feedback matrix in the transformed coordinate system has still the same norm.

To start with, the (A, B) pair is transformed via a unitary state-space
transformation V to the “staircase form™ (see e.g. [2, 4, 8, 15, 17, 19, 20]):

BA. X
(3a) [V’B V'AV] = I: € :l =
010 A;
- ‘ -
B,| 4,,4,,; Ak Ay k1 }"1
Az 143, Az Azkar Ira e e,
(3b) 0 ]
Ark-1 Axx A ki1 i
0 0 Apty k41 sy
—_— e —— e~ e — -
m ry n Ty—1 e e+t

Here B, and the 4;;_,

off-diagonal blocks have full row rank r; by
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construction. Note that this transformation does not affect the problem
formulation: the feedback FV applied to the pair (V'AV, V'B) yields the same
eigenvalues as the feedback F applied to (A, B) since the “closed loop” matrices
V'AV+V'BFV and A+ BF are similar. Moreover, it is easy to see that in the
new coordinate system (3) the eigenvalues of A; can not be modified by
feedback, since V'AV +V'BFV has the same block structure as V’AV. These
eigenvalues are also called the “uncontrollable modes” of the (A, B) pair.
Let us denote the ith Krylov subspace generated by 4 and B as:

4) Ri(A,B) ={B)+A(B)+ -+ A'""(B)

where (> denotes the range of a matrix. This subspace is also called the “ith
reachable subspace” of the system (1) [23]. Because of the rank properties of the
B, and A, ;_, blocks, one easily checks that (with ro = m, r, =0 for i > k, and
d;=ri+ry+...+r) [18,19]:

) dim R,(4, B) = dim R,(A,, B,) = 4,
and
6)  R(WVAVV'B) = <(’;;-)>.

The latter shows in fact that the columns of V yield orthogonal bases for the
growing subspaces R;(4, B), whence the form (3b) can be obtained with a block
Lanczos process (see [3] for more details). The subsystem (A, B.) of dimension
d, x d, eventually yields a Krylov subspace of full dimension d,. In the control
literature [23] it is therefore called “controllable”, and its “controllability
indices” are given by the rule (see e.g. [19]): there are (r,—r;.,) controllability
indices c; equal to i for i = 1,.. k. Notice that the number k of non zero ranks
r; equals ¢, the largest controllability index.

It is known [23] that for a “controllable” (sub)system one can always assign
the spectrum of the closed loop matrix arbitrarily by feedback (this is also
implicitly proved by the constructive algorithm described below). The above
“staircase form” therefore answers the question of solvability by separating the
“controilable” (i.e. assignable) part of system (1) from its “uncontrollable” (i.e.
unassignable) part: the problem is indeed solvable if all the uncontrollable
modes are already at zero (i.e. if A; is nilpotent). In the sequel we assume the
problem to be solvable. A; being irrelevant, can then be omitted and we
therefore identify (4, B) with (A4, B.).

Consider now the spaces (called “ith controllable subspace” in [10]):

™ S{A4,B) = {x|Axe A" (BY+...+(BY}, i=1,..k
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This linear subspace is the set of all initial conditions x, to (1), that can be
“driven” to zero in time i by an appropriate choice of inputs uj, j = 0,...i—1.
This follows immediately from the following formula for x; derived recursively
from (1):

(8) x,- = Aix0+Ai_lBu0+...+ABu,~_2+Bui_1. 2y

Let 4~! denote the functional inverse of a map. Thus, applied to a subspace S
this means:

) A™'S = {x|AxeS}.
It is shown in [1, 14] that the spaces S; satisfy the recursion:

Sivr = A7N(SH<(BY)

(10) {0} =Sp=S;c...c§;=8,1=...
where
(11) | = min {i|S; = S;,,}.

The spaces R; and S; are known to be invariant under feedback [1, 14]:
(12) : R,(A4,B) = R,(A+ BF, B)
S.(A, B) = S{A + BF, B).

Then for a controllable system (A4, B) this leads to:

(13a) =k
(13b) dim §; = dimR; = d; = i r
j=1
(13¢c) ~ S{4,B)=A"(B)+ A XB)+...+ A"B).

This immediately follows [1, 14] from the fact that 4 = A+ BF can be chosen
to be invertible [23] and that then:

(14) R, = A,

The properties above will be used in the sequel. A feedback matrix F is now a




DEADBEAT CONTROL: A SPECIAL INVERSE EIGENVALUE PROBLEM 685

solution to the deadbeat control problem if ([ 14, 1]):
(15) (A+BF)S; = S;_,, i=1,..k

This is easily seen by recursively applying (15) to obtain that (4 + BF)*x must lie
in Sy, and therefore be zero, for any x. Although (15) is not a necessary
condition for deadbeat (see [6] for a counter example), one usually looks for a
feedback satisfying this condition since it yields the additional property of
driving to zero any state x in a minimum number of steps: all states x that can
be driven to zero in, say, i steps (where i < k) belong to S; by definition (7) and are
indeed driven to zero in that many steps, because of (15). As is often done, we
therefore also assume (15) to hold when talking about deadbeat.

Let now U be a unitary transformation partitioned in k blocks of r, columns:

(16) U=[U-10,]
"o

such that:

(17) S; =<[U,l- 1T

Let F be any solution of (15), then:

[04,, -+ -4, n
0 . . }rz
(18) U(A+BF)U =
0 B
v PO
L 0 J}"k
ryr; e

This follows from the fact that in the new coordinate system (i.e. after the similarity
transformation U’. U) the spaces S; are spanned by:

(19) S, = ([I(‘;:D i=1,..k

The transformation U thus transforms the original coordinate system to that
spanned by the Krylov sequence (13c). If one starts with the coordinate system (3b)
of the staircase form, U therefore transforms the Krylov sequence (4) into the
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Krylov sequence (13c) (this is possible since their dimensions are equal). In the
next section we derive an algorithm to do this efficiently and to solve meanwhile
the deadbeat control problem.

3‘. A recursive method.

We now describe how to construct U and F such that U'(4+ BF)U has the
form (18), when starting with (4, B) as in (3b). The algorithm is recursive and
consists of k steps, where k is as defined above in (3b). We will show that at the
end of each step i the following form is obtained:

Uj(A+BF)U,; = =1
0 Aij}n—d,-
—
B |4
(1) UB =
B; } n'—dl'.

Here the subsystem (4!, BY) is already “beaten to death”:

"B |0 Aix,z’ v Ail,i Tir:
22) [Bij4i]=
A::—l,i Yoy
_B:: 0 _|}n

and the subsystem (4., B) is still in staircase form: " =

5

™. s R ]
Biy| Airiivr s A;+l,k }"i+1
o A::+2,i+i' Aok Yriv2
[BlA] =| 0 : :

- Ai,k—l Ai.k 4 in
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where the leading blocks Bi,, and A} ;_,, j = i+2,...k have full row rank. At
the beginning of step 1 (i.e. at the end of step 0) this is indeed satisfied since this
is merely the staircase from (3b). We now derive step i of the recursive
algorithm. At the beginning of this step we thus have the configuration (20)-(23)
with { decremented by 1. We then construct transformation and feedback
matrices

-~ [1, 0 . .
24 U = i-1 . . = !
( ) i [0 U;], Fl [0 FS]

that only affect the subsystem (A4.*!, Bi*!). We are thus trying to find matrices
Fi and U: such that:

0o | X
1 qi—=1 i—1pi i __
(25) Ui(As +Bs Fs)Us_|:0 X:|
7’: "tdi

or equivalently:

(26) (A7 '+ B YU, = [0 | X].

Nt Nt
r; n——d,-

This is obtained as follows: let U be a unitary transformation triangularizing
A7 (with rp, j =i,...k as in (3b)):

~in,?' T Rg,k ] jri
27) A-'Ui = Ri = '
—_ R;;,k'J A
SRR -

Here again the result was partitioned conformably with A. Then solve the
equation

(28) Ri,=-Bi"'.X

This equation has a solution since B:~! has full row rank and thus has a left
inverse [16]. A minimum norm solution G; is given by

(29) G, = —(BI"")".R};

where the plus sign denotes the Moore-Penrose inverse of a matrix. Notice that
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this is a minimum norm solution in the spectral norm and moreover the unique
minimum norm solution in the Frobenius norm.

Using the feedback:
(30) : Fo=[G; 0--- - 0Juy

it is easily seen that (4!~ +Bi~'Fi)U! is equal to

0 Rl - R in
R:‘+1,i+1_ LRk }ri+l
G (AT+BIF)UL = ' ' '
| R i I
—— N o e —
i Tiva T

and thus satisfies (26).
We now prove that (U!) has the same block structure as 4:71, ie.:

_Ui,i Ui v Uy 1 I
Uisii Uisrisr -0 0 Uik i

32 WUy

Uik-1 Uk a }"k

Indeed, when writing (27) as:
(33) A7t = R (UY

it follows that the bottom n—d; rows of R’ are linearly independent since those
of Ai~! are, and since the invertible column transformation (U?)' does not affect
the independence of the rows of the matrix R. Thus the blocks R,
j=i+1...k, in (27) are invertible. Let S be the upper triangular inverse of the
(n—d;) x (n—d,) bottom part of R’, then multiplying the bottom n—d; rows of
(33) with S from the left, we obtain:
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rAé+1,i A::+l,i+l A::+l,l(— '}"i+1
(34a) S- . . =
0 . .
L Aik—1 Ak A
r_Ui+l,i Uisrisr Ui+1,;:1 L/

(34b) =

Ui Uik-1 Ui i1

Since S is an upper triangular invertible matrix we indeed find that the blocks
U;, with j > [ +1 are zero and that the blocks U; ;_, have linearly independent
rows, which completes the proof. Because of the above structure of the
transformations (U!), after this step i, the following form is obtained:

[(U3y B H(U) (A5 '+ B T FYUL] =

w—

F_B: 0 A::,i+1 A:,k
B::+1 A::+l,i+l A::+l,k
(35) Aivziv1 Aitzx
0 . . . .
|- Alic,k—l A:(.u B
FiUi = [ G;| 0 ]

Moreover the identities :
(36) B::+l = Ui+1,i'B::_l;Aj‘+l,j= Uj+1,j'R;,j, j=i+1,-~-,k—1

follow from (31), (32) and these imply that the blocks in (36) have full column
rank.

Embedding this in (20)-(23) for i decremented by 1, we clearly retrieve the
form (20)-(23) at the end of step i. The updating of the transformation and
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feedback matrices are easily checked to be:

(37a) U,' = Ui—l (ji

(37b) “FU,=F,_U+F0,=F,_U,_,+FU,

The last equality follows from the fact that- the feedback matrices F,_,U,_,
have their last (n—d;) columns equal to zero and are therefore unaffected by the
subsequent transformations U plorj>i-1

After k steps of this recursion, one finally obtains:

’Bl;l 0 A'{,z A'{J

B
(38) '(A+BF U, =

Ab_y

| B; (U
where
(39a) Uk=.0101"'0k

_|a, O

%) 0=[¢ o] -
(39¢) . Fo=F +F,+ - +F,
(39d) ' - FU,=[0---0G;0---0]

This is now clearly in the form (18) as requested in section 2.

4. Numerical considerations.

In this section we discuss the numerical stability of the method above and
show that it yields a minimum norm solution to the problem when solutions are
not unique.
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To analyze the stability of the algorithm, we first remark that the
transformation matrix U obtained by the algorithm is independent of the
feedback matrix F and that it satisfies (16), (17), i.e. the first d, columns of U
span the ith controllable subspace §; in the coordinate system of (3). This
follows from (15), (16), (17) and the fact that the spaces S; are defined
independently of the feedback matrix F (see e.g. in (7) or (13c)). It can also be
derived by induction from the algorithm: in (35), the term (UlYB.™'FiU! indeed
only affects the (zero) blocks A, and Ai,,, which are not used in the
subsequent steps.

Let us now look at the problem in the coordinate system of (A4, B,),
partitioned conformably with the original (A, B) pair:

Ty Al I.B'f rB'{

(40) A,=UAU =

Ak, Ak Byl By

Since in this coordinate system there exists a feedback matrix F, such that
A,+ B,F, has the form (18), we have:

Ai;
41) < l>e< | >
ki By |

Because of the special. structure of thé transformation matrices U; (39b) it
follows that:

[B | 4x] [Bi™'| Ri;
42) =0, 0.
By | A L0 10

with Bi~? of full row rank. The minimum norm solution G, in (29) of the system
(28) is thus also the minimum norm solution of

A B
@3) 1+] |6,=0

A B;
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and this is thus the corresponding ith submatrix of F,. Let us now write the
analogous perturbed equations, where computed and therefore perturbed
quantities are denoted with an upper bar. Unitary transformations can be
performed in a backward stable manner [16,22] and thus equation (40) yields:

(44a) A,=U04U0,B,=UB

with

(44b) U=U+4U, UU=1I, |4U|=¢,
a B!

(44c) o seel b g
7 By

and with ¢, of the order of the relative precision ¢ of the computer.

That the inclusion (44c) still holds for the perturbed (A,, B,) pair is due to the
fact that the left hand side of (42) is in fact not computed. Appropriate
perturbations can thus be assumed to make (44c) hold.

This then means that the Krylov subspaces or “controllable subspaces” S;(4, B),
i=1,..,k, can be computed in a backward stable manner by the algorithm
above: the computed spaces S;(A, B) are indeed the exact Krylov subspaces
corresponding to the slightly perturbed system:

(45a) A=U-4,0""'=A4+44, |44 =¢&lAl
(45b) B=U-B,=B+4,B, ||4,B]| = &) Bl

A similar result of backward stability can be obtained when starting with an
(A, B) pair that is not in the staircase form (3). This is because (3) can be
obtained with a unitary transformation V in a backward stable manner [19]:
the errors (45) can then be transformed back to the original (A4, B) pair and
added up to those due to the staircase reduction (3). Nothing, of course, is
claimed about forward errors since both V and U can be very sensitive to
rounding errors [19].

For the computation of the feedback matrix F, itself only a weaker result can
be derived, which does not amount to backward nor to forward stability. Notice
that G, is computed by solving the equations:

(46) R ,+B'-G,=0, i
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instead of the (equivalent) systems:

A By

Each separate column of the computed solutions G, i=1,..k, is then
obtained in a backward stable manner, but one can not guarantee [16] that
there exists a unique (Z,, B,) pair obtained by adding an e-perturbation to the
original system, such that the “closed loop” matrix has the zero structure
described by (18):

~0 x X ]

48) (/T,+I§,F,,) =
. x
.0 - - - 0

Yet we can prove that there exists an (A4, B,) pair as in (48), exactly similar to
the system (4+ 4,4, B+ A,B), but satisfying the weaker bounds:

492) A=U-A; U'=A+4,4, 4,4l = nlAll+n,BIl- IF]l

(49b) B=U-B,=B+4,B, |4,B| =n,/Bl|

49¢) F=FU0!

where n,, 1, and n,, are of the order of ¢ and where U and F, are the exact
matrices stored in the computer (notice that we do not have F in the computer,
and that U is no longer unitary, but close to it). This is shown as follows: the

jth column of F, is a column of a G, say, g, which is the backward stable
solution of the corresponding equation:

A

(50) | 1+ [a=0

A By

The residue r, of the computed solution g, is therefore bounded by [16,22]
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(with #, of the order of ¢):
(51) lirdl < n.- IBII- 1G,1| <, |BIf- |1 F.

Taking B, = B, and adding the residuals r, to the corresponding columns of 4,
to yield 4,, we then obtain (48), (49) after transforming back with the state-
space transformation U.U~!. Therefore the following kth power vanishes
exactly: ‘

..

(52)  [(A+4,4)+(B+4,B)F} = 0.

Although we cannot prove backward stability for this part of the algorithm, one
obtains bounds for the norm of [4+ B- F}* that are of the same order as those
that would be obtained with a backward stable solution F,,. Indeed, because of
(49), (52) one easily shows that for i > k:

(53a) (A +BFY|| ~ k- {nallAll + (15, +n,IIBI}- IIFIl} - |4 + BFJ "
(53b) (4 +BF Yl ~ k- {ellAll +&lIBIl - [[Fyll} - 114 + BF I~

for any norm satisfying the product inequality |IS- Ti| < (IS||- ||T]|. This easily
follows from:

(A+BF) = (A4 BFY~(A+BF} = —k(4,A+4,B- F)A+BF)*" '+ 0(s?)
(A+BF,) = (A+BF, )}~ (A+BF s = —k(4A+ 4B F,)(A+ BF, )} "'+ 0(&?).

Here A, B denote twice the appropriate perturbed 4, B pair for which the
considered feedback is an exact solution. This comparison therefore shows that
our method does not behave worse than a stable method in this sense.

In order to prove that the obtained feedback matrix F is the unique minimum
(Frobenius) norm solution to the problem we observe that this is the case by
construction for each of the submatrices G; of F, in (39). Since for the
Frobenius norm we have

(54) IFI? = IFJ1? = X 1G?

this then also holds for F, and F in their respective coordinate systems. A priori
bounds for the norm of F are not easy to obtain since F is highly problem
dependent (||F|} depends heavily on “how controllable” (A, B) is).

Finally, a few words can be said about the complexity of this algorithm,
When using the variant of the staircase algorithm described in [12] (here, a
unitary input transformation is used as well), all the blocks 4;,, ; and B, are
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triangular, which results in a somewhat faster implementation of the subsequent
deadbeat recursion. The complexity of the staircase reduction and deadbeat
algorithm are then of the order of ($)n® + (4)ymn? +2m?n and 2n> + 2mn* + m?n,
respectively. Both are thus cubic in the dimensions of the (A4, B) pair and the
deadbeat algorithm turns out to be even cheaper than the preliminary staircase
reduction.

We terminate this section with some examples.

Example 1.
Let 1 01 1 0
A=0 1 1| ,B=l0 1|, r,=2r,=1
010 00
then we find
1 0
1 -1 0 -1 0 -1
F, = , U= 0 0 -1 ,F=
0 -1 1 0 -1 -1
01 0

The general solution F? in fact equals:

00 g
Fi= [1_1 {],A,+B,,Fﬁ= 0 0 —J
0 0

0 —1 O-l

and it is easily seen that the F, above is the minimum Frobenius norm choice
for F¢. However, F, is not the minimum norm solution for the 2-norm. Indeed,
while ||F,||, = 3'/2 = 1.732, it can be proved that:

min |[FY[, = (5" +1)/2 = 1.6180,  for g = (52 —~1)/2 = 0.6180.
g9

Example 2.
Let

a 0 —-a | 0 2’
Fll=‘ a 0 3a ,U: 0 _l 0 . F= - - .
0-1 3a —a 0 —a 0 -1 0
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The general solution FY in fact equals:

00 —2]
Fg=a 0 3a ,Au+Bqu= 00 _“
“ 10 -1 ¢

00 o

and the minimum norm solution is now obtained for g = 0 in both the 2-norm
and the Frobenius norm (||F|| = 5'/?). Numerically one obtains (on a VAX11/780
with ¢ = 2755 = 1.387778780781446D — 17):

0.707106781186548 0.000000000000000 —0.707106781186458
U =| 0.000000000000000 — 1.000000000000000  0.000000000000000
—0.707106781186548 0.000000000000000 —0.707106781186548

F o 0.707106781186548 0.000000000000000 2.121320343559643
“ 1 0.000000000000000 1.000000000000000 0.000000000000000

l(A+ BF,U')*|| = 1.710375635613043D — 16

Example 3.

This is a randomly generated A, B pair withn =5 m=2,r, =2,r, =2 and
r; = 1. The computations were performed with MATLAB [13] running on a
VAX11/780 (with ¢ as above.) Only 4 significant digits are given.

0.2113 0.6284 0.5608 0.2321 0.3076
0.7560 0.8497 0.6624 0.2312 0.9330
A = | 0.0002 0.6857 0.7264 0.2165 0.2146
0.3303 0.8782 0.1985 0.8834 0.3126
0.6654 0.0684 0.5443 0.6525 0.3616

02922  0.5015
0.5664  0.4369

B =1 04826  0.2693
03322 0.6326
0.5935  0.4052 !

Reduction to staircase form (A, B,) = (V.- A-V,, V;- B- V), involving an input
transformation V, also as in the variant described in [12].

0.2179 0.1833 0.0715 —0.4907 —0.0216

—0.0163 2.4486 —0.3437 —0.0281 0.1353

A = 0.7046 —0.2001 0.2098 0.2102 0.0847
0.0000 —0.3836 —-0.1116 —0.0484 0.4536

0.0000 0.0000 0.0000 —0.4958 0.2046
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—0.3411  —0.0921
0.0000  —1.4339
B, =| 0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.4698 03589  —0.4508 0.4590
—02230 05103  —03057 —0.7319
V,={—-04080 03992  —0.4025 0.3633
0.6664  0.4296 03136  —0.1973
—0.3450  0.5165 0.6655 0.2875
g | 06915 07224
b [—0.7224 —0.6915]
Deadbeat correction:
0.0834 02060  0.6562  —0.2194
0.4124 13353 02279  —0.4733
A, =|-00106  0.1477 04741 0.3668
0.0024  0.0079  0.0005 0.0025
0.3841 12531  0.0719 0.3965
~0.1159  —0.1909
—0.0177  —1.0405
B,=| 03203  —0.0284
00000  —0.0061
0.0000  —09720
0.3399 0.0518  —0.9390 0.0000
0.1113 0.7223 0.0801 0.0043
U={-09217 —00059  —0.3339 0.0012
—0.0572 0.2631  —0.0062 0.9227
—0.1387 0.6375  —00151  —0.3856
00683  —03467 —14736  -1.1091
“ [0.3952 1.2892  0.0740 0.4079
0.0000 00000 08129  —0.1687
0.0000 00000 01769  —0.8781
A,+B,.F,=[00000 00000  0.000 0.0000
0.0000  0.0000  0,0000 0.0000
0.0000  0.0000  0.0000  0.0000

—0.4863
—0.2463
0.6166
0.4838
—-0.2977

0.4892
0.9615
—0.0764
—0.5161
1.1372

0.0000
0.6778
0.1972
—-0.2760
—0.6523

0.0000
1.1700

0.2659
—-0.2559
—0.1097
—0.5232

0.0000
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F=I/b.Fx,I/a’=[:

“F U= 1;3890 —0.3656 .0.4299 —1.1092 0.2193
sT et 101316 1.7759 —0.1654 0.3695 —0.1545

(A, + B,F,)3||, = 3.4552D — 17
—09352 —04122 —13473 03791 —1.1900
—0.4960  —0.5746 03072 —13376 —0.0786

l(4+ BF)*|, = 3.7697D—17

These errors clearly illustrate the stability properties discussed above.
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