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Abstract

In this paper we give an algonithm for obtaining factorizations P(A) = Py(A)- P2(A), where
P;(X) and/or Py(A) are polynomial matrices and P;()) is regular. Moreover the factors
Pi(X) and Py(A) are such that either the poles of [P1(A)]7! and P,(A) are in a prescribed
set ' of the extended complex plane, or their zeros. Such factorizations cover e.g. the
specific cases of coprime factorization, polynomial factor extraction and GCD extraction.
The algorithm works on the state space (or generalized state space) realization of P(A)
and derives the corresponding realizations of the factors.

1 Introduction

Several problems occurring m the literature of linear systems theory can be rephrased as
a factorization problem of soine rational matrix R(A). We consider a certain class of such
factorizations, namely where the p x m rational matrix R()) is factored into a product of

two rational matrices :
R(A} = Ri(A)- Ra(X), (1)

where R;(A) is pX p regular and of minimal degree and where, given a set I' of the extended
complex plane, one of the following two conditions is satisfied :

a) the poles of R{*(A) and Ry(\) lie in T (2.a)

b) the zeros of R{'(A) and Ry(A) liein T (2.b)
We give a general algorithm for obtaining such factorizations using the state space (or
generalized state space) realization of R(A) and yielding the corresponding realizations
of the factors. Applying this to problems involving polynomial matrices, one solves the
following standard polynormal factorization problems :

1) Coprime factorization

Given a p x m rational matrix R(A), one wants to find polynomial matrices D(X) and N(X)
with D(X) regular, such that R(X) = D~'(A)- N(A). This fits into the above formulation
with condition (2.a), where 1 . {cc}.

2) GCD extraction

Let P;(X), 4,1, -, k be a set of polvnomial matrices of dimensions pxm;, then their greatest
common (left) divisor (GCD} 1s defined as the regular polynomial matrix D(XA) such that :
P(A) = D(A)- Q(A) where P(A\) . "Pi{A),---, Pe(A)] and Q(A) = [Q1(A), -+, Qr(A)] and
where the quotients Q(A) form together a polynomial matrix Q(A) with no Smith zeros
anymore. Hence, both D~1(A) and Q(A) have all their McMillan zeros at oo, which is thus
condition (2.b) with T' = {oc}

3) Polynomial factor extraction

Given a p x m polynomial matrix P({A), one wants to find a p X p regular divisor Pi(})
which contains all the zeros of P(\) inside a set I'y not containing the point at infinity :
P(X) = Py()\)-Py(A). Thefactors P! (A) and Py(A) have thus their zeros in the complement
I' = T'y and this factorization then satisfies (2.b).
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We show in the sequel that there always exist such factorizations for any set T' and
that they are in fact far from unique unless some additional conditions are imposed. We
typically require the (McMillan) degree § of R;()) to be minimal, which implies that

a) 6(Ry) = #poles of R(A) outside T (3.a)

b) §(Ry) = #zeros of R(A) outside T (3.b)
depending on the choice {2.a) or (2.b) for the factorization (1). Notice also that to each
factorization of the above type there corresponds a “dual” factorization where the role of
Ri(A) and Ry()) is interchanged. These are easily obtained by working as above on the
transpose of R(A) and transposing back the obtained factors. These dual factorizations are
often called a “left” and “right” factorization, respectively.

Although the above theory holds for proper rational matrices (since we suppose R(})
has a state space realization), we can apply it here to polynomial matrices. One can
indeed always perform a lst degree conformal mapping A = (ap + b)/(cp + d) which
does not affect the degree of rational matrices and which turns P()) into a proper rational
matrix R(u) = P(%)‘ The set T'()) of course has to be transformed accordingly to I'( ).
Another way of by-passing this difficulty is to use generalized state space realizations [14],
but since the theory is slightly more involved then, we prefer to stick to state space models.
Below, we therefore talk about rational matrices and their state space representations and
we only comment in the last section on problems involving polynomial matrices.

2 A recursive approach

For the development of our algorithm we were strongly inspired by [1], [4], [9]. There it is
shown that it is always possible to find a regular p x p rational transfer function C'(A) of
degree 1, i.e. with one pole y and one zero §, such that in the product Ro(A) = C(A)-R(}),
either § cancels with a pole (say ai) of R()), or ¥ cancels with a zero (say f;) of R(A).
For such a cancelation to occur, one of course needs § = «a;, respectively, ¥ = 8;, but in
the matrix case some additional vector conditions are required and can always be satisfied
as shown in [4]. Let us represent the rational matrix R(\) via its poles {a; | i=1,---,€}
and zeros {3; | j = 1,---, k}, then the product R;(A) = C(A) - R()) can be represented as
either of the following two

[q <ﬂ1,"',ﬂk> _ <leﬂ2~"'sﬂk> [é} </91,"',ﬂk> _ < 8,82, B ) (4,5)
I \fr, e B voag, - La )’ 7 Qypy s,y B a1, Q2,00 i ’
Here we use square brackets for regular rational matrices and round ones for (possibly)
singular rational matrices. The number of poles is by definition the McMillan degree
of the (regular or singular) rational matrix. Notice that for regular rational matrices,
this also equals the number of zeros, while for the singular case, the number of zeros
can be less than the McMillan degree {14]. Moreover, the inverse C~1()) of a regular
rational matrix has its poles and zeros interchanged. Therefore, from (4-5) one obtains for
R(\) = CTHA).Ra(A) = Hu(A) Ra(N):

(Bt 2] (et o <ﬂ1,~~~,ﬁk> B [@} , <6,ﬁ2,---,ﬁk> 6
ap, ",y aq Y. Qo 0y Qap,,Qy & Q1 ,0y ’ !

It is shown in [4] that in the construction of C(A) in (4) the pole ¥ can be chosen arbitrarily
while § is fixed since it must cancel with a;. If a; would have been the only pole of R())
outside a given set I', then the factorization (6) with R;(}) = C~!(}) would correspond
to a factorization as described in section 1. All conditions would indeed be satisfied iff 4
was chosen inside I' as well, which is always possible as indicated above. The same holds
for (5) where ¥ = f; cancels a zero 3 of R()). If §; was the only zero outside T, then
(7) would satisfy all conditions of the factorization described in section 1, provided § was
chosen inside T'. The factor ("(A) in (4-5) has thus “dislocated” one pole a; = § (resp. zero
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B1 = 7) outside T' to a pole 4 (resp. zero §) inside T, this using a factor RTY(N) = C(N)
which itself has a pole 7 (resp. zero §) inside I'. When several poles {a; | ¢ = 1,---,£o}
(resp. zeros {B; | j = 1,---,ko}) are outside T, they can be dislocated recursively one after
the other by such first degree sections C;() as described in (4-7). This then yields :

B L e O

¢ 621 [6 Biv B Broyr B (01 8k Broyyy o Br
ORERCH ) ) o
At fd LA ag,az, oy ay,az,c 0y
Considering the product of the regular factors C;(}A) as Rl_l(/\) and the right hand side
as R,(A), this certainly satisfies the imposed conditions since (1) R;(}) is constructed to
be regular, (2) the poles (resp. zeros) of Ry(A) and Ry '(A) are in T by construction and
(3) the degree of R,()) equals the number of poles (resp. zeros) to be moved inside T.
Notice that the latter also sheds some light on condition (3) of minimal degree. Indeed,
any solution R,(A) to (1-2) has degree at least equal to (3) as is easily seen from the above
discussion. The above recursive scheme thus allows us to generate factorizations of the
type described in section 1, and this for any given set I
The major disadvantage of the above “transfer function”-approach is its complexity. First

one computes the poles (and zeros) and the partial fraction expansion of R(A). From
the coefficient matrices of this expansion one constructs the C;(\) factors and after each
pole/zero cancelation with a factor C;(A), the expansion has to be updated. The most
appealing methods for calculating poles and zeros use state space models [5]. One could
then as well try to solve the problem using this parametrization, which is now done in the
next two sections.

3 Dislocating poles in state space

Since we assumed (without loss of generality) that R(A) has no infinite poles, it has a
realization quadruple {4, B,C, D}, ie. R(A) = C(AI — A)"!B + D, which we denote as :

RO\ ~ [%ﬁ] (10)
RN ~ [%%] . (1)

In order to construct a quadruple for the product Ry(A) = Ry*()A).R()\) we make use of
the following lemma, which can be found implicitly in the literature ([2], see also [12]).
Fla AlB
H|J C|D
a realization of the product of the two corresponding transfer matrices (in that order) is
quven by the constant matrix product :

Let also

and

Lemmal: Let

] be realizations of two transfer matrices, then

F ol|G IO‘O F GC|GD
0 Ijo|- |0 a B! =|0 Aa|B[. (12)
H 0|J 0o C[D H JC|JD

We now derive necessary and sufficient conditions for canceling the poles of a transfer
function R(X). Let us choose a mimimal realization (10) for R(A) where A is in Schur form
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and where the eigenvalues of A outside T are all grouped in the top left corner A;;. Let
1s assume that the blocks A,, have dimensions n; X n; for i = 1,2 (where n = n; + n2) :

(13)

(such a realization can always be obtained by updating (10) with a wnitary state space
transformation) [13]. Then the canceling factor R7'(\) will thus have degree n; according
to condition (3). Let its minimal realization be given by (11) where F has order n;.
Following Lemma 1, a (non-minimal) realization for Ry(A) is then given by :

F |G I, F GC, GC,|GD
I, © An A | By | _ An A | By (14)
0 In ) 0 Ay |By | Az | By

H | 7 ¢, C | D H JCi JC,|JD

This has all its poles inside I' iff the eigenvalues of A;; are either unobservable or un-
controllable, since Ay, 1s I'-stable by assumption and F' is chosen to be I'-stable. Since
we assumed (13) to be a minimal realization, the eigenvalues of A;; are controllable in
(13) and hence also in (14). Let X be the invariant subspace of (14) corresponding to the
eigenvalues of Aq;. This space 1s uniquely defined since the spectrum of A;; is disjoint
from the rest of the poles of (14). A basis for X is easily seen to be :

X =< |Iy| >, (15)
0

where X is the (unique) solution of the Sylvester equation :
XAy - FX = GC,. (16)
Since this space must be unobservable one has [H,JC;,JC,]X¥ =0 or :
HX + JC; =0. (17)

A reduced realization for R3(\) is then obtained using the state space transformation

L, -X o0 I, X 0
T I, 0 | ,T= I, 0 |. (18)
I, I,

Performed on (14) this vields. because of (16)(17) :

F 0 G -XA | GD-XB,
o AL A \ 5, F GCy— XA, |GD— XB,

~1 o0 An B,
0 0 Az B, ’
H 0 I D #oJ& [ D

(19)
which again has state space dimension n; + ny. Summarizing we thus proved the following
theorem (see [12] for more details).

Ra(A) ~

Theorem 1 : Let R(X) be a p x m rational matriz with a minimal realization of order
n = ny + ny as given in (13). where A(Az2) C T and A(A11) C T, the complement of T.
Then Ri(A) and Ry(X). realized by

F GCy- XA, |GD - XBy
} CRy(M)~ | O Azz By , (20)
H JC, | ID

R () ~ [f, |

D
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satisfy the requested conditions of the factorization (1-3) iff (1) {F,G,H,J} represents a
regular transfer matriz, (1)) A(F) C T, and (1) the following equation is satisfied :

iG]
Hﬂ(fj

The question now of course remains how to find matrices F,G,H,J and X satisfying the
conditions of Theorem 1. We know from section 2 that such a solution must exist, but
we would like a constructive proof not relying on this section. For this, one shows that
the regularity of the system {# G, H,J} implies X to be invertible. Indeed, from (21)

X

X
= [T] A (21)

- e

it follows that

and X must have the same rank and hence the same kernel, say
1

N. But then (21) also implies that A;;A” C A, and hence A must be an unobservable
subspace of {A11, C1) which contradicts the assumptions (for a more detailed proof, we
refer to {12]).

Lemma 2 : Let (A1),Cy) be observable and let {F,G,H,J} satisfy (21). Then
{F,G,H,J} represents a reqular system only if X 1n (21) is regular. Moreover, the eigen-
values of Ay, - i.e. the poles of R(A\) - to be canceled are the zeros of the regular system
{F.G,H,J}.

Since X is invertible it can be “absorbed” into the quadruple {F, G, H,J} as a state space
transformation. Putting

{F.G.H J} - {X'FX, X7'G, HX, J}, (22)

it follows indeed from (21) that we are looking for a system {F,G, H, J} satisfying :

Gl e

and this is easily solved via the following procedure :

Algorithm 1
Step 1 : Determine F',G, with A(F) ¢ T by solving the pole placement problem :
F = Ay, — GC,. This has always a soluticn since (A11,Cy) is observable.
Step 2 : Determine [ H | J [T as any basis for the null space of [ I, | CT |, i.e.
[H|J] = M[-Cy|I]for an arbitrary :nvertible M.
Since the regularity of the system {F,G, H, J} follows from the invertibility of J= M,
all conditions of Theorem 1 are satisfied. We have thus derived here a constructive proof
that the undesired poles of a transfer function R(M\) can be canceled by a regular transfer

function Ry*()) whose degree equals the number of poles to be canceled (here n;), whose
zeros will be those unwanted poles and whose poles can be chosen arbitrarily in T

4 Dislocating zeros in state space

Here we consider the case of canceling the undesired zeros of R(A) that are outside a
specified set T by the poles of K, '(A). As before, let (11) be a munimal realization of the
factor Rl_l(A) and let n; be its state space dimension. Then according to Lemma 1, the
product Ry(A) = R7Y(A)- R(A1 s realized by :

F GC|GD
Bofdi~ | 0 A | B | (24)
H JC|JD

We would like the poles of R, '(A) - e the spectrum of F — to cancel with the undesired
zeros of R(A), which are assuned to be ny in number. Since the (F, H )-pair is observable in
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(11) it is also observable in (24) and the spectrum of F in (24) must thus be uncontrollable.
Since (A, B) is controllable in (24) the controllable subspace &’ of the realization (24) must
be of the form [3] :

x=<|X ] >, (25)
In
where X satisfies (3] :
XA-FX=GC; XB=GD. (26)
. I, X . .
The state space transformation T = I applied to (24) then yields :
F 0 0
Ra(A) ~ | 0 A B I, (27)

H JC+HX|JD

where we used (26) for the zero blocks in the top row of (27). Condition (26) is only a
necessary condition for the pole-zero cancelation to occur (see [12] for an example where
(26) is met and no pole-zero cancelation occurs). Additional conditions have to be imposed
on X in order to enforce a zero dislocation. In order to do so one has to explicitate first
what zeros of R()) have to be dislocated as was e.g. done in (13) for the poles. A similar
decomposition for the zeros is now derived using the following lemmas, proven in [11]} :
Lemma 3 : Let U be any invertible transformation such that
[M:A Bl »_ [AE—AIAB—F]

28
-C D o | D (28)

where has linearly independent columns. Then the generalized eigenvalues of ME — A are
the zeros of R(A) = C(A - A)"'B+ D.

Notice that, since [-C | D |-U = [0 | D |, rank.D equals rank.(]—C | D ]) and the number
of columns 7 of D and m of D may thus differ. We also remark that in practice one uses
unitary matrices U, which yields a numerically stable construction of what was called the
zero pencil (\E — A) in [11]. The use of unitary matrices is also maintained in the following
lemma, leading to the separation between two parts of the spectrum of AE - A,

Lemma 4 : Let AE — A be an arbitrary singular pencil with spectrum A(E, A) - i.e.
A(E,/i) is the set of generalized eigenvalues of (/\E' - A) Then for any complementary
sets T and T, of the eztended complez plane separating A(E, A) in two disjoint parts Ap
and Ar_, there ezist unitary transformations Q and Z such that :

L ABiy — Au AE;z— A ABin- A
Q" (AE-4)Z = 0 AEg; — Asz AEy3— Agz |, (29)
0 0 AE33 — Aga

whereby (1) A(E“,Au) = Ar , (Ezz,Azz) = Ar y A(E33,A33) = 0 (u) /\En - A“ ta
right invertible for A € ., (1) AEys — Ay, is invertible for A € T, and (iv) AE33 — Aay is
left invertible.

This essentially says that there exists a (generalized) block Schur decomposition (29) with
the generalized eigenvalues of AE — A inside T gathered in AE;; — A;;, and the remaining
ones gathered in AEj; — Az,. This leads to the following theorem (proven in [12]).
Theorem 2 :  One can always update a minimal realization (10) by a unitary state space

transformation Q such that its zero pencil (28) is automatically in generalized Schur form
(29), ie. :

AL, — A ~A12 —A;3 B,
Q*(AI — A)Q l Q"B _ —Ag; Aln, — A2z —Aass B, (30)
-CQ | D —As —Asz AL, — Azz | B3

oA —C; -Cs | D



and
Al — An — A1z -Ajs B
—An Aln, — Az ~Azs B, v

—Aa — Az A, — As3 | Bs
e ~C, G, |D

AEy - Ay /\1?12 - 412 ’\Els - A13|/\F1 Bl m

0 AEgy — Agy AEas - A23|'\Fz - B, }na

0 0 AE33 — Ass|\F3 — By }na

= 0 0 o | D }p (31)

iy g iy ™
where AE1; — Ayy, AEss — Ay and AEss — Asy satisfy conditions (i)(ii)(i4i)(iv) of Lemma
4 (hence 7y > ny, fig = ng, N3 < ng).
Without loss of generality we can thus assume that our state space realization is in a form
satisfying (31) where AE,, — Agy contains the zeros of R(X) to be dislocated. This form is
to be considered an analogue to (13), now isolating the zeros to be canceled in a separate
block AE32g — Azz. The fact that now there is a third block AE33— Ass is due to the possible
singularity of the pencil (30-31) ~ and hence of R(A) (see [11]). Indeed, when R(A) happens
to be right invertible, so will (30-31), and the block AE33 — Ass vanishes {11]. We are now
ready to formulate a theorem on zero dislocation analogously to Theorem 1.
Theorem 3 :  Let R(A) be a p x m rational matriz with a minimal realization of order
n=mny+mny,+ nsz as given mn (30-31), where A(Ell,All) CT and A(Ezz,Azz) C T, the
complement of T and A(E33,A33) = 0. Then R{(\) and Ry()), realized by

T~ [‘F] Ba(d) ~ [‘fcf—?}ﬂﬁ] (32)

satisfy the requested conditions of the factorization (1-3) iff (i) {F,G,H,J} represents a
reqular transfer matriz, (ii) the zeros of {F,G,H,J} lie in T, and (iii) the following
equation is satisfied for the ny x (ny + ny + n3) matric X = [0 X; X3 :

%’%]:F-[X 0], (33)

For the construction of a solution to the above theorem, we can again “absorb” the invert-
ible factor X, into the quadruple {F, G, H,J} as a state space transformation. Putting

{F.G,H,J} = {X;'FX,, X;'G, HX,, J}, (34)

x o]

with X, tnvertible

it then follows that we are looking for a system {F G, H, J} satisfying :

R By — Agy AEgg — AggAFy — By
[I v ¢l 0 Mgy — A APy = By | = [M-F)}[ Bn Y2 Vi) (35)
0 | D
and this is easily solved via the following procedure :
Algorithm 2

Step 1: Put F AZZEzz
Step 2 : Solve Y3(/\E33 - A33) (AT - F)Y3 = (z\E’za - /iza) for Y3 and Vs (see [10][8])
Step 3 : Put ¥, = Fz + Y3F3 and solve G from GD = Bz + Y3B3 - FY,
Step 4 : Choose H, J such that the zeros of {F, G, H,J} lie in I For finite zeros
this is a pole placement problem since then J is invertible. Choose then X such that
A(F + GK) C T and then solve for [ H J |7 as any basis for the null space of [ I, | KT I,
ie. [H|J] = M[~K | I]for an arbitrary invertible M.
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5 Conclusion

In this paper a method was presented to perform factorizations involving polynomial ma-
trices, with constraints on the poles and/or zeros of the factors. The method uses a
state-space approach in contrast to recursive solutions using transfer function techniques
(1], [4], [9)- The main advantage of the present method is its algorithmic simplicity : first
the poles/zeros of the original matrix are computed via a (generalized) Schur decomposi-
tion of the corresponding state space model. From thereon, one merely has to solve a pole
placement problem in order to find the realizations of the two factors (this is just a set of
linear equations to solve '). A similar “block”-approach was also recently used in [6] for a
related problem. In contrast to the recursive transfer function approach, all poles/zeros can
be dislocated simultaneously, which is useful when real factorizations are requested (this is
more involved in the transfer function approach [9]). On the other hand, it is shown in [12]
that the state space method can also be implemented in a recursive fashion, which is useful
for other types of rational factorizations (inner-outer factorization, all-pass extraction, ...).

Notice that the strength of the present approach is the use of the Schur decomposition
as a starting point for the construction of the factors. For problems as coprime factorization
and GCD extraction, it could be argued that no eigenvalue computation is required since
these problems can be solved in a finite number of operations. But the use of eigenvalue
methods here can be compared with the solution of Sylvester and Lyapunov equations
(these are also sets of linear equations !) where again Schur methods prove to be attractive
from a computational pomt of view (see [7], [13], [8]).
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