SIAM J. SC1. STAT. COMPUT. & 1988 Society for Industnal and Apphed Mathemategg

Voi. 9. No. 3, May 1988 008

CONDENSED FORMS FOR EFFICIENT TIME-INVARIANT
KALMAN FILTERING*

PAUL VAN DOORENt anp MICHEL VERHAEGEN?

Abstract. In this paper, new numerical implementations are developed for several ‘‘classical™ types of
Kaiman filters. These impiementations are based on the choice of an initial state transformation which
“condenses” the original model and are therefore mainly meant for time-invariant systems. Since unitary
transformations are used to generate these condensed forms, no loss of accuracy is thereby incurred. The
use of these forms may lead to a complexity reduction of a factor of 7 in the subsequent recursions to
compute the stationary solution of the discrete Riccati equation. It is shown that therefore these new
implementations become competitive with the so-called “*fast Chandrasekhar™ implementation.

Key words. Kalman filter, square root filter, Chandrasekhar filter, condensed forms

AMS(MOS) subject classifications. 65F30, 65U05, 93E11, 93E25

1. Introduction. Since the appearance of Kalman's 1960 paper [8], the so-called
Kalman Filter (KF) has been applied successfully to many practical problems,
especially in aeronautical and aerospace applications. As applications became more
numerous, some pitfalls of the KF were discovered such as the problem of divergence
due to the lack of reliability of the numerical algorithm [6], [3]. Later on, more reliable
KF implementations were described such as the square root filters (SRF) proposed by
Potter and Stern in 1963 [13]. For these filters the reliability of the filter estimates is
expected to be better because of the use of numerically stable orthogonal transforma-
tions for each recursion step [12]. In terms of number of operations, these implementa-
tions can be made as efficient as the conventional KF, or for the Chandrasekhar SRF
even more efficient for some special 1nitial conditions.

In this paper the issue of complexity is addressed for the following filter types:
the Conventional Kalman Filter (CKF), the Square Root Covariance Filter (SRCF),
the Chandrasekhar Square Root Filter (CSRF), and the Square Root Information
Filter SRIF). New vanants of the CKF, the SRCF, and the SRIF are presented that
are mainly restricted to the time-invariant case. These implementations are based on
an appropriate choice of coordinate system (for the state space) which “condenses”
the model. Three types of such forms are given: the Schur form, the observer-Hessenberg
form, and the controller-Hessenberg form. These ‘“condensed forms’ are shown to
yield considerable savings in computations during the subsequent filter recursion.
Moreover, since unitary transformations can be used to obtain the initial condensed
form, no loss of accuracy is induced by the original coordinate transformation.

In a connected paper [16], the numerical properties of the different filters are
analyzed using a detailed error analysis and in [17] these methods are also tested on
the realistic problem of flight path reconstruction. There it is shown that the Chandrasek-
har SRF is in fact unstable, while the others are stable in a certain sense, which also
holds for the new condensed versions presented here in this paper. This makes the
- condensed SRCF and SRIF algorithms particularly appealing since they are then the
fastest reliable KF implementations presently available.

* Received by the editors January 22, 1986; accepted for publication (in revised form) May 12, 1987.

t Philips Research Laboratory, B-1170 Brussels, Belgium.
t National Aeronautics and Space Administration-Ames Research Center, Moffeu Field, California

94035.
516

NEW EFFICIENT KF IMPLEMENTATIONS 517

2. Notation and preliminaries. In this section we introduce our notation and list
the different Kalman filter types that are discussed in the paper. We consider the
discrete time varying linear system,

(1)) . Xy = AX + Bew + Dy
and the linear observation process,

(2)

where x, u,, and y, are, respectively, the state vector to be estimated (dimension n),
the deterministic input vector (dimension r) and the measurement vector (dimension
p), where w, and v, are the process noise (dimension m) and the measurement noise
(dimension p) of the system, and, finally, where A, B,, C,, and D, are known matrices
of appropriate dimensions (with nonsingularity of A, required for the SRIF). The
process noise and measurement noise sequences are assumed zero mean and uncorre-
lated:

o
Ve = Cexy +

(3) E{wk}=0’ E{vk}=07 E{kaj'-}=0,
with covariances
(4) E{ij;\'} = Qkajk, E{Ujv;(} = Rk‘sjk’

where E{-} denotes the mathematical expectation, ' denotes the transpose, and Q;
and R, are positive definite matrices. Now let the linear discrete-time system (1), (2)
be given and the system matrices {A, By, Ci, D.} and covariance matrices {Qy, R}
be known, then the problem is to compute the minimum variance estimate of the
stochastic vanable x,, provided y, up to y; have been measured:

(5) . fku‘:fksy,_ ¥

When j = k this estimate is called the filrered estimate and for j = k—1 it is referred to
as the one-step predicted or, shortly, the predicted estimare. The above problem is
restricted here to these two types of estimates except for a few comments in the
concluding remarks.

Kalman filtering is a recursive method to solve this problem. This is done by
computing the variances Py and/or Py_, and the estimates Xy, and/or Xy, from
their previous values, this for k =1, 2, - - - . Thereby one assumes Py, (i.e., the variance
of the initial state x,) and Xy, (i.e., the mean of the initial state x,) to be given. The
recursive solution can be computed by the Conventional Kalman Filter (CKF)
equations, summarized in the following *‘covariance form” [1]:

(6) : R.x= R+ C Py, Ci,

(7) K, =APy-CiR L,

(8) Pk,k=[[—fk|k_,CLR;ka]Pk‘k_,,
9) , Tiejk = Ziik-1 = Pt Ce R oL Celn—1 = i),

(10) ‘ Peiik = APy Al + BLQ, B,

(11) Kierije = AKX + Dictdy.

518 P. VAN DOOREN AND M. VERHAEGEN

These equations have been implemented in various forms (see, e.g., [1]). An efficient
implementation that exploits the symmetry of the different matrices in (6)-(11) yields
the following operation count for each recursion step:

SN VY]

(12)

-

3 o UL 3_p: 2 p_B‘. "
n"+n <_ap+2>1~n< 5 +m>+6 flops,

where 1 flop = 1 multiplication + 1 addition. The details of the operation count (exploit-
ing symmetry) are given in Table 1. By exploiting the symmetry of the matrices in
(6)-(11) one in fact saves (n’/2+n°m/2+np’/2) flops over a straightforward
implementation that one would obtain when, e.g., implementing (6)-(11) on a digital
computer by using standard matnix multiplication routines. ‘

"TABLE 1
Efficient implementation of the CKF.

Mathematical expression Number of flops
cp Co Puion ”:P
R.. CP-[C.]+R: np*/2
K, A, CP' - R} p/6+np*+n’p :
P (A, Pi.o,—K,-CP)- A, +B,- Q.- B, ~ 1/2n°(3n+2p+m)+nm?
Xiewrik A fiuo = Ko (G Xy = 3i) + Doy P+ 2np+nr

When the system matrices are time invariani, i.e., {A, B, C, D}, more considerable
savings can be obtained using so-called condensed forms. The idea of using these forms
comes from standard linear algebra techniques such as those used in the QR- and
QZ-algorithms. In these algorithms, one performs preliminary unitary transformations
on the given matrices in order to ‘‘condense’ them or, in other words, create as many
zeros as possible (for the QR- and QZ-algorithms this is the preliminary reduction to
Hessenberg form). These zeros are then exploited in the subsequent iterative scheme
in order to reduce substantially their operation count.

In this paper, we use a similar technique to reduce the operation count of various
implementations of the Kalman filter recursion. This reduction is obtained either during
the multiplication of a condensed matrix with a full one or during the construction of
a (QR-) decomposition of a condensed matrix. In both cases one obtains savings that
are comparable to the percentage of zeros in the condensed form. This is of course
obtained at each stage of the Kalman filter recursion, while the construction of the
condensed form is done only once. How much these savings exactly are and how they
are actually obtained depends on both the choice of condensed form 2nd on the choice
of implementation of the Kalman filter recursion. In the next section we give a number
of possible condensed forms of state space models. In § 4, we then give various possible
KF implementation and in § 5 we show how savings can be obtained by using the
different condensed state space models. We also give some actual computer timings
in order to illustrate the predicted savings based on operations counts. -

3. Condensed state space models. If the system model (1)-(2), defined by the triplet
{A, B, C}, is time invariant one often prefers to transform it (via similarity transforma-
tions) into a special system structure (canonical forms, etc.) in order to gain insight
into different system properties (e.g., asymptotic stability) and to reduce the number of
parameters necessary to describe the system dynamics. From a numerical point of view
such similarity transformations may not be very attractive since the accuracy of the
system parameters may decrease when the transformations are ill-conditioned. When

NEW EFFICIENT KF IMPLEMENTATIONS 319

restricting oneself to unitary state-space transformations to define a new state vector,
x, = U- x, one generally (see also § 6) does not alter the sensitivity of the problem [15]
and does not modify the relative precision of the system model {UAU™, UB, CU*},
where the * superscript denotes the conjugate transpose. One can now always choose
U such that the new system model {UAU™*, UB, CU*} is in one of the following forms:
e The Schur torm, where UAU™ is in upper Schur form;
e The observer-Hessenberg form. where the compound matrix

[UAU*]
cu*
is upper trapezoidal;

e The controller-Hessenberg form, where the compound matrix [UB|UAU*] is

upper trapezoidal.
These forms are illustrated below for n=6, m=3, and p=2:

-

x x x|x x x x x x
x x x|0 x x x x x
x x x{0 0 x x x x
. B, —L} | x x x{0 0 0 x x x
(13) [¢l lx x x|0 000 x x|
x x x{0 0 0 0 0 x
X X X X X X
L X X X X X X
[x x xX|]x x,x x x x]
X X X|X X X X X X
X X X|x x X X X Xx
Bo,,IA,,;,] | x x x 0 x x x x x
(14) |: 1IChl | x x x]0 0 x x x x|
x x x|0 0 0-x x x
0 0 0 0 x x
L 0 0 0 0 0 x|
[x x x|]x x x x x x]
0 x x|{x X x x x x
0 0 x|x x x x x x
(15) | [Bc,,lAC,,]= 0 00|x x x x x x
. I C.n 0 0 00 x x x x x
0 0 0|0 0 x x x x
X X X x X Xx
) L X X x x X Xx J

These three forms are easily obtained using standard linear algebra methods
applied to the system model {A, B, C}. For each case the matrix U in fact consists of
a sequence of Givens transformations or Householder reflections and appropriate
algorithm descriptions can be found in the literature [18], [15].

For the form (13), one merely uses the (iterative) QR-algorithm that puts A, =
UAU™ in the so-called *‘Schur form™ [18]. The method is numerically stable and

520 . P. VAN DOOREN AND M. VERHAEGEN

requires roughly n°(5kn+ p+n) flops for computing it. Here k is the average number
of QR-steps required for yielding this form and is usually between 1 and 2 [18].

Remark 1. Notice that when real anthmetic is used, one cannot completely
triangularize A, in general, but some 2 X 2 blocks corresponding to the pairs of complex
conjugate eigenvalues of A,, will remain on diagonal [18].

The other two forms are in fact variants of the so-called *‘staircase form™ [14]
and can be obtained in a numerically stable way by (successive) use of Householder
transformations [14], [15], [17] in an analogous fashion to their use in the construction
of the Hessenberg form of a general matrix [18]. The number of flops required to
construct the forms (14) or (15) using these Householder transformations is roughly
n*(3n+m +p).

Remark 2. Notice that the algorithm computing the forms (14), (15) is recursive,
while constructing the Schur form (13) is iterative. Considering also the facts that the
Schur form is usually more expensive in flops and does not provide as many zeros as
the other two forms in the real case, the ‘““Hessenberg”-forms (14), (15) ought to be
preferred if no other considerations are of importance. N

Remark 3. Note also that for each of these “‘upper’ forms there are corresponding
“lower” forms which can be obtained via dual algorithms. A survey of the use of these
forms for other applications in system and control theory can be found in [15].

The main idea now 1s to exploit the additional zeros created in these condensed
forms in order to obtain more efficient (i.e., faster) algorithm implementations. We
show in the sequel how to do this for the different Kalman filtering implementations
given in the next section. With these applications in mind, we will therefore only
consider real matrices and transformations in the sequel.

4. Classical KF implementations. The original algorithm for computing the KF
recursion is the one that implements straightforwardly formulas (6)-(11). Other
implementations that became very popular are the so-called Square Root Filters (SRFs).
The SRF algorithms use the Choleski factors of the covariance matrices or
their inverse in order to solve the optimal filtering problem. Since the process noise
covariance matrix Q, and the measurement noise covariance matrix R, are assumed
to be positive definite, the following Choleski factorizations exist:

(16) Qe=Q*[Q*T, Re=R[R{Y,

where the factors Q}/? and R}’ may be chosen upper or lower triangular. This freedom
of choice is exploited in the development of the fast KF implementations presented
in § 5. Notice that historically Q) and R}/? have erroneously been called *“square
roots” instead of *“Choleski factors.” However, we will maintain the adjective ““square
root’” as far as the names of the filters are concerned because of the familiarity that

they have acquired.

4.1. The square root covariance filter (SRCF). Square root covariance filters propa-
gate the Choleski factors of the error covariance matrix Py-;:
(17) ‘ 'Pklk—l=Sk-S;n
where S, is chosen to be lower triangular. The computational method is summarized
by the following scheme [1]:

RY* C.S 0 “[RY: 0 0
(18) [o ,,J.U,#[o T
L 0 AS. B.Qy J L Gy Sin OJ
(pre-array) (post-array)

(19) Kier1/k = ArXie—1— GkR:lla/z(CiXxtie—1 — yi.) + Dy,

NEW EFFICIENT KF IMPLEMENTATIONS 521

where U, is an orthogonal transformation that triangularizes the pre-array. Such a
triangularization can, tor example, be obtained using Householder transformations
[4]. This recursion is now initiated with X,., and the Choleski factor S, of Py, as
defined in (17). The number of flops needed for (18) and (19) is given in Table 2. The
total number of flops for one recursion step is here:

20) i 2(5" >+ ("’":)
-n n - m n Tr— .
(20 6 2 P

In order to reduce the amount of work, we only computed the diagonal elements of
the covariance matrix Pj. ., since usually diag { P.. .} carries enough information
about the estimate X..,. For this reason our operation counts differ, for example,
from those of [9].

TaBLE 2
Numerical implementation of the SRCF.

Mathematical expression Number of flops
AW:J B, L/: nm:/2
[.\n:} [Ck s e 1)
n(p+n)/2
Ml AT il
Annihilation M,, {Householder) 2n’p+np”

. : Further reduction {Householder) 2/3n+n’m
diag {P .} diag {Sc. - Skl "2/2
Xer i : A R =G RIVFAC Renai =¥+ Dy g n*+2np+p*/2+nr

4.2. The Chandrasekhar square root filter (CSRF). If the system' model (1)-(2) is
time invariant, the SRCF described in § 4.1 may be simplified to the Chandrasekhar
square root filter, described in [10]. The Chandrasekhar filter [7] formulates recursions
for the increment of the covariance matrix, detined as

(21) inc Pk‘;"Pk-f-llk—Pklk—l' .
In general this matrix can be factored as
) . I, 0 ,
(22) - 1nc Pk=Lk. [: 0 —I"‘:l ’ Lk,
—e
3

where the rank of inc P, is n,+n, and X is called its signature matrix. The CSRF
propagates recursions for L,, through the following scheme [10):

(23) [R:.’E.. 'CLk-l}_U;[R:.’E o]
| Gt ALl 7 LG L
(pre-array) (post-array)
with Lo Ly = P,jp— Py -,. Here U, is a Z,-unitary transformation, ie., U,Z,U;=%,, with -
24 3, = L O]
(24) =l 5|

Such transformations are easily constructed using “skew Householder” transformations
(using the indefinite =-norm) and require as many operations as the classicai Househol-
der transformations [10]. However, numerical errors may be proportional to the

522 P. VAN DOOREN AND M. VERHAEGEN

condition number «(U,) of the transformation that is applied and this may become
very large for some problems. The estimate X, is again computed from its previous
value via

2 A -1/2) ~a
(25) Kier1lk = A1 = GeR e (Cligi—y = yic) + Dug.
For this implementation the operation count is summarized in Table 3. The total
number of flops for one recursion step is

(26)) (nl+n2)(n:+3np+p2).

TABLE 3
Numerical implementation of the CSRF.

Mathematical expression Number of flops
M, C
LW::} [A}Lk_, (ny+ny)n(p+n)
Annihilation M,, (skew Householder) (n,+ny)(p*+2np)
diag {P, .y} diag{P (-, + L, Z-Li} (ny+ny)n
Keaik A X =G R AC Ry =)+ D u, n*+2np+p*/2+nr

4.3. The square root information filter (SRIF). The information filter accentuates
the recursive least squares nature of filtering [2]. The SRIF propagates the Choleski
factor of Py} using the Choleski factor of the inverses of the process- and measurement
noise covariance matrices:

(27) Pak=Ti- Tk,
(28) =100 ',
(29) . R;l=[R;l/2]: . Rk_-l/:,

where the right factors are all chosen to be upper triangular. One recursion of the
SRIF algorithm is given by [1]

0 0 WA
(30) U3. TkA;lBk TkA;l kak)k = O Tk+l fk*’l,k*—l
0 RI:-:—/IZde-l R;':-/lzyk-w-l 0 0 T+
(pre-;rray) (post-;ray)

The operation counts are given in Table 4 and the total number of flops of one recursion
step is

732+_7_T.P_2+:
.('31) | .gn-’r-np 5 -rnz m).

P

TABLE 4
Numerical implemeniation of the SRIF.

Mathematical expression Number of flops
(M| M3,] T.[AL'BilAL") n*(3m+n)/2
Ms, R Ceay np*/2
My, T\ Xiik n%/2
M3 RE i P2
Annihilation M., (Householder) 2n"m+nm*
Further reduction (Householder) 2/3n*+n3p

- -1 z 2
X +1ik+1 Ty kv + Dic” n°/2+nr

*

NEW EFFICIENT KF IMPLEMENTATIONS : 523

Here we did not count the operations needed for the inversion and/or factorization
of Q«, Ry and A, (for the time invariant case, e.g., these are computed only once) and
the filtered state estimate is computed via

P _ - 2
(32) . Xkrrjk+1 = Tk*l§k+llk+l+Dkuk'

5. New efficient KF implementations. The use of condensed forms in the different
KF implementations leads to a considerable speedup when the number of inputs m
and/or outputs p is significantly smaller than the number of states n, a reasonable
condition that we tacitly assume to hold when comparing the various implementations.
The computations that are required in the CKF, (6)-(11) are mainly matrix multiplica-
tions. This is also true for the construction ot the pre-array in the different SRFs.
However, beside these multiplications the SRF also involve unitary or X-unitary
transformations. In the execution of the matrix multiplication it is easily seen that a
lot of profit may be gained from the use of condensed torms. For the conventional
KF this leads to a reduction of the most time-consuming operation, namely the product
A Pyr_, - A, roughly by a factor of 2 if the (lower or upper) Schur form is used.
About the same improvement is obtained when using the other condensed forms since
A is essentially triangular in each of these cases. These operation counts for the CKF
are listed at the end of this section in Table 9.

The reduction of the number of computations by the use of condensed forms is
now outlined for the SRCF. First, we consider the lower Schur form, where the number
of operations required to construct the pre-array (18) is given in Table 5 (we only
mention the differences with Table 2). If we choose additionally that the factors
R'"*, Q% and S, are lower triangular, the pre-array has the following special structure
(illustrated again for the svstem dimensions n=6, m=3, p=2):

[x 0} x1 Xo X Xs X3 X /| O 0 0 7
X X | X2 X9 X3 X5 X4 X»] 0 0 0
0 0 X 0 0 0 0 0 | x5 X3 X3
0 0 X X 0 0 0 0| xyo X4 Xua

(33) 0 0l x x x 0 0 0lxs xs x|

0 0 X he x X 0 0 | xi6 X6 X6
0 0] x X X X X 0 | xy7 X7 X7

. 0 0 x x X x x X | x5 X3 X8 J

from which we see that many elements that need to be annihilated are already zero.
This particular structure of the pre-array is exploited to derive an efficient triangulariz-
ation, which is briefly outlined for the example. The annihilation of the elements x,

TABLE §
Lower Schur implementation of the SRCF.

Mathematical expression Number of flops
Moy BQ'/? -
M,z} c] 3)
S : n’/6+n°p/2
[M:: A2k / P
Annihilation M, using Givens . 2npi+2nip
Further reduction using Householder n’m

- ,a 2
Xe+11k U'X gk n

524 , P. VAN DOOREN AND M. VERHAEGEN

to x,, of the (1, 2) block in the pre-array (18) is done with Givens transformations in
the order denoted by the subscripts and using the X signs in the corresponding row
as pivots. In this way the triangular shape of the (2, 2) block is preserved. Further
elimination of all elements x;; to x;3 is then done by using Householder reflections,
again using the X signs in the corresponding rows as pivots. The total cost of these
transformations is given below (for the details see Table 5):

(34)) %n3+n:<57p+m>+n(2p:).

s

Similar arguments also lead to an efficient implementation of the SRIF algorithm
when using an upper Schur form for the model and upper triangular Choleski factors
for T,, R™'*, and Q~'?. Assuming A™' (which is also upper triangular), A™'B, and
R™Y?C to be computed once and for all, then the work for constructing the pre-array
(30) is given in Table 6 (where again we only noted the differences with Table 4). The
triangularization is dual to that of the SRCF, since both arrays look like each other’s
transpose, the pattern of zeros included. We illustrate this array below for the case
n=6,m=2 p=23:

(X X X x x X X x |07
0 X X X X x X x |0
Xy X2 | X x x x x x | x
X Xpol O X X b X x | x
X+ Xg 0 0 X X X x | x

(39) X< Xg 0 0 0 X X x | x
X3 X4 0 0 0 0 X X | x
X, X 0 0 0 0 0 x | x .
0 0 | xi3 X4 Xi5 X136 X7 X5 | X
0 0 | x;3 X4 X5 Xie X7 Xy | X
| 0 0 X13 Xia Xis X Xy7 Xy j X

The operation counts are thus similar to Table 5 (when replacing p.by m) and
are summarized in Table 6. The total number of flops is

' 1 . .
(36) gn3+n“<p+57m>+n(2m').

Remark 4. Note that for real matrices the (2, 2) block in the pre-arrays (33) and
(35) is not exactly triangular but contains a few 2x2 diagonal blocks. Coping with
these few additional off-diagonal elements is quite simple and only requires minor
modifications in the algorithm.

TABLE 6
Upper Schur implementation of the SRIF.

Mathematical expression Number of flops
[(M3IM2;) T.[A7'BlA™") n/6+n m/2
Annihilation M, using Givens 2nm°+2n°m
Further reduction using Householder n’p

Xk +1jk+1 U'% ke tien n-

n

NEW EFFICIENT KF IMPLEMENTATIONS 25

A further improvement can now be obtained for the SRCF using a lower observer-
Hessenberg form for the model since now Householder transformations can be used
throughout instead of (slower) Givens transformations. The pattern of zeros after a
permutation (i.e., a unitary transformation) of the second and third block columns of
the pre-array (18) now indeed looks like (for the same choice of dimensions as above)

[x 010 O O}lx, 0 0 0O 0 07
"% x x{0 0 0|x;, x» O 0 0 O .

- 0 0| X x3 Xx31x3 x3 x40 0 0
(37) 0 0] x x x4l x4 Xa Xo Xg 0 0
0 0] x x X|iXs Xg Xs X5 Xs O
0 0| x X X| X X5 X4 Xg X¢g X
0 0| x x x X X7 X7 X2 X;

[0 O]l x x x| Xx X X X5 Xg xSJ

and all the elements x, up to x; can be eliminated using Householder reflections only
(using the x signs in the corresponding rows as pivots). The operation count for this
is given in Table 7 (only the differences with Table 2 are listed) and the total
computational cost is

M43

(38) ln’-rn:<)—p;—m>+n(2p:)+- .
, 6 2 3

Similar significant savings with the controller-Hessenberg form can apparently
not be obtained for the SRIF, for the reason that A™' and A™'B are now full matrices
despite the sparsity of A and B. Yet one can construct a unitary transformation that
condenses the pair (A~', A™'B) to controller-Hessenberg form instead of the pair
(A, B). This of course requires the additional work to construct the matrices A~' and
A™'B before condensing them to the (lower) form (15), but since this is done only
once it is not a real drawback. The numenical stability of the method, on the other
hand, can suffer from the inversion of the matrix A needed in this approach. Here
again, after a permutation of the second and third block row of the pre-array (30), it

has the form

[x xlx x x x x x|o]
0 x| x x x x x x10
0 0 x x x x x x|«x
0 O0Jx; X x x x x]x
0 Olx; xs X x x x|x
(39) X, Xyl X3 X¢ Xs X X x| x
0 x2]x3 X4 X5 X4 X x| x
0 O0({x; X¢ Xs X¢ X3 X | X
0 0] 0 x4 x5 XxX¢ X7 Xg| X
0 010 0 x5 x5 x7 X3 X

| 0 010 0 0 x4 x;3 x3} X |

This then clearly leads to an analogue of the previous method for the SRIF, which
per step costs (details are given in Table 8, where again we only list the differences
with Table 4)

' , 5 -
(40) t -;-n3+n'(p+—221-)+n(2m‘).

526 P. VAN DOOREN AND M. VERHAEGEN

TABLE 7
Lower observer-Hessenberg implementation of the SRCF.

Mathematical expression Number of flops
MZJ BOl/Z . _
M, C] :)
S n*/6+pn3/2
[sz [A ' foxpny
' Further reduction using Householder n(m+p)+2np +2/3p°
Kernk U'X, ki n-

Finally, it can be checked that condensed forms do not yield any substantial
savings in operations for the CSRF because the L, matrices are usually full. The only
savings are indeed obtained in the construction of the products AL,_, and CL,_,,
whose complexity is reduced by a factor 2 (for both the Schur form and the observer-
Hessenberg form).

A complete list of the total operations counts for the different methods is given
in Table 9 for comparison. Here we have not included second-order terms which e.g.,
come from the calculation of the estimates Xy, ix OF Xk+ 11k~ i0 these different methods
or from the back transformation £ = U'X, to the original coordinate system.

Remark 5. When the input/output dimensions are large, l.e., m, p=n, more
efficient SRCF and SRIF implementations are obtained when combining these con-
densed forms with “‘sequential processing™ that is used in [2] for the *“full” system

TABLE §
Controller-Hessenberg implementation of the SRIF.,

Mathematical expression Number of flops
1\,{32 R—I/ZC -
[M,|M,.] T.[A7'BlA™"] n’/6+n°m/2
Further reduction using Householder n*(p+m)+2nm>+2/3m’
K11k U'R, kwtices n*
TABLE 9
Operation counts for the different KFs.
Filter Type / Complexity
CKF full (3/2)n*+n2(3p+m/2)+n(3p*/2+m?) +p3/6
- Schur (3/4)n*+n*(5p/2+ m/2)+n(3p*/2+ m*)+p*/6
o-Hess. (3/4)n*+n*(7p/2+ m/2)+n(2p*+ m*)+p*/6
SRCF full (7/6)n>+ n*(5p/2+ m)+n(p*+m?/2)
Schur (1/6)n>+ n3(5p/2+ m)+n(2p?)
o-Hess. (176)n>+ n*(3p/2+ m)+n(2p*)+2p%/3
SRIF full (7/6)n>+n*(p+Tm/2)+ n(p*/2+ m?)
Schur (1/6)n’+n:(p+.5m/2)+n(2m:)
c-Hess. (1/6)n*+ n*(3m/2+p)+n(2m*)+2m3/3
CSRF full (ny+n.)(n"+3np+p7)
Schur (n,+n.)(n*/2+3np+p?)

o-Hess. (ny+ny)(n*/2+3np+p?)

NEW EFFICIENT KF IMPLEMENTATIONS 527

models. Since there are no essential differences with the savings obtained when applying
sequential processing to tull or condensed models we do not treat these techniques
here, but refer to [2]. Moreover, in practice the input/output dimensions are much
smaller than the state dimension n and these additional savings are then not so
significant.

The operation counts derived above for the different KF implementations demon-
strate the reduction in computational complexity of the CKF, the SRCF, the SRIF
and the CSRF. For n>» m and p, the dominant terms in n of Table 9 indicate that the
condensed implementations lead to improvements of roughly a factor 7 for the SRCF
and the SRIF and a factor 2 for the CKF and the CSRF.

Where these reductions are coming from is easily understood in terms of basic
linear algebra operations. The most time-consuming substep in the CKF- and the
CSRF-recursion is the multiplication of n x n matrices (respectively, A+ Pyc+,. A" and
A-L,). If Ais now in condensed form, this step is performed in roughly half the
number of operations. For the SRCF- and the SRIF-recursion the situation is different.
There the buik of the operations lies in two substeps: in the multiplication of nxn
matrices (respectively, A+ S, and T.- A" and in the QR-decomposition of an O(n) x
O(n) matrix (respectively, [M-,iM,;] and [M./ M;.]). If one now uses condensed
forms the multiplication is again performed in roughly half the number of operations,
but the QR-decomposition becomes an order of magnitude in n cheaper because the
considered matrices are already nearly triangular. Details of this can easily be followed
by comparing the tables 1 to 8.

That these factors are not unrealistic in actual run tests is illustrated in Fig. 1.
The two curbs (full lines) shown in this figure are the theoretical ratios a/b between
the complexity of the full (a) and Schur (b) versions of the SRCF and CSREF,
respectively, as derived from Table 9 for the value m =3, p=2 and a variable value
for the state dimension n. As explained above, these curbs approach the limits 7 and
2 (dotted lines), respectively, as n becomes larger. This is of course only a theoretical

-

o
=

6.0

ROTIO N/8

4.0

2.0

0.0

T

0.0 25.0 0.0 75.0 100.0 125.0 150.0 175.0 200.0
STATE OIMENSION

F1G. 1. Improvement factor of condensed forms.

528 "~ P. VAN DOOREN AND M. VERHAEGEN

ratio since it is based on the operation counts of Table 9. But on the same figure we
also plotted actually measured ratios a/b. We ran indeed 100 steps of the SRCF
recursion for matrices of dimension m =3, p =2 and n = 10, 20, 40, 80, 160 and plotted
the observed ratios between full and condensed implementations as plusses (+) in Fig.
1. The same was done for the CSRF, this for values n =10, 20, 40, 80, and was plotted
as triangles (A). The real observed ratios marked on this figure are clearly close to
their theoretical values (full curbs) which means that overhead costs are not very
significant here. Similar results were also observed for the other two filters and for
ratios involving the Hessenberg forms.

Bearing in mind that the operation counts of Table 9 can be considered to be
realistic, one can now recommend, as far as computational complexity is concerned,
the choice of SRCF/SRIF and CSRF implementations when the state dimension n is
considerably larger than the input/output dimensions (which is often the case in
practice). The CSRF becomes particularly attractive with the initial condition Py_, =0
because then (n,+ n,) is of the order of p and thus also much smaller than n [10].
For general initiai conditions, though, (n,+n,)=n and the condensed SRCF/SRIF
become more economical.

As far as the numerical stability is concerned, it is shown in [16], [17] that the
CSRF 1s numencally less reliable and should be avoided when a large number of
iterations is requested. The propagation of numerical errors from one recursion step
to another can indeed not be bounded in general and eventually divergence may occur
between the computed recursive solution and the rrue one. In contrast to this, the CKF,
the SRCF, and the SRIF in general do nor suffer from this divergence phenomenon.
Indeed, bounds for the accumulated errors where derived in [16], [17], showing that
they remain independent of the number of recursion steps, with a certain disadvantage
for the CKF and the SRIF since for these filters the bounds of the residual errors in
each step are worse. These difierences were also observed in practice [16], [17].

As a consequence, we recommend in general the use of the condensed SRCF for
the computations of the time-invariant KF. Between the two possible condensed forms
the observer-Hessenberg form is to be preferred because of a lower complexity in both
the initial reduction and the subsequent recursions {see Table 9). Moreover, it does
not require any special handling in the case of real arithmetic (see Remark 4).

6. Concluding remarks. In this paper we have analyzed four different KF
algorithms and some new variants for their computational efficiency. The use of
“condensed forms™ for the implementation of different KFs was derived here and
shown to yield very efficient algorithms for the problems considered in this paper.

It should be warned here that these techniques are not alwayvs advantageous.
Indeed, when the model {A, B, C} is already sparse, a unitary transformation 1s very
likely to increase dramatically the fill-in, and the complexity of the resulting algorithm
would probably increase a lot. Here it is more indicated to use techniques for sparse
matrix multiplications and decompositions in order to obtain cost-effective algorithms.

Also, for badly scaled models {A, B, C} it is not indicated to use directly unitary
transformations. Indeed, these would ‘‘smear out” the larger size elements over the
matrices and the higher accuracy with which the smaller elements were originally
known, would get lost. Here, it is rather indicated to first *“rescale” the model via
diagonal state space transformation (in order to obtain a well-scaled model) and after
that apply unitary transformations to condense the model.

The assumption that Q, is nonsingular does not restrict the generality of the system
description, since for the case of singular Qy, the linear dependent components in wi

NEW EFFICIENT KF IMPLEMENTATIONS

n

29

can always be removed first [1]. On the other hand, the regularity of R, rules out the
possibility of including perfect measurements not corrupted by noise. The particular
case of perfect measurements leads to special adaptations of the different KF
implementations, such as the use ot the Moore-Penrose inverse [1]. These special
implementations were not considered here.

In [11], the Kalman filter recursions are extended to the problem of computing
other estimates X; (e.g., for smoothing) which can probably be implemented using
condensed forms as well. Here the author also introduces mixed representations of
covariances. These have the advantage to allow for singular covariance matrices Qy, Ry,
or P, and even for singular information matrices I, = Py, thereby avoiding any
use of generalized inverses. It would be worthwhile to investigate the possible use of
condensed torms in these extensions.

Other extensions are obtained by the incorporation of sequential processing into
these condensed algorithms [2] (see Remark 5) or by using these algorithms also for
time-varying models which yet can be condensed by a time-invariant transformation.
That this is possible is easily understood for system models of the type {A, B,, C} or
{A, By, C.}, where only one or two of the matrices is time varying. It is clear that these
can still be condensed to observer-Hessenberg form and Schur form, respectively. But
in practice one even encounters models {A;, B, Ci} which can be condensed by a
time-invariant transtormation. These tvpically occur in models where the parameters
have some physical meaning and where time-varving parameters are related to each
other (see [17] for a real example coming from aeronautics).

Finally, it is also shown in [17] that similar techniques can be extended to provide
an etficient treatment of the so-called “*biases™ that are often included in the system
model for which Kalman filtering is used.

REFERENCES

[1] B. B. O. ANDERSON AND J. B. MOORE, Optimal Filtering, Informauon and System Sciences Series,/
Prentice-Hall, Englewood Cliffs, NJ, 1979.
[2] G.J. BIERMAN, Factorization Methods For Discrete Sequential Estimation, Academic Press, New York,
1976.
[3] A. E. BRYSON, Kalman filter divergence and aircraft motion estimators, Internat. J. Guidante and
Control, 1 (1978), pp. 71-79.
(4] G. H. Govrus, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965),
pp. 206-216.
(5] G. H. Gorus anD C. E. VAN LoaN, Matrix Computations, The John Hopkins University Press,
Baltimore, MD, 1983.
(6] A. H. JazwiNsKI, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.
[7]1 T. KAILATH, Some new algonithms for recursive estimation in constant linear systems, IEEE Trans.
Inform. Theory, IT-19 (1973), pp. 750-760.
[8] R. E. KALMAN, A new approach to linear filtering and prediction problems, Trans. ASME (J. Basic
Engrg.), 82D (1960), pp. 34-45.
[9] P. G. KAMINSKI, A. E. BRYSON, AND S. F. SCHMIDT, Discrete square root filtering. A survey of current
techniques, IEEE Trans. Automat. Control, AC-16 (1971), pp. 727-736.
[10] M. MORF AND T. KAILATH, Square-root algorithms for least squares estimation, [EEE Trans. Automat.
Control, AC-20 (1975), pp. 487-497.
[11] C. C. PaiGE, Covariance matrix representation in linear filtering, in the Special Issue of Contemporary
Mathematics on Linear Algebra and its Role in Systems Theory, American Mathematical Society,
. Providence, RI, 1985.
[12] C. C. PAIGE AND M. SAUNDERS, Least squares esumation of discrete linear dynamic systems using
orthogonal transformations, SIAM J. Numer. Anal., 14 (1977), pp. 180-193.
(13] J. E. POTTER AND R. G. STERN, Statistical filtering of space navigation measurements, Proc. 1963 AIAA
Guidance and Control Conference, 1963.

530 P. VAN DOOREN AND M. VERHAEGEN

{14] P. VAN DOOREN, The generalized eigenstructure problem in linear system theory, IEEE Trans. Automat.
Control, AC-26 (1981), pp. 111-129.

[15] P. VAN DOOREN AND M. VERHAEGEN, On the use of unitary state-space transformations, in the Special
Issue of Contemporary Mathematics on Linear Algebra and its Role in Systems Theory, American
Mathematical Association, Providence, RI, 1985.

[16] M. VERHAEGEN AND P. VAN DOOREN, Numerical aspects of different Kalman filter implementations,
IEEE Trans. Automat. Control, AC-31 (1986), pp. 907-917.

[17] M. VERHAEGEN, A new class of algorithms in linear system theory with application to real-time aircraft
mode! identification, Ph.D. dissertation, Catholic University of Leuven, Belgium, 1985.

[18] J. H.. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

