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ON THE USE OF UNITARY STATE-SPACE TRANSFOSMATIONS
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ABSTRACT. Canonical forms of state-space models of multivariable sys-
tems have often been proposed for solving certain analysis and design
problems encountered in linear system theory. In this paper we show
that for many problems one can as well make use of so-called condensed
forms, which can be obtained under unitary state-space transformations.

It 1s shown that the use of these forms has lead recently to ele-
gant and numerically reliable methods for solving several problems for-
mulated in terms of state-space models. It is then also stressed that
these forms are likely to yield a promising approach for other problems
as well as e.g. problems in generalized state-space models.

1. INTRODUCTION. Several basic problems encountered in areas such as control
theory, network theory, stochastic systems, are (or can be) formulated in terms
of (generalized) state-space models and are often tackled then by using tech-
niques borrowed from numerical linear algebra [1J02]C03]CLIC5]IC61C7IC81C91C10]
[521053). In this area, unitary transformations have become a major tool in the

development of reliable numerical methods, this for two reasons

(1) because of the numerical sensitivity of the problem at hand. The sensitivi-
ty of several problems in linear algebra can indeed be expressed in terms of
certain norms, singular values or angles and each of these are in general in-
variant under unitary transformations. Unitary transformations therefore allow
one to reformulate the problem in a new coordinate system (usually more amena-
ble for solving the problem) and this without affecting its sensitivity.
Typical examples of this are the QR decomposition [11] and the SVD
decomposition [12] |, both used for constructing least squares solutions to 1li-
near systems : they reduce the least squares problem minliAx-—b"2 to a solvable
but smaller linear system, without altering its sensitivity (the latter is e.

* *
g. not the case for the methods using the modified system A Ax-A b=0) [13] .

(ii) vecause of the numerical stability of the algorithm used for sclving the
problem. Most decompositions involving unitary transformations can be obtained

by a sequence of Givens transformations or Householder reflections [14], each
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448 P. VAN DOOREN AND M. VERHAEGEN

of which can be performed in a numerically stable manner. The concatenation
of such transformations can also be performed in a backward stable manner.
Numerical errors resulting from previous steps are indeed maintained in norm
throughout subsequent steps because these transformations (and their inverse)
have 2-norm equal to 1. This, of course, should be checked carefully for each
decomposition under consideration (see e.g. [141[151).

Although unitary transformations are slower than e.g. elementary trans-
formations (generally by a factor of 2 for a comparable decomposition), the
above two points are the main reasons why they became so pcpular. This is es-
pecilally true for iterative algorithms where the distortion of the sensitivi-
ty and loss of accuracy can become significant when using non-unitary trans-
formations. Typical examples of this are the QR and QZ algorithms [161[171,
vhichin general are preferred over the comparable LR and LZ algorithms [15]
[18] for solving eigenvalue and generalized eigenvalue problems, respectively.
In such iterative algorithms it is also important (as well for unitary as for

non-unitary methods) to make use of so-called condensed forms in the implemen-

tation of each step of the iteration. The reduction to such a condensed form is
usually done only once and is then maintained throughcut the iteration, there-
ty resulting in a significant saving of computing time. The best example of
this is the Hessenberg form used in eigenvalue problems, which is constructed
in the initial step of the algorithm and is then maintained in all the subse-
quent steps of the algorithm [141015101610171018].

In this paper we show how to use such condensed forms of systems of ma-
trices {A,B,C,D} arising in state-space models, in order to speed up certain
algorithms using these systems. It turns out that these forms not only allow
to make savings in computing time for existing algorithms, but they also are
of valuable support in deriving new algorithms. This is shown hereafter by
surveying a number of recently derived algorithms, each of which uses condensed
forms in one way or another.

In the next section we give different types of condensed forms that
have been proposed for systems of matrices {A,B,C,D} representing state-space
models. The following sections are then devoted to different applications of
these forms 1in specific analysis and design problems using state-space models.
We then end with a section showing how to extend some of these ideas to some

open problem including generalized state-space models.

2. CONDENSED STATE~SPACE MODELS. As suggested in the previous section we res-
trict ourselves here to the use of unitary transformations for reasons of sen-
sitivity and numerical stability. Similar results, though, alsoc hold for ele-

mentary transformations in most of the applicatilons mentioned in the sequel.
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By condensed forms we thus mean here forms that contaln as many zeros
as possible and were obtained under unitary transformations. Since our system
of matrices {A,B,C,D} corresponds to a state space model (with A standing for
the differential operator in the continuous time case and for the shift opera-

tor in the discrete time case)

Ax

Ax + Bu

(1)

Cx + Du

y

we restrict ourselves to unitary state-space transformations U {of the n-vector
x), input transformations V (of the m—-vector u) and output transformations W

(of the p-vector y). The transformed system (1), using :

x, =Ux;u =Vu,;y =W {(2)
thus has the corresponding quadruple {At, Bt’ Ct’D} » Where
» » #*
A, = UAU ; B, =UBV ; C,_ = WCU (3)

t t e

with U,V and W unitary matrices. In practice, n is considerably larger than m
and p and most of the zeros will therefore be obtained in At by appropriately

choosing U. The four main condensed forms encountered in the literature are

v

(1) the Hessenberg form, where A is upper Hessenberg.

(ii) the Schur form, where At is 1n upper Schur form.

I
(iii) the controller-Hessenberg form, where the compound matrix [Bt' At] is
!

upper trapezoidal A
(iv) the cbserver-Hessenberg form, where the compound matrix [—bz-—} is upper
trapezoidal. ¢
These forms are illustrated below for m=3, n=7, p=2
(X X X} X X X X X X X]
xxx!'xxxxxxx
xxx'0xxxxxx
Bh ; Ah X x x' 00 xxxxx *,
-——+ -] = xxﬂOOOxxxx ()
D : Ch X X x: 0000 xxx
XXX, 00000 xx
x ;';i_i_x_x_k_k-k_k-
. Lx XX1XXXXXX X]

st
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XXX XXXXXXX

x xxy30xxxxxx

xxx]00xxxxx

Bs | As xxx|000xxxx
- —f—~— = xxx|0000xxx (5)

Do Gy xxx|00000xx

xxx[{000000Xx

X x Ek—f_x_x—k_ X x|

X X| X XX XXX XJ

X X X1 X X X X X X X

0 x xl X XXX XXX

00 x| XXX XXXX

Bc : Ac 00 O: XX XXXXX
-———-] = ]000)0xxxxxx (6)

Do € 000j;00x xxxX

000}J000xxxx

X x ;j_£_£“£j£3{3{3;

 x x x|l x x x xx x x|

[ X X)X XXXXXX

XXl xxxxXxXx

xxx)xx xxxxx

Bo | Ao xxx!o X X X XXX
- —:—-—- = Ixx x: 00 xxxXxX (7)

b G xxx 000xxxx

xxx]0000xxx

XXx;00000 x x|

x xx|00000 0 x]

where the x's denote arbitrary elements. Notice that the first form has
(n-2)(n-1)/2 zeros, while the other three forms have as many zeros as each
other, namely n(n-1)/2. Some slightly modified forms exist as well. In order
{0 obtain the Schur form (5), one needs in general complex transformation ma-

trices even when A is real. A so—-called real Schur form for real A matrices

will indeed have 2x2 bumps on the diagonal corresponding to the pairs of comp-
lex eigenvalues [161. Its number of zeros is thus between the forms (4) and
(5). Variants of the forms (6) and (7) are the so-called staircase forms [19]

[201C71C21302210231C101(2L4] . These variants all require rank tests, which

is reflected by the fact that some of the x elements are known to be non zero.

These elements are e.g. denoted by X's in the form due to Minimis & Paige [10]:

RS
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[0 X x | XX X xxXX x|
00X | xxxxXxXxX
OO0} XxxxxXxX
Bo : Ay 0001 0XxxxxxXx
——4--| =]0001 000X x xx (8)
D Cy 00010000Xxx
ocooloooooxx
XXX | XXXXXXX
{x x x| xxxxxx x|

Here we always have more than n(n-1)/2 and less than n(n+2m-1)/2 zeros, and
less than n(n+p-1)/2 for the equivalent staircase form of (7). Finally, one
can construct lower condensed forms corresponding to all the above upper forms,
by merely working on the dual quadruple {A*,C*,B*,D*}, Wwhere M* denotes the
(conjugate) transpose of a (complex) matrix M. Notice that only the staircase
forms require more than a state-space transformation U : an input transforma-—
tion V is needed to obtain the form (8) and an output transformation W is nee-
ded for the staircase form corresponding to (7).

The algorithms yielding these different forms all have a comparable
complexity : the number of flops required for the forms (L)(5)(6)(7)ana (8)
roughly are n2(3n+m+p), n2(5kn+p+n), n2(3n+m+p), n2(3n+m+p) and n2(3n+6m+p),
respectively. Here, k is the average numbér of QR steps used in the algorithm
yielding the Schur form (5), and is usually between 1 and 2 [14]. These opera-
tion counts include the construction of the corresponding state-space transfor-

mation U (and, if needed, V or W) yielding the corresponding condensed form.

3. EXPLOITING CONDENSED FORMS. The forms presented above gain specific inte-
rest when using them as part of another algorithm. Their zeros are efficiently
exploited in the following situations.

(i) updating Schur forms. Finding a (real) Schur form of a full n*n matrix
takes O(n3) operations. Yet, when starting from one Schur form, it takes only
0(kn) operations to obtain another one with a different order of eigenvalues
on diagonal [131[26]1 , where k is the number of permutations of two adjacent

diagonal elements needed to go from one form to the other.

(ii) performing an implicit QR step. This is normally part of the QR algorithm
vielding the Schur form in an iterative manner. Yet, when the eigenvalues are
known, it can be used as an efficient tool to obtain a Schur form with prescri-
bed ordering of eigenvalues on the diagonal [30] . Its complexity is O(n2) for
a single QR step, this for moving any given eigenvalue (or pair of complex con-

Jjugate eigenvalues) to the bottom corner of a Schur form.

ot BN
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(iii) further elimination to obtain a QR decomposition. The amount of computa-
tions needed to obtain a QR decomposition of an m*n matrix with only k subdia-
gonals 1is roughly kn2 (when m > n). This decomposition, used for inverting
square matrices or solving least squares problems involving arbitrary matrices,
may thus be performed economically for such matrices with only few subdiagonals.
These three basic tools of numerical linear algebra now appear to be
useful in several problems occurring in linear system theory and happen to be
economical when the given system quadruple {A,B,C,D} is in one of the condensed

forms given above. A few applications are given in the next sections.

4, LINEAR STATE FEEDBACK. Several methods have been proposed for solving the
problem of pole placement via linear state feedback, i.e. specifying the spec-
trum {X1,..., Xn} of (A+BF) where A and B are two matrices of a given state-
space model and F is to be chosen. We here describe a few methods which make
use of condensed forms.

A first method, due to Varga [9] , uses the system {AS,BS,CS,D} in Schur form
as in (5). By performing a feedback F‘1 with only non zero elements in the last
column, one obtains a feedback system (As+BsF1) which is still in (ugper tri-
angular) Schur form and whose bottom eigenvalue can be assigned arbitrarily
(e.g. to X1) by an appropriate choice of the non zero elements in F1. One of
course can not use the other columns of F to place to another eigenvalues wi-
thout destroying the triangular form of (AS+BSF). But, instead, one can use

a reordering technique as described in 3.(1) to move the assigned eigenvalue
Ay to the (1,1) position of the Schur form by a unitary state-space transfor-
mation Ul' In this new coordinate system one can now use a second feedback F2,
agaln with only non zero elements in the last column, to assign the bottom ei-
genvalue to X2. This assigned eigenvalue is then moved in turn to the (2,2)

position of the Schur form by an updating unitary transformation U,. This pro-

cess 1s repeated untill all n eigenvalues Xi are assigned. This meihod works
as well for single input as multi-input systems and its complexity is O(n3).
Another method, due to Miminis & Paige [10]} , starts from the staircase form
(8). For a single input system, A, is then in Hessenberg form and B, has only
one non zero element. It is shown in [10] that, using an implicit QR-step on

AC with shift Xl one then comes to the configuration :

[ x X1 | xxXxxXx |
-fTE)—_l—Q;;QQQ
0O O X x X x xx
* 010 ' 00X xxxx
fu,B, lUl(Ac+BcF1)U1] =to]lo ! ooxxxx (9)
0J]0 } 000X xx
0] o 1 0000%X x|

PO
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when appropriately choosing F1. This now displays the eigenvalue A1 which is
already placed and a complementary subsystem which is again in staircase form,
but now of dimension reduced by 1. The same idea is then recursively applied
until all the eigenvalues Ai are assigned. The complexity is here again O(n3)
since each QR step is of O(n2) as explained in 3.(ii). The extension of these
ideas to multi input systems is described in [10].

A third method, due to Kautsky, Nichols & Van Dooren [27], is specifically de-
signed for multi input systems, and uses the degrees of freedom that are still

available in the choice of F, to minimize the sensitivity of the assigned eigen-

values Ai. In a sense it thus tries to find a solution that is as robust as pos-
sible. This then becomes an optimization problem which would become very expen-—
sive in computing time if one would not make extensive use of condensed forms.
The eigenvector X corresponding to each assigned eigenvalue Ai must indeed

} A22—AiI] , Where A . and A

belong to the null space Si of the matrices [A o1 5

21
are submatrices of the staircase form (8)

[0 X x| x XX xXxxx
. OO0X|xx|xxxXxxXx
—_———_ - —_— —_— — —_ —_- —_ =
51 A11 |A12 0O00) X x| xxxXxX
—d o __J1_]000}10X1xxxxxX (10)
0 | Ay A 0coolooloXxxx
ooofloolooxxx
loooflooloooxx]

These null spaces Si are obtained by computing the RQ decomposition of the ma-
trices [A21 [ A22—Xi1] which can be done cheaply because these matrices are
already nearly upper triangular. After that, the core of the iterative algorithm
consists of updating the choices of the eigenvectors X from these spaces Si

in order to minimize a certain sensitivity function. Here again updating QR de-
compositions of nearly triangular matrices, makes it possible to obtain an al-
gorithm yielding a satisfactory solution within O(n3m) operations.

Finally, a fourth method, due to Van Dooren [28], solves the deadbeat control
problem for multi input systems. Here the minimum norm feedback matrix F is
computed that assigns all the eigenvalues Ai at zero and, moreover, minimizes
the lengths of the corresponding Jordan chains. The algorithm makes extensive

use of the staircase form (8) of the system, in order to build recursively the

minimum norm solution F to this problem. Due to the use of this condensed form,

the complexity of this algorithm is o(n3).
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5. KALMAN FILTERING. In this problem [29] one considers the stochastic signal
{y(k)} generated by the (time invariant) system :

x(k+1)
y(k)

where u(k) and v(k) are independent white noise sequences with (fixed) covaria-

A.x(k) + B.u(k) (11)
C.x(k) + v(k)

nces Cuu and va, respectively. One of the most suited methods to solve this

problem is the so-called covariance square root filter, whereby one has to per-

form, recursively, QR factorizations of the compound matrices

C 0 i i
u
* * (
Q sk.c Sk.A = 0 skH 12)
*
0 C _.B 0 0
v

Here, Cu’ CV and Sk are upper triangular Choleski factors of the positive

definite matrices

* * *
3 C =CC ;P

vv vV k=sksk (13)

whereby Pk is the covariance of the optimal state estimator at time k. Given
PO, the above recursion thus allows to compute all these covariances and from
this the Kalman filter 1s then easily constructed. When now choosing the dual
state-space system {A*,C*,B*,D*} in controller Hessenberg form (6), a substan-
tial part of the matrix to be triangularized is already zero [30]. For m=3,

n=7, p=2 the decomposition (12) indeed looks like :

(x x10000000 X X| XXXXXX x|
0x}J0000000 OxIXxXXXx XX

X X rk_x_k—x_k_x_kn 6'6{_i_x_i_x—i_f_£"

0 x lx XXX XXX 0 O| Oxxxxxx

00 X X X X XXX 0] OI O0xxxxxXx

Q. 00;0xxxxXxX = |00;000xxxx (1k)

00 |O 0 xxxxx 0010000 xxx
00]000 xxxXx 00l0000O0x x
00[0000x x x 00|/000000 x| ™
0 5-[};3{3{3{3{3{3[. 5.6'rb_b—b_b—b_b_b"
0OO0pxxxxxxX 00l|0000O0O0CO
{oolxxxxxxxj Looloooooool

The number of elements that have to be zeroed is now clearly O(np+nm), instead
of O(n2) when not using condensed forms. Since this decomposition 1s the main

part of the Kalman filter recursion, considerable savings can be obtained when
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p and m are much smaller than n (which is usually the case). Similar savings
are also obtained when using the Schur form in both the sguare root covarignce
filter and square root information filter [30]

We also note here that the optimal control problem over a finite time interval
k is dual to the above problem [2] and can thus alsc be solved in a similar

fashion.

6. LYAPUNOV AND RICCATI EQUATIONS. For the solution of the matrix Lyapunov

equations :

* . .
AP+PA=-CC (15a)

*

*
P-APA=CC (15b)

efficient O(n3) methods have been described in [311032][33]. They all use the
Schur form of the A matrix in order to solve for P [311{32] or its upper tri-
angular Choleski factor [33] in a fest recursive manner. Solving the linear
systems of equations (15) using the sparse Kronecker product notation would
indeed yield a slower method, even when using sparse matrix techniques. The
solution of these equations can.e.g. be used for stabilization via feedback

or also in a recursive method for solving the Riccati equation [341:
* * *
CC+AP+PA-PGGP=0 (16a)

with
5G =BR B (16b)

In the latter case, it is more interesting to use the form (6) since one has

to solve recursively equations of the type [3L]:

*

AL . P

*
" k+1+Pk+1. Ak= -Lc Cfp

*
k.G.G .Pk] (17a)

where
*
A, = A-G.C .P (17v)
If [B: Al, and therefore also [G | Al, is in upper trapezoidal form as in (6),
then all Ak have the same pattern of zeros as A. When m=1, this then yields
automatically A, in Hessenberg form. This form, needed in the Schur reduction

of A

k
K? then does not have to be computed anymore. A reliable method of solving
the above equation (16), is also to compute the stable subspace (i.e. the in-
variant subspace corresponding to the eigenvalues with negative real part) of

the Hamiltonian matrix :

o E . L i Rt
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H = (18)

which can be done with the QR algorithm [6]1[26]. The preliminary reduction to
Hessenberg form which 1s thereby needed, is obtalned at no cost for a system
{A,B,C,D} in the form (7) when p=1, since it only requires a permutation of
rows and columns of A*. This idea can also be retrieved in the work of Byers
£35], who uses this form as a starting point for a QR algorithm which also pre-
serves the Hamiltonian structure (18) throughout the iterative process [36],
Such eigenvalue methods as [61[81[35] are in general to be preferred over other
iterative methods such as the Kalman recursion given in (12) or the Newton me-
thod given in (17) because of the quadratic convergence of the QR-type algo-

rithms.

T. OBSERVERS. For the construction of a Luenberger observer [37] for a plant

(1), one has to solve the Sylvester type equation :
TA - FT = DC (19)

where A and C are known and T,F and D are to be chosen. For a reduced order
observer, the restrictions on the solution are that F should be (n-p)x(n-p)
and stable, and that the compound matrix [El should be invertible [38] . An

early method proposed to solve this problei £37], is to choose F and C appro-
priately and then to solve for T in (19}. For this, one can use {as recommended
in [39]) a method where both A and F are put in condensed forms via unitary
similarity transformations (this amounts to state-space transformations in the

plant and in the observer)

. Tvu.Au- Fv.Tvu_= D,-C, (20a)
with
T v.T.u *
wu = VeTU 5 A = UAU (20D)
*
F. =V/F.v ;D =V.D; C=C.U
v v u
W&.‘

Here Au is chosen to be upper Hessenberg and Fv lower Schur.
This is illustrated below for n=6, p=2 ;

X X X XXX
XX XX XX A1 0 0 O X XX XXX
0 x x xxx x A? 0 O XX X XXX

Tvu 00xxxx| [x x A3 0] 'Tvﬁ= XX XXXX (21)
000xxx X X X Ay XX XXXX
0000xx

From this form one now easily soclves for Ty column by column (starting from
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the top one), provided that the eigenvalues Xi of F are disjoint from those
of A [39] . Another approach, inspired from the above one, is to use the obser-
ver-Hessenberg form for the plant (i.e. for A,C) and still the lower Schur form

for the observer (i.e. for F). For n=6, p=2, this e.g. gives

0000 xx
T Pelooooox] (22

2
OO O K X X
OO X X X K
O X M X XX
L T o T
Mo N K KK
Fa I B I I

|
L B
X K >0
n
X > O O
w
> O OO0

where now the right hand side is written in factored form. In [38] it is shown
that this form can now be used to solve for the columns of Tvu’ Fv and Dv

simultaneously, provided the eigenvalues Xi of F where chosen first. The ad-

vantage of such an approach 1s that more degrees of freedom are left in the
equation (22) which then allows us to look for a minimum norm solution, having
better robustness properties than other solutions [38]1. As in the previous
methods, one takes full advantage of the condensed forms to wind up with an

O(n3) algorithm for solving this equation.

8. POLES, ZEROS AND TRANSFER FUNCTIONS. For the computation of poles and zeros
of a system (1), one is recommended to use eigenvalue and generalized eigen-~
value techniques [SJL7I[40]. The use of the condensed forms (6) and (7) is
then particularly indicated when m=p=1. In bﬁth cases A is then in Hessenberg
form, which 1s the first step towards the Schur decomposition and thus the
poles of the transfer function. For the zeros of the transfer function h(1),

one considers the pencil [LO]:
A - AI | B
n
——=—=4-|=7T-2s. (23)
C { D

For n=6, m=p=1, and using the condensed form (7), this looks like :

X X XXX X)X 10000010
XX XXXX|X 010000 lO o
0 xxxxx;Xx 001000 .O B
T-A\S =|00xxxx,x|-x {000100 0 (2k)
000 xxxx oooo10lo
0000x X)X 000001;}0
00000 xy x| 00000010 |

This pencil 1s now in generalized Hessenberg form, which is the first step
towards the generalized Schur decomposition of (24) and thus the computation
of zeros of the transfer function. Moreover, as is shown in [41]1L42], the form

(24) is such that one readily extracts the output decoupling zeros and zeros
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at infinity by merely checking whether some of the elements of T are zero. A
similar result also holds for input decoupling zercs when using the condensed
form (6) instead of (7). This then leads to smaller dimensional (generalized)

igenvalue problems for the voles (zeros) of h()\) in terms of a matrix (pencii)
that is still in (generalized) Hessenberg form [41]. Together with the gain g,
the poles {Bi} and zeros {&j} are sufficient for reconstructing the trans-
fer function

h(A) = n(X)/a(X) = ¢ U(Aqaj)/ﬁ(x—si) (25)
J i

and the above approach is shown to be one of the most reliable tools to compute
this information [LOILL13[42] . This can also be used for computing the entries

hij(k) = nij(X)/dij(X) (26)
of the transfer matrix H(A) of a state-space system {A,B,C,D} with several in-
puts and outputs. Realizations for the single entries hij(X) are indeed given
by {A,Bi,Cj,Dij} » where B, is the i-th column of B, cj the j-th row of C and
Dij the (i,j) element of D. These systems are of course not necessarily minimal
but, as discussed above, all the information needed to reconstruct the polyno-
mials nij(X) and dij(k) is easily obtained from the controller - or observer-
Hessenberg form of these single input-single output systems. Deriving these

pxm condensed forris can now be done aﬁ‘relatively low cost since the updating
state-space transformation Uj for reducing e.g. {A’Bi’cj’Dij} to observer-Hessen-
berg form is the same for i=1,...,m. All pxm condensed forms are thus obtalned

in O(pn3) operations.

9. FREQUENCY RESPONSE AND SYSTEM RESPONSE. 1In [43] it is shown that using the
Hessenberg form (4), considerably reduces the amount of work needed to compute

the frequency responses

) = C(j w -A)  B+D o (27a)

k

-A)  EB+D (27b)

S
of a continuous-time and discrete-time system, respectively, when this is needed
for several values k=1,...,N. The inverses of the shifted A matrices in (27T)
normally require indeed O(n3) operations. When, on the other hand, A is Hessen-
berg, so are the shifted A matrices and each inverse only requires O(n2) opera-

tions. Let indeed Qk'R be the QR factorization of these Hessenberg matrices

k
(requiring 2n2 operations) then

-1 *
B, = (¢ R, )(QkB) +D, (28)
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. 2 . . -1 . .
which takes pn /2 operations for computing CR, , 4mn for QkB { since Qk is a

sequence of n Givens rotations) and pmn for finally obtaining H,_. When p is

small, the QR factorization thus takes most of the work, which Ean e.g. be
avoided by using the Schur form (5) instead. In [43] , how to deal more effi-
ciently with real matrices {A,3,C,D} is also addressed. If N is very high (say
more than 1000), this might still be too expensive and using the polynomials
nij(K) and dij(k), as defined in section 8, will yield a O(n) method (which
can be slightly less reliable, though).

For the computation of system responses (i.e. step response, impulse response,
transient response, etc.) one has to evaluate expressions of the type :

K .
v = ) C.a ThBau(i-1)ec.atX (29a)

T
I C.eA(T—t)
0

0

y(T) = .Boult).dt+c.e?.x(0) (29b)

For (29a) one has to build up the consecutive powers of A, which is cheaper
for A in Schur form and, to a lesser extent, for A in Hessenberg form. For
computing the exponential of a matrix the method of Pade approximation is par-
ticularly indicated [41CLLL]. Its implementation also requires the accumulation
of products of matrices which «an have up to half of their elements equal to
zero when a condensed form is chosen for iA,B,C,D}. For the convolution of
(29b) a numerical integration method for 6DE'S can be used, which again is more
economical when e.g. the condensed form (6) is chosen [4S], Finally, the same
holds also for the computation of integrals involving exponentials [4] , which
arise e.g. in the construction of Grammians. Other papers recommending the use

of Schur and Hessenberg forms can also be found in the ODE literature [461[LTI,

10. POSSIBLE EXTENSIONS. It has been shown in the previous sections that con-
densed forms are a useful tool in a lot of problems formulated in state-space.
These forms either lead to novel algorithms for certain problems (see sections
4 and 7), or allow one to speed up existing algorithms (see sections 5,6,8 and
9). The latter is especially experienced in algorithms of an iterative type,
i.e. where certain matrix operations have to be performed many times. ‘The pro-
totype example in linear algebra is of course the QR algorithm working on Hes-
senberg matrices. In this paper typical examples are given by the problem of
Kalman filtering and frequency response evaluation. Similar improvements may
also be expected in e.g. optimization problems since they often need iterative
methods to solve them. One example of this here is the robust pole placement
problem described in sec%ion k.

Another area where extensions can be expected is that of generalized

state space models
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AEx

Ax + Bu (30)

Yy Cx + Du

involving a quintuple of matrices {A,B,C,D,E} . Under the allowable transforma-

tions
* * * ¥*
A, = TAU ; B, =TBV ; C, =WCU ; E = TAU (31)

one obtains condensed forms similar to those of section 2

(i) the generalized Hessenberg form, where A is upper Hessenberg and E, upper

triangular.

(ii) the generalized Schur form, where At is quasi upper triangular and Et is

upper triangular.
|

\ At} is upper trapezoidal and

(iii) the controller-Hessenberg form, where [Bt

A

—;—] is upper trapezoidal and Et

(iv) the observer-Hessenberg form, where c
t

Et upper triangular. [

upper triangular.

These forms are thus identical to the above ones except for Et which is upper
triangular in each case, and was the identity matrix before. Variants of these
forms and number of operations to obtain them are comparable to what was stated
for state space models. Problems where these forms have been used or should

be usable are : pole placement [101,027] , optimal filtering [L8], Sylvester
type equations [39][L7] | pole and zero evaluation [7], optimal control [ic]
[50], deadbeat control [51] and so on.

11. CONCLUSION. The survey of numerical methods given in this paper has put
the emphasis heavily on the use of unitary transformations because of their
great importance in preserving the sensitivity of the considered problems and
in allowing for the derivation of numerically stable algorithms. It is shown
that so-called condensed forms constifute an intermediate step in many of the
reliable methods presently available in the area of linear system theory. It is
also stressed that the use of these forms can be extended to other problems

and will probably lead also there to good algorithms,again because. of the use

of unitary transformations.
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