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Abstract In this paper an implicit (double) shifted Q R-method for computing the
eigenvalues of companion and fellow matrices will be presented. Companion and
fellow matrices are Hessenberg matrices, that can be decomposed into the sum of a
unitary and a rank 1 matrix. The Hessenberg, the unitary as well as the rank 1 struc-
tures are preserved under a step of the Q R-method. This makes these matrices suitable
for the design of a fast Q R-method. Several techniques already exist for performing
a Q R-step. The implementation of these methods is highly dependent on the repre-
sentation used. Unfortunately for most of the methods compression is needed since
one is not able to maintain all three, unitary, Hessenberg and rank 1 structures. In this
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manuscript an implicit algorithm will be designed for performing a step of the
Q R-method on the companion or fellow matrix based on a new representation con-
sisting of Givens transformations. Moreover, no compression is needed as the specific
representation of the involved matrices is maintained. Finally, also a double shift ver-
sion of the implicit method is presented.

Mathematics Subject Classification (2000) 65F15 · 11C20

1 Introduction

Computing roots of polynomials is an interesting problem with many challenges.
Many methods act directly on the polynomials, e.g., bisection, Sturm sequences and
so forth [16]. In actual implementations, however, the problem often is formulated in
a matrix setting and the corresponding matrix problem is solved. When working with
the standard monomial basis, computing roots of a polynomial coincides with com-
puting eigenvalues of the associated matrix. The eigenvalues of a companion matrix
equal the roots of the associated polynomial.

Definition 1 Given a monic polynomial p(z) = p0+p1z+p2z2+· · ·+pn−1zn−1+zn

the associated companion matrix is of the following form:

C p =

⎡
⎢⎢⎢⎢⎣

0 −p0

1
. . . −p1
. . .

...

1 −pn−1

⎤
⎥⎥⎥⎥⎦

. (1)

When changing the basis the idea remains the same, but the associated matrix changes,
one obtains e.g., confederate, congenial, comrade matrices and so forth [1]. All these
problems are worth investigating, but in this manuscript we will restrict ourselves to
the class of companion and fellow matrices because it is the most widespread.

In the current LAPACK implementation the eigenvalues of the companion matrix
are computed by the standard O(n3) Hessenberg eigenvalue solver. This is an unfor-
tunate choice, since a companion matrix and its Q R-iterates are highly structured as
we will see later on.

Recently, many authors have been intrigued by hidden rank properties in dense
matrices. Basic theoretical results on rank structured matrices [15,19], quickly evolved
to system solvers for these matrices [11,13] and to eigenvalue methods based on these
matrix structures [10,14,18].1

A companion matrix, which is Hessenberg, can be written as the sum of a unitary
and a rank 1 matrix. Since both the unitary and the rank 1 matrix are structured rank
matrices, one wishes to exploit these structures to come to an efficient method. The
brute-force Hessenberg eigenvalue solver uses O(n3) operations for computing the
whole spectrum, whereas an efficient method exploiting all involved matrix structures

1 The literature related to this subject is much more extended than these few references (see [17]).
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Implicit double shift Q R-algorithm for companion matrices 179

would only use O(n2) operations. The problem has already been studied extensively.
Let us make a summary of the existing methods crediting the authors who have con-
tributed to the development of these methods.

Independently of each other Bindel et al. [2] and Bini et al. [5] proved that the
Q R-iterates Hk have {1, 3}-quasiseparable structure when H0 = U + uvH is a Hes-
senberg matrix that is unitary plus rank one. Hence, each Hessenberg matrix Hk can
be represented using O(n) parameters. Based on this fact, several algorithms where
developed that performed Q R-iteration steps on the Hessenberg matrices Hk . These
algorithms differ in the way the Hessenberg matrix is represented, in the way the Hes-
senberg as well as the unitary plus rank one structure is maintained and in the explicit
or implicit way of performing each Q R-iteration step.

In the paper by Bini et al., the following relationship between C p of (1) and its
inverse C−1

p is used (when p0 is different from zero):

C p = C−H
p + U V H ,

with Uk, Vk ∈ C
n×2. The Q R-iteration step with shift is implemented in an explicit

way. The experiments described in the paper show that the implementation of the
algorithm has numerical difficulties (overflow/underflow, no convergence).

In the manuscript of Bindel et al. a larger class of matrices is considered, more
precisely, the symmetric, skew symmetric or orthogonal matrices plus a low rank
modification. The algorithm uses a compression technique to maintain the structure.

In Bini et al. [6] an alternative algorithm was developed to solve the Hessenberg,
unitary plus rank one case Hk = Uk + ukvH

k . The authors showed that the matrix
Uk can be written as a product of three sequences of 2 × 2 unitary transformations
as represented in (9). The presented method is an explicit Q R-algorithm, in which
special compression is needed to maintain the unitary structure.

As in the paper of Bindel et al., a bulge chasing procedure is designed in [8]. In
contrast to the previous papers this is done for a single as well as for a double shift. The
representation that is used for the Hessenberg matrix Hk in each step is its Q R-factor-
ization, i.e., Hk = Qk Rk . A chasing technique is used to chase the implicitly created
bulge. Unfortunately this increases the rank of a certain involved factor. Compression
is therefore needed to maintain a compact representation.

All the previous papers handled the case H = U + uvH , i.e., when the Hessenberg
matrix H is the sum of a unitary U and rank one matrix uvH . Only the manuscript
of Bindel et al. considered the more general class of symmetric, skew symmetric,
or unitary plus rank one case. In the paper [7] by Bini et al. of 2005, the matrices
A = (ai, j )i, j considered have a quasiseparable representation of the following form:

aii = di + ziwi

ai j = ui t
×
i j v j when i > j

ai j = u j t
×
j ivi + ziw j − z jwi when i < j, (2)

with t×i j = ti−1ti−2 · · · t j+1 and given vectors u, v, t, z, w, d. This set is called the
set of generalized companion matrices. It includes the arrowhead matrices, comrade
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matrices (symmetric tridiagonal plus rank one), diagonal plus rank one matrices, ….
Note that each matrix of this set is {1, 3}-quasiseparable. The authors prove that this
set is closed under the application of each step of the Q R-algorithm. Each step of the
Q R-algorithm is performed in an explicit way, i.e., the Q R-factorization of Ak −μk I
is computed and then the two factors multiplied in reverse order are added to μk I .

When finishing this manuscript, we became aware of another similar algorithm to
compute the eigenvalues of a companion matrix. This method was explained by Boito
at a workshop in Cortona [4].

In this manuscript we will present a new manner of representing the companion
matrix, which uses less parameters than the ones presented in the manuscripts above.
Moreover, during the algorithm no compression is needed to maintain a low com-
plexity algorithm. The representation is based on Givens transformations and easily
admits an implicit Q R-algorithm. The implicit version is based on structure restoring
manipulations of the involved matrix, in order to maintain the same representation in
each step of the Q R-method. Once the single shift version is known, the double shift
or multishift version is a straightforward extension.

The manuscript is organized as follows. In Sect. 2 some preliminary results are dis-
cussed. The relation between roots of polynomials and companion matrices is inves-
tigated and some comments on working with Givens transformations are given. In the
following sections the different aspects to the development of the Q R-methods are
discussed. Section 3 discusses unitary plus rank one matrices, both the preservation of
the structure and the representation are investigated. Sections 4 and 5 discuss both the
single and double shift techniques. Due to the special representation of the involved
matrices the deflation is uncommon, Sect. 6 discusses how to perform deflation. Finally
some details on the implementation and numerical experiments are presented.

2 Preliminary results

In this section we will firstly discuss the relation between polynomials and matrices.
Secondly we will present some tools for working with graphical interpretations of
Givens transformations.

2.1 Roots of polynomials

Suppose we are working with a polynomial p(z) either in Rn[z] or Cn[z]. The sub-
script n in Rn[z] and Cn[z] means that the considered polynomials are of degree less
than or equal to n.

Without loss of generality we can assume the coefficient pn of zn to be different
from zero. Clearly the zeros of p(z) equal the zeros of p(z)/pn , hence we will assume
in the remainder the polynomial p(z) to be monic, i.e., with pn = 1.

The companion matrix associated with a monic polynomial of degree n is given in
Eq. (1).

Note 1 One can fairly easy see that the eigenvalues of the companion matrix coincide
with the zeros of the associated polynomial p(z), because p(z) = det(z I − C p).
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Implicit double shift Q R-algorithm for companion matrices 181

A theoretical, more broad context, not restricted to the standard monomial basis
exists for proving the equality between eigenvalues of the associated matrix and roots
of the polynomial. More information can be found for example in [1,20].

2.2 Working with Givens transformations

Givens transformations are a powerful tool for working with structured matrices. E.g.,
the implicit Q R-algorithm for Hessenberg matrices makes extensive use of Givens
transformations [16] and especially for structured rank matrices [10] they are a valu-
able tool.

Also for structured rank matrices, Givens transformations play an important role.
In this subsection we will discuss a graphical way of working with Givens transfor-
mations. Also interactions such as the “shift through” and “the fusion” of Givens
transformations will be discussed.

The following graphical scheme represents the Q R-factorization of a 6 × 6 Hes-
senberg matrix, based on Givens transformations. Often Givens transformations of
higher dimensions, say n, are considered. This means that the corresponding 2 × 2
Givens transformation is embedded in the identity matrix of dimension n, still chang-
ing only two rows when applied to the left. The scheme corresponds to the matrix
product G1G2 . . . G5 R. The matrix R is shown on the right, depicted by ×, and is
clearly upper triangular. The Givens transformation G5 is located above 1, G4 in
position 2 and so forth. One might consider this misleading, but one should think of
the bottom line as a sort of timeline depicting which transformation needs to be applied
first. Rewriting the formula we have G H

5 . . . G H
1 H = R. Hence G H

1 annihilates the
first subdiagonal element, G H

2 the second and so forth.

➊ � × × × × × ×
➋

�
� × × × × ×

➌
�

� × × × ×
➍

�
� × × ×

➎
�

� × ×
➏

� ×
5 4 3 2 1

In the remainder of the manuscript we will make extensive use of such schemes,
with many more Givens transformations.

Givens transformations also interact with each other.

Lemma 1 Suppose two Givens transformations2 G1 and G2 are given:

G1 =
[

c1 −s̄1
s1 c̄1

]
and G2 =

[
c2 −s̄2
s2 c̄2

]
.

Then we have that G1G2 = G3 is again a Givens transformation. We will call this the
fusion of Givens transformations in the remainder of the text.

2 In fact these transformations are rotations. Throughout the manuscript we assume to be working with
rotations. More information on Givens rotations can be found in [3].

123



182 M. Van Barel et al.

The proof is trivial. In our graphical schemes, we will depict this as follows:

➊ �↪→�
➋

� �

2 1
resulting in

➊ �
➋

�

1
.

The following lemma is very powerful and will give the possibility to interchange
the order of Givens transformations and to obtain different patterns.

Lemma 2 (Shift through lemma) Suppose three 3×3 Givens transformations Ǧ1, Ǧ2
and Ǧ3 are given, such that the Givens transformations Ǧ1 and Ǧ3 act on the first
two rows of a matrix, and Ǧ2 acts on the second and third row (when applied on the
left to a matrix).

Then there exist three Givens transformations Ĝ1, Ĝ2 and Ĝ3 such that

Ǧ1Ǧ2Ǧ3 = Ĝ1Ĝ2Ĝ3,

where Ĝ1 and Ĝ3 work on the second and third row and Ĝ2, works on the first two
rows.

This result is well-known. The proof can be found in [21] and is simply based on
the fact that one can factorize a 3 × 3 unitary matrix in different ways. Graphically
we will depict this rearrangement as follows.

➊ � � �
➋

�
�

�

➌
�

3 2 1

resulting in

➊ �
➋ �

�
�

➌
� �

3 2 1

.

Of course there is also a variant in the other direction (from the right to the left scheme
depicted by �).

Important to remark is that the fusion of Givens transformations can be consid-
ered as a special case of the shift through lemma. For our purposes we also need an
additional operation, which is in fact also a special case of the shift through lemma,
namely the scaled fusion.

Lemma 3 Suppose two Givens transformations G1, G2 and Iα , with |α| = 1 are
given,

G1 =
[

c1 −s̄1
s1 c̄1

]
, G2 =

[
c2 −s̄2
s2 c̄2

]
and Iα =

[
1 0
0 α

]
.

Then we have that G1 IαG2 = G3 Iα = IαG4, with G3 and G4 again a Givens transfor-
mation. We will call this the scaled fusion of Givens transformations in the remainder
of the text.

The proof involves straightforward computations, by embedding Iα in a 3 × 3
Givens transformation matrix, applying the shift through lemma and exploiting the
fact that the matrix in which Iα is embedded is a diagonal matrix.
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Graphically we will formulate this as:

➊ �↪→ �
➋

�
α

�

3 2 1
resulting in

➊ �
➋

�
α

2 1
or

➊ �
➋ α

�

2 1

Note 2 We note that the matrix Iα can be replaced by a matrix Jα of the following
form:

Jα =
[

α 0
0 1

]
.

leading to the following equations: G1 JαG2 = G3 Jα = JαG4.

This scaled fusion is necessary since in the forthcoming Q R-algorithm Givens
transformations will tend to become diagonal. In the real case these Givens transfor-
mations equal the identity and hence there are no problems, but in the general complex
setting they have a diagonal consisting of α and ᾱ with |α| = 1. Since these transfor-
mations will be surrounded by other Givens transformations some special operations
are needed in order to manipulate them in an elegant way.

A final important operation is the shift through operation of length �.

Lemma 4 Suppose we have the following matrix product GW X, in which G denotes
a Givens transformation acting on row 1 and 2. The matrices W and X are both
unitary matrices consisting of a descending sequence of � Givens transformations.
This means that both W and X consist of � successive Givens transformations. The
ith Givens transformation GW

i of W acts on row i + 1 and i + 2. The i th Givens
transformation G X

i of X acts on row i and i + 1.
The matrix product GW X can then be rewritten as

GW X = Ŵ X̂ Ĝ,

where Ĝ is now a Givens transformation acting on row � + 1 and � + 2. The unitary
matrices Ŵ and X̂ are again descending sequences of � Givens transformations.

Before proving the statement we will depict this graphically. Initially on the left we
have the following scheme, in which G is marked by a ×. The unitary matrices W and
X are both sequences of 4 Givens transformations, W ranges from position 8 up to 5
and X ranges from position 4 up to 1. The �

�
indicates that a shift through operation

of length � will be performed.

➊ �× �
4

�
➋

�
�

�
�

➌
�

�
�

�
➍

�
�

�
�

➎
�

�
�

➏
�

9 8 7 6 5 4 3 2 1

−→

➊ �
➋ �

�
�

➌
�

�
�

�
➍

�
�

�
�

➎
�

�
�

�×
➏

� �

9 8 7 6 5 4 3 2 1

(3)
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On the right we see the resulting scheme which is equivalent to the first one. The
Givens transformation Ĝ is again denoted by a ×. The new sequence Ŵ ranges from
9 upto 6 and X̂ ranges from 5 up to 2.

In the text we will refer to this as a shift through operation of length �. One can
also perform a shift through operation from right to left. This will be referred to as a
shift through operation of length � to the left.

Proof The proof consists of nothing else than a successive application of the shift
through operation. Without loss of generality we assume � = 4. Hence we will prove
the transition from left to right in Scheme (3).

Reordering permits the application of the shift through operation. This leads to the
right scheme. We have marked another Givens transformation now with ×.

➊ �× � �
➋

�
�

�
�

➌
�

�
�

�
➍

�
�

�
�

➎
�

�
�

➏
�

9 8 7 6 5 4 3 2 1

−→

➊ �
➋ �

�
�× �

➌
� �

�
�

�
➍

�
�

�
�

➎
�

�
�

➏
�

9 8 7 6 5 4 3 2 1

Rewriting gives us the possibility to apply again the shift through operation, resulting
after rewriting in the right scheme.

➊ �
➋ �

�
�× � �

➌
� �

�
�

�
➍

�
�

�
�

➎
�

�
�

➏
�

9 8 7 6 5 4 3 2 1

−→

➊ �
➋ �

�
�

➌
�

�
�

�× �
➍

� �
�

�
�

➎
�

�
�

➏
�

9 8 7 6 5 4 3 2 1

Clearly the undesired Givens transformation moves down, creating two new
sequences, starting in positions 9 and 8 and removing the sequences in positions
4 up to 1. Continuing this procedure, and applying two more times the shift through
operation gives us Scheme (4).

➊ �
➋ �

�
�

➌
�

�
�

�
➍

�
�

�
�

➎
�

�
�

�×
➏

� �

9 8 7 6 5 4 3 2 1

(4)

This corresponds to the desired situation. Mathematically we obtain Ŵ X̂ Ĝ, where
Ŵ denotes the sequence of Givens transformations ranging from position 9 up to
position 6 and X̂ denotes the sequence ranging from position 5 up to position 2. The
resulting Givens transformation in position 1 is Ĝ.
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Implicit double shift Q R-algorithm for companion matrices 185

Note 3 One can easily see that the shift through operation is a special case of Lemma 4,
where the two sequences W and X are of length 1.

3 Unitary plus rank one matrices

In this manuscript we will develop Q R-methods for computing eigenvalues of Hes-
senberg, unitary plus rank one matrices. This is an important class of matrices as the
companion and the fellow matrix are both of this form. Hence, the problem of com-
puting zeros of polynomials can be translated to the eigenproblem of a Hessenberg,
unitary plus rank one matrix. Let us divide this section into small parts discussing
some ingredients for developing an implicit Q R-method.

3.1 Structure under a Q R-step

Let us denote the Hessenberg matrix we are working with as follows

H = U + uvH , (5)

with H Hessenberg, U unitary and u and v two vectors.
Suppose we have a shift μ and we would like to perform a step of the Q R-iteration

on the matrix H . We have the following formulas

H − μI = Q R

Ĥ = RQ + μI = Q H H Q.

Applying now the similarity transformation on the terms of Eq. (5) we obtain the
relations Ĥ = Q H H Q = Q H U Q + Q H uvH Q = Û + ûv̂H , with Ĥ Hessenberg, Û
unitary and Q H u and Q H v two vectors.

Hence the Hessenberg as well as the unitary plus rank 1 structure are preserved
under a step of the Q R-iteration. This is essential for developing an efficient implicit
Q R-method exploiting the matrix structure.

3.2 A representation for the unitary matrix

Since the unitary matrix in the splitting of the Hessenberg matrix is in general a dense
matrix, we want to represent this matrix as efficiently as possible. Even though the
matrix is full, it has a structured rank part.

Consider U = H −uvH , since the matrix H is Hessenberg and has zeros below the
subdiagonal, the matrix U needs to be of rank 1 below the subdiagonal. The matrix U
is therefore unitary.

We will construct the representation of this matrix in a graphical form for a 6 × 6
example. We annihilate the vector u completely, except the first element, which will
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contain the weight of the entire vector u.

➊ ×
➋ ×
➌ ×
➍ ×
➎ � ⊗
➏

�

1

Let us briefly explain the scheme above as similar ones will be used throughout the
entire manuscript. The right part of the scheme depicts a matrix (in this case it is a
vector). The bracket above 1 indicates a single Givens transformation acting on rows
➎ and ➏ of the matrix. Mathematically, the scheme depicts

u = G1u1, (6)

where G1 corresponds to the Givens transformation in position 1, and u1 is the matrix
on the right having an extra zero in the last row. In fact the scheme here presents a
sort of factorization of the original vector u. The element to be annihilated by the
second Givens transformation is marked in the scheme with ⊗. Applying a second
transformation gives us u = G1G2u2. In the following scheme we see the vector u2
on the right, Givens transformation G1 above 2 and G2 above 1. Recall that the bottom
line depicts a time line, indicating in which order the Givens transformation have to
be applied on the vector u2 (see Sect. 2.2).

➊ ×
➋ ×
➌ ×
➍ � ⊗
➎ �

�
➏

�

2 1

After the Givens transformations acting on row ➌ and ➍, ➋ and ➌ and ➊ and ➋ are
performed we have completely removed the vector except for the top element.

➊ � ×
➋ �

�
➌ �

�
➍ �

�
➎ �

�
➏

�

5 4 3 2 1

(7)

To achieve the representation of U , the Hessenberg matrix H has to undergo the same
operations, G1, . . . , G5, as the vector u:
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Implicit double shift Q R-algorithm for companion matrices 187

H =

⎡
⎢⎢⎢⎣

× × × × × ×× × × × × ×× × × × ×× × × ×× × ×× ×

⎤
⎥⎥⎥⎦ .

Applying the first Givens transformation, G1, will create a fill in element at position
(6, 5), this is denoted by ⊗ in the scheme.

➊ × × × × × ×
➋ × × × × × ×
➌ × × × × ×
➍ × × × ×
➎ � × × ×
➏

� ⊗ × ×
1

The other four Givens transformations, G2, . . . , G5 will also create fill in elements,
and the matrix remaining on the right side is now a generalized Hessenberg matrix
having two subdiagonals.

➊ � × × × × × ×
➋ �

� × × × × × ×
➌ �

� ⊗ × × × × ×
➍ �

� ⊗ × × × ×
➎ �

� ⊗ × × ×
➏

� ⊗ × ×
5 4 3 2 1

(8)

By construction the Givens transformations in position 5 to 1 in Scheme (8) are exactly
the same as the ones in position 5 to 1 of Scheme (7). Subtraction of the factoriza-
tion uvH will not affect the above structure, only the elements on the top row of the
right side will change. This means that the unitary matrix U can be represented as in
Scheme (8).

Pealing of the second subdiagonal, removing successively all elements marked with
⊗ in Scheme (8), will give us an extra descending sequence of Givens transformations.
These Givens transformations can be found in positions 1 up to 4.

➊ � × × × × × ×
➋ �

�
� ⊗ × × × × ×

➌ �
� �

� ⊗ × × × ×
➍ �

� �
� ⊗ × × ×

➎ �
� �

� ⊗ × ×
➏

� � ⊗ ×
9 8 7 6 5 4 3 2 1

In the final step the remaining subdiagonal from the matrix on the right is removed.
This will be done by a descending sequence of 5 Givens transformations. We obtain
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the following scheme.

➊ � � × × × × × ×
➋ �

�
�

�
� × × × × ×

➌ �
� �

�
�

� × × × ×
➍ �

� �
�

�
� × × ×

➎ �
� �

�
�

� × ×
➏

� � � ×
14 13 12 11 10 9 8 7 6 5 4 3 2 1

(9)

In fact we have computed now a Q R-factorization of the unitary matrix consisting
of three sequences of Givens transformations: U = Q R. Since the matrix R is upper
triangular and also unitary, the matrix will be diagonal. Moreover, the final sequence of
Givens transformations can be chosen such that the diagonal matrix R has all diagonal
elements except the last one equal to 1, hence R = Iα , with |α| = 1. Graphically this
is depicted as follows (we do not depict the ones on the diagonal of Iα):

➊ � �
➋ �

�
�

�
�

➌ �
� �

�
�

�
➍ �

� �
�

�
�

➎ �
� �

�
�

�
➏

� � �
α

11 10 9 8 7 6 5 4 3 2 1

(10)

Denoting in Scheme (9) the product of the Givens transformations 14 to 10 by V ,
those from 9 to 6 by W and of those from 5 to 1 by X , we have factored the unitary
matrix U as the product of three unitary matrices U = V W X Iα . We use three different
symbols for the unitary matrices, because the use of too many sub and superscripts
would make the forthcoming implicit method difficult to read.

This will be the representation of the unitary matrix in the sum H = U + uvH .
As stated before the Givens transformations in position 11 upto 7 in Scheme (10) are
identical to the ones in position 5 to 1 of Scheme (7).

This means that we get the following equalities:

H = U + uvH = V W X Iα + uvH

= V
(

W X Iα + V H uvH
)

= V
(

W X Iα + ûvH
)

,

where the vector û has only the first element different from zero (this is the vector on
the right in Scheme (7)).

In the next section we will discuss the implementation of the implicit single shifted
Q R-method based on this representation.

4 The single shift method

There exist several variants for performing an implicit Q R-method on unitary plus low
rank matrices. Unfortunately most of these algorithms are not capable of preserving
both the unitary and the low rank structure. Numerical roundoff creates loss of the low
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rank structure and hence a form of rank compression is needed. This compression can
create undesired results such as loss of accuracy. Often also an increase of parameters
for representing the unitary plus low rank matrix is needed to deal with the loss of
structure.

In this section we will discuss how to perform an implicit Q R-step on the compan-
ion matrix, exploiting thereby the developed representation.

4.1 Implicit Q R-methods

Assume we have A − μI = Q R, with A, e.g., of tridiagonal, Hessenberg or semi-
separable form. Perform now a unitary similarity transformation Â = Q̂ H AQ̂ with
Q̂ having Q̂e1 = Qe1 such that Â has the same structural constraints as assumed for
A. Then one can prove that the matrix Â is essentially the same as the matrix coming
from an explicit Q R-step with shift μ performed on the matrix A.

An implicit Q R-method consists of performing the transformation Q̂ H AQ̂ in such
a manner that the full matrix Q is not needed beforehand, but is determined on the fly.

The global flow of an implicit method is the following.

– Compute an orthogonal transformation Q̂1, such that Q̂ H
1 (A − μI )e1 = βe1.

– Perform a similarity transformation with Q̂1 on the matrix A: Q̂ H
1 AQ̂1.

– Perform now a new similarity transformation with the matrix Q̂2, with Q̂2e1 =
e1, such that Q̂ H

2 Q̂ H
1 AQ̂1 Q̂2 has the same structural constraints as the original

matrix A.

The first two items are often named the initialization step, whereas the third step
is often called the chasing step, since in the Hessenberg and tridiagonal case, bulges
are chased away to restore the Hessenberg or tridiagonal structure. This is also the
subdivision used for the next two subsections.

4.2 Initialization

The implicit Q R-step performed on a Hessenberg matrix is determined by the first
Givens transformation G1 (corresponds to Q̂1 from the previous subsection), such
that

G H
1 (H − μI )e1 = ±‖(H − μI )e1‖e1.

We will now perform the similarity transformation G H
1 H G1, exploiting the factor-

ization of the matrix H (for simplicity we omit the hat and write u instead of û)

H = V
(
W X Iα + uvH

)
. (11)

The idea is to obtain again a Hessenberg matrix, after the complete Q R-step is
finished. Moreover, we want the resulting Hessenberg matrix to satisfy the same rep-
resentation as shown in (11). Of course after applying the first similarity transforma-
tion based on G1, the structure will not be exactly as desired. Hence extra Givens
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transformations will be constructed to restore the structure. This will be the chasing.
Throughout the entire procedure we want the representation to remain as close as
possible to the original representation of H .

Let us perform the first similarity transformation on the matrix H = H0 =
V0

(
W0 X0 Iα + uvH

0

)
, we do not add a subscript to u since this vector will not alter.

We obtain

H1 = G H
1 V0

(
W0 X0 Iα + uvH

0

)
G1

= G H
1 V0

(
W0 X0 IαG1 + uvH

0 G1

)

= G H
1 V0

(
W0 X0 IαG1 + uvH

1

)
,

with vH
1 = vH

0 G1. In the remainder of the derivations, all intermediate variables
will be depicted with a tilde or a hat and all final values for representing H1 will be
V1, W1, X1, u and v1.

Since the Givens transformation G H
1 acts on the first two rows, and V0 acts on the

rows 1 up to 6 we can apply the shift through lemma G H
1 V0 = Ṽ1G̃ H

1 :

H1 =
�× � ��

�
�

�
�

�
�

�
�

�

⎛
⎜⎜⎜⎝

� �×
�

�
�

�
�

�
�

��
�

�
��

�
�

�� �
+

⎡
⎢⎢⎢⎣

×
0
0
0
0
0

⎤
⎥⎥⎥⎦ vH

1

⎞
⎟⎟⎟⎠ .

The Givens transformation G̃ H
1 can be brought between the brackets and will not affect

the second term. It does act on the first term, but can be removed by a fusion:

H1 = Ṽ1G̃ H
1

(
W0 X0 IαG1 + uvH

1

)

=
�

�
�

�×
�

� �

�
�

�
�

�

⎛
⎜⎜⎜⎝

� �×
�

�
�

�
�

�
�

��
�

�
��

�
�

�� �
+

⎡
⎢⎢⎢⎣

×
0
0
0
0
0

⎤
⎥⎥⎥⎦ vH

1

⎞
⎟⎟⎟⎠

= Ṽ1

(
G̃ H

1 W0 X0 IαG1 + uvH
1

)

=
�

�
�

�
�

�
�

�
�

�

⎛
⎜⎜⎜⎝

� �×
�↪→× �

�
�

�
� �

�
�

��
�

�
��

�
�

�� �
+

⎡
⎢⎢⎢⎣

×
0
0
0
0
0

⎤
⎥⎥⎥⎦ vH

1

⎞
⎟⎟⎟⎠ .

= Ṽ1

(
Ŵ1 X0 IαG1 + uvH

1

)
.

The only remaining undesired Givens transformation is G1 in the middle of the for-
mula. The idea is now to drag this Givens transformation completely through the other
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matrices such that it appears before the matrix V0 and moreover acts on row 2 and row
3. It has to act on row 2 and row 3, so that the next Givens transformation G2 can be
chosen to annihilate this transformation and such that it does not interfere with row 1
anymore.

Let us continue, by trying to remove also the second undesired Givens transforma-
tion denoted with ×. One can fairly easily apply two times the shift through operation
to obtain the following scheme. In fact one applies a shift through operation of length
2 to the left (Ŵ1 X0 IαG1 = Ĝ1W1 X1 Iα).

➊ � �
2

�×
➋ �

�
�

�
➌

�
�

�
�

➍
�

�
�

�
➎

�
�

�
�

➏
� �

α
9 8 7 6 5 4 3 2 1

−→

➊ �
➋ �

�
�

➌ �×
�

�
�

�
➍

� �
�

�
�

➎
�

�
�

�
➏

� �
α

10 9 8 7 6 5 4 3 2 1

Now there is an unwanted transformation in position 10. Denote this transformation

with Ĝ1. In formulas we obtain now H1 = Ṽ1

(
Ĝ1W1 X1 Iα + uvH

1

)
.

This gives us the following relations:

H1 = Ṽ1Ĝ1

(
W1 X1 Iα + Ĝ H

1 uvH
1

)
,

= Ṽ1Ĝ1

(
W1 X1 Iα + uvH

1

)
,

=
�

�
�

�
�

�×
�

� � �

�
�

�

⎛
⎜⎜⎜⎝

�
�

�
��

�
�

��
�

�
��

�
�

�� �
+

⎡
⎢⎢⎢⎣

×
0
0
0
0
0

⎤
⎥⎥⎥⎦ vH

1

⎞
⎟⎟⎟⎠

Two terms are of importance here: Ĝ H
1 u and Ṽ1Ĝ1. Clearly the vector u, will not

change due to the Givens transformation Ĝ H
1 . On Ṽ1Ĝ1 the shift through lemma can

be applied, as already indicated in the above scheme. The final step results in:

H1 = G2V1

(
W1 X1 Iα + uvH

1

)
,

=
�

�× �
�

�
�

�

�
�

�
�

�

⎛
⎜⎜⎜⎝

�
�

�
��

�
�

��
�

�
��

�
�

�� �
+

⎡
⎢⎢⎢⎣

×
0
0
0
0
0

⎤
⎥⎥⎥⎦ vH

1

⎞
⎟⎟⎟⎠

= G2V1

(
W1 X1 Iα + uvH

1

)
.

The equation depicted here is almost of the desired structure, the matrix H1 is
almost in Hessenberg form, except for a bulge in position (2, 1). The representation is
also almost in the correct form, only the Givens transformation G2 is undesired. We
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will remove this transformation (removing thereby also the bulge in H1), by applying
a similarity transformation with G2.

4.3 The chasing

We have now performed the initial step and we will continue now the algorithm, in an
implicit way. We will only depict how to remove the Givens transformation G2, the
procedure can be continued in a similar fashion.

Since we want our matrix H to become again of unitary plus low rank form obeying
the designed representation, we want to remove the disturbance G2. Performing the
unitary similarity transformation with this Givens transformation removes the trans-
formation on the left, but creates an extra transformation on the right. We obtain the
following:

H2 = G H
2 H1G2

= G H
2 G2V1

(
W1 X1 Iα + uvH

1

)
G2

= V1
(
W1 X1 IαG2 + uvH

1 G2
) = V1

(
W1 X1 IαG2 + uvH

2

)
,

where vH
2 = vH

1 G2.
Similarly as in the initial step we can drag G2 through W1 and X1, by a shift

through operation of length 2. We obtain W1 X1G2 = G̃2W2 X2. The reader can create
the schemes to see on which rows the transformation is performed. This gives us

H2 = V1
(
G̃2W2 X2 Iα + uvH

2

)
,

= V1G̃2
(
W2 X2 Iα + G̃ H

2 uvH
2

)
.

Since the Givens transformation G̃ H
2 acts on rows 4 and 5, G̃ H

2 u = u (u has only
the first element different from zero). Applying a final shift through operation for
V1G̃2 we obtain G3V2 = V1G̃2 giving us H2 = G3V2

(
W2 X2 Iα + uvH

2

)
. We have

performed now a step of the chasing method since the Givens transformation G3 has
shifted down one position w.r.t. the Givens transformation G2.

The chasing procedure can be continued in a straightforward manner to go from Gi

to Gi+1. Unfortunately this approach does not allow us to determine the last Givens
transformation Gn−1. Let us show what goes wrong and how to solve this problem in
the next subsection.

4.4 The last Givens transformation

Suppose we have performed step n − 3 and we have the following situation:

Hn−3 = Gn−2Vn−3
(
Wn−3 Xn−3 Iα + uvH

n−3

)
.
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Performing the similarity transformation determined by Gn−2 results in

Hn−2 = Vn−3

(
Wn−3 Xn−3 IαGn−2 + uvH

n−3Gn−2

)

= Vn−3

(
Wn−3 Xn−3 IαGn−2 + uvH

n−2

)
.

The Givens transformation Gn−2 works on rows n − 2 and n − 1, hence we obtain
the left graphical schemes for the first term of Wn−3 Xn−3 IαG H

n−2. Applying once the
shift through operation moves the Givens transformation in position 0 to position 6,
depicted on the right.

➊ �
➋ �

�
�

➌
�

�
�

�
➍

�
�

�
� �×

➎
�

�
�

�
�

➏
� �

α
9 8 7 6 5 4 3 2 1 0

−→

➊ �
➋ �

�
�

➌
�

�
�

�
➍

�
�

�
�

➎
�

�↪→�×
�

�
➏

� � �
α

10 9 8 7 6 5 4 3 2 1 0

(12)

Unfortunately we cannot shift the Givens transformation through anymore, a single
fusion can be applied and the undesired transformation vanishes. We obtain the fol-
lowing equation Hn−2 = Vn−2

(
Wn−2 Xn−2 Iα + uvH

n−2

)
.

The representation is of the desired form, but we know that the matrix Hn−2 is not
yet of the correct form, this matrix is of Hessenberg form with an extra bulge in position
(n, n − 1). The final Givens transformation can hence not be determined implicitly
anymore. We determine this Givens transformation explicitly by computing the matrix
vector product Hn−2en−2. Compute now Gn−1 such that eH

n G H
n−1 Hn−2en−2 = 0.

The final similarity transformation results in Hn−1 = G H
n−1Vn−2

(
Wn−2 Xn−2 Iα

Gn−1+uvH
n−2Gn−1

)
. Applying a fusion for the product G H

n−1Vn−2 and a scaled fusion
for the product Xn−2 IαGn−1 results in Hn−1 = Vn−1

(
Wn−1 Xn−1 Iα + uvH

n−1

)
, which

is a new Hessenberg matrix, i.e., a sum of a unitary and a rank 1 matrix, represented
using the desired representation. This completes the single shifted Q R-step.

5 The double shift strategy

For our purpose the double shift strategy is enough. Nevertheless the multishift setting
can be implemented as an almost trivial extension of the results presented here. First
the single shift strategy was proposed since the double shift strategy is slightly more
complicated, but makes extensive use of the results from the single shift strategy.

Note 4 In order not to overload the notation in the following subsections, we omit the
factor α, which is normally present in the bottom right corner. Its presence is not so
influential, hence it is not so troublesome to omit it in the description.
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5.1 Initial step

Suppose the initial Hessenberg matrix H , with its representation is given. Two shifts
μ1 and μ2 are given. Determine the Givens transformations G1 and G2 such that:

G H
2 G H

1 (H − μ1 I )(H − μ2 I )e1 = βe1,

with β a constant.
Let us perform now the initial similarity transformation G H

2 G H
1 H G1G2, exploiting

the representation of the unitary plus low rank matrix.
Again we consider the matrix H of the following form:

H = H0 = V0

(
W0 X0 Iα + uvH

0

)
. (13)

Let us compute H1 = G H
2 G H

1 H0G1G2. Schematically we obtain (the unwanted
transformations are marked again with a ×):

H1 =
�× ��

�× �
�

�
�

�

�
�

�
�

�

⎛
⎜⎜⎜⎝

�
�
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��
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�

��
�

�
��

�
�

�� �
+

⎡
⎢⎢⎢⎣

×
0
0
0
0
0

⎤
⎥⎥⎥⎦ vH

0

⎞
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�×
�×

�
�

.

In the next scheme two things have happened, first we will bring the disturbing
Givens transformations G1 and G2 on the right inside the brackets. The vector vH

0
will be transformed into vH

1 . Secondly we will apply the shift through lemma on the
Givens transformations depicted at the left:

H1 =
�× ��

�× � �
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�
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⎞
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The shift through is already depicted, performing it, one obtains the following scheme:

H1 =
�

�
�

�× �

�
� �
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� �
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�
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⎞
⎟⎟⎟⎠ .

Bringing two Givens transformations inside the brackets, and performing the indicated
shift through with the first term of the second factor gives us the following scheme.
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Remark that the vector u is not affected by this operation:

H1 =
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After the shift through operation one applies a fusion such that one Givens transfor-
mation disappears. We obtain the following:

H1 =
�
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= Ṽ1

(
G̃1W̃1 X1 IαG1G2 + uvH

1

)

There are three more undesired Givens transformations G1 and G2 at the right and
G̃1 at the left.

Applying twice a shift through operation of length 2 to the left moves the undesired
Givens transformations, G1 and G2, from right to left. Secondly one can take the three
Givens transformations out of the brackets. We do not create fill in in the rank 1 part:
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Performing the indicated shift through we obtain the following scheme:
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Rewriting this formula for the last time by another shift through operation gives us
the desired form:

H1 =
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⎟⎟⎟⎠ . (14)

Now we have finished the first step of the double shift algorithm. Clearly there
are three undesired Givens transformations. The first two ones are used for the next
chasing step. One Givens, the third one, will remain in that position, and is used in all
consecutive steps.

Note 5 One might be surprised by the fact that the matrix is now disturbed by three
Givens transformations, from which we will only take two for determining the next
chasing step. This is completely logical when comparing this situation with the double
shift algorithm for Hessenberg matrices. The double shift algorithm also has bulges
of three undesired elements, from which only two will be annihilated. The remaining
third element of the bulge will shift down every iteration step, just like the Givens
transformation will move down here.

5.2 Chasing

The chasing proceeds similarly as to the single shift case. We will simply depict a
single step. We start with Eq. (14). The chasing, since this is a double shift method,
consists now of performing two Givens at the same time. The next two Givens deter-
mining the similarity transformation are chosen as the inverses of the two leftmost
Givens transformations. Applying this similarity transformation results in the matrix
H2, which will be of the following form:

H2 =
�

�
�

�× �
�

�
�

�

�
�

�

⎛
⎜⎜⎜⎝

�
�

�
��

�
�

��
�

�
��

�
�

�� �
+

⎡
⎢⎢⎢⎣

×
0
0
0
0
0

⎤
⎥⎥⎥⎦ vH

1

⎞
⎟⎟⎟⎠

�×
�×

�
� .

With respect to H1, the first two Givens transformations are removed, and two other
ones appear at the right of the matrix. To continue, one applies the last two Givens
transformations on both terms of the summation. This transforms vH

1 into vH
2 . Apply-

ing twice a shift through operation of length 2 to the left moves the undesired Givens
transformations on the right through the first term in the summation. This leads to the
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following graphical representation:
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Bringing now the Givens transformations inside the brackets, marked with × outside
of the brackets does not affect the column vector since these Givens transformations
act on the zeros. Outside the brackets we can again bring these transformations to
the front, perform a final shift through operation on the three leftmost Givens and
complete this step.

We are now ready to perform the next similarity transformation based on the first
two Givens transformations:
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5.3 Last step

Similarly as in the single shift case, we are not able to continue using the implicit
approach until the end. The last two steps cannot be completed in an implicit manner.
Again one has to determine these columns of the Hessenberg matrix with its bulge
explicitly to determine these final Givens transformations.

6 Deflation

The goal of repeatedly applying a Q R-step is obtaining convergence to a quasi upper
triangular matrix, which has the eigenvalues of the original matrix on its diagonal.

In the standard Hessenberg case deflation is of the following form. Consider the
Hessenberg matrix H , having a zero subdiagonal element

H =
[

H1 ×
0 H2

]
, (15)

then the matrix is subdivided into two other Hessenberg matrices H1 and H2 on which
one continues working separately.

Suppose, however, that we are working with a Hessenberg matrix, written as the
sum of a unitary and a rank 1 matrix. In case of deflation, it is not true in general that
both matrices H1 and H2 are also of unitary plus rank 1 form.

The idea exploited in this manuscript differs significantly from the standard subdi-
vision scheme as mentioned above. Since the original matrix H is written as the sum
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of a unitary plus low rank matrix, we will not subdivide the matrix as a combination
of smaller unitary plus low rank matrices. Instead we will simply continue working
on the global representation.

6.1 Structure of the representation

The occurrence of a zero on the subdiagonal must have its impact on the representa-
tion. This will be used for detecting subdiagonal zeros during the algorithm. Let us
reconsider the Hessenberg matrix and its representation in case of a zero subdiagonal
element. Suppose the matrix H satisfies Eq. (15), assume the matrix to be of size 7×7
and H(4, 3) = 0 (cases H(3, 2), H(5, 4), H(6, 5) can be dealt with similarly). The
special cases H(2, 1) and H(n, n − 1) = H(7, 6) are considered afterwards.

We have the standard representation H = V
(
W X Iα + uvH

)
. Consider now

V H H = W X Iα + uvH . Due to the zero in position H(4, 3) the matrix V H H , which
is a generalized Hessenberg matrix having two subdiagonals, has a zero in position
(5, 3). Since the rank one matrix uvH has only the top row different from zero, also
the matrix W X needs to have a zero in position (5, 3). The zero in position (5, 3)

corresponds to a diagonal Givens transformation present in the descending sequence
of W , this Givens transformation will act on row 4 and row 5.

This results in the following representation for the unitary matrix U in H = U +
uvH . The dashed line coincides with the block division in the original Hessenberg
matrix. In this representation, the diagonal Givens transformation is indicated by the
parameters δi and δ̄i (in fact δi = ci and δ̄i = c̄i , but we use this notation to indicate
that the Givens transformation is almost diagonal, i.e., |ci | ≈ 1). They simply indicate
row scalings, just like α does.

➊ � �
➋ �

�
�

�
�

➌ �
� �

�
�

�
➍ �

� �
δ4

�
�

➎ �
�

δ̄4 �
�

�
➏ �

� �
�

�
�

➐
� � �

α
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(16)

The zero subdiagonal element in the Hessenberg matrix appears as a diagonal
Givens transformation, in position 7 on the graphical scheme. Note that the diagonal
Givens is positioned lower than the actual dashed line indicating the cutting. This
diagonal Givens transformation is also the criterion that will be used for deciding
whether a block can be deflated or not. Unfortunately we cannot monitor convergence
in position H(n, n − 1) in this fashion, we will come back to this in Sect. 6.5.

Instead of subdividing the problem and trying to design two separate representa-
tions, one for the upper left and one for the lower right part, we will simply continue
working with this representation. We know that the line indicates the splitting in the
Hessenberg matrix, hence we want to work on the part above and below the line
separately. This will be depicted in forthcoming subsections.
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Continuing performing steps of the Q R-algorithm on this representation, will result
in a quasi upper triangular matrix R, which is represented as the sum of a unitary and
a rank one matrix. This quasi upper triangular matrix R has the eigenvalues of the
original matrix on its block diagonal.

The Givens pattern of the final unitary matrix (omitting the row scaling factors) has
the following form. We see that during the reducing procedure we will transform the
Givens transformations from the inner sequence into unitary diagonal matrices.

➊ �
➋ �

�
�

➌ �
� �

�
➍ �

� �
�

➎ �
� �

�
➏ �

� �
�

➐
� �

11 10 9 8 7 6 5 4 3 2 1

Let us illustrate how to continue working on both parts of the Hessenberg matrix.
The part above and the part below the dashed line. The shift and the initial Givens trans-
formation can be computed by explicitly computing some columns of the Hessenberg
matrix. This will cost at most O(n) operations.

6.2 Upper part

Let us see how the algorithm changes in case of the following scheme (only the unitary
factor is represented). The original Hessenberg matrix has a zero in position H(6, 5)

and we want to perform a Q R-step on the top part, i.e., the first 5 rows. Since the
standard Q R procedure applied on a reducible Hessenberg matrix breaks down when
reaching the zero subdiagonal element, we would also expect a certain break during
the chasing procedure in this case.

➊ � �
➋ �

�
�

�
�

➌ �
� �

�
�

�
➍ �

� �
�

�
�

➎ �
� �

�
�

�
➏ �

� �
δ6

�
�

➐
�

δ̄6

�
α

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

The first initial disturbing Givens transformation is applied in an identical way as
before the deflation. Nothing new here. The next Givens similarity transformation
acting on rows and columns 2 and 3 can be performed as in the standard case, just like
the transformation on rows and columns 3 and 4. The next similarity transformation
acting on row and columns 4 and 5 is a special one. In the standard case, this Givens
transformation does not create another bulge. Hence, the matrix is again of Hessenberg
form and the Q R procedure breaks down. One cannot compute the following Givens
transformation acting on row 5 and 6 anymore.
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Let us see how this translates to our case. Suppose we have the following situation,
just before applying the Givens similarity transformation. Since only the unitary matrix
is essentially involved in this chasing procedure we will not depict any operations on
the rank one structure.
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�
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δ̄6
�

α
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Performing the Givens similarity transformation will remove the undesired Givens
transformation in position 16 and create another one on the right. In the left scheme
this situation is depicted. A shift through operation is depicted and the result is shown
in the right scheme.
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In the right scheme we see that we can apply another shift through operation, due to the
fact that the Givens transformation in position 6 crosses the dashed line. In Sect. 4.4
this Givens transformation fused with another one and vanished. Hence, in this case,
we do not need to determine the last Givens transformation by explicitly computing
the fourth column. The final step is therefore essentially different from the final step
in Sect. 4.4.

So when dragging the remaining undesired Givens transformation completely to
the left we obtain the following scheme.
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When performing the next transformation, the algorithm should stop since the element
H(6, 5) in the Hessenberg matrix is zero. This means that at the end of this similarity
transformation, all undesired Givens transformations should be removed. Let us see
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how this translates towards the representation. After the similarity transformation we
obtain the left scheme. A scaled fusion is depicted in the right scheme.
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As a result we obtain again a similar represented Hessenberg matrix. This process
can easily be repeated until another Givens transformation in the second sequence is
close enough to diagonal form.

6.3 Bottom part

Applying a Q R-step on the bottom part only differs from Sect. 4 in the way the first
Givens transformation is performed. The final Givens transformation again has to be
determined by computing the penultimate column.

Assume we have the situation as depicted in Scheme (16). Since we would like to
perform a Q R-step on the bottom part, the initial similarity transformation will act
immediately on rows and columns 4 and 5. Suppose the transformation is determined
and the similarity transformation is performed. This results in the following scheme
(the Givens transformations are applied directly below the dashed line).
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The Givens transformation on the left marked with × is shifted through such that
it appears in the middle. The next scheme clearly shows that only one scaled fusion
needs to be applied to remove the undesired Givens transformation from the left.
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As a result we obtain sort of the standard situation. The Givens transformation on
the right is not troublesome, dragging it through completely to the left as done before,
it will come out acting on rows 5 and 6. Hence it can be used for determining the next
Givens transformation.

123



202 M. Van Barel et al.

6.4 More general cases

Of course when running the algorithm cases like the following will occur:

H =
[

H1 × ×
0 H2 ×
0 0 H3

]
. (17)

To apply a Q R-step on the matrix H2, a combination of techniques from the previous
two sections needs to be made. Performing the initial step is described in Sect. 6.3,
whereas performing the last Givens is done like in Sect. 6.2. Q R-steps performed on
these middle blocks are cheaper than the ones on H1 and H3.

6.5 Special case

Two cases were not treated before, namely the possibilities of H(n, n−1) and H(2, 1)

being zero. For H(n, n − 1), the appearance of a zero element in this position is not
reflected in the representation. Hence one has to compute this element explicitly and
monitor its behavior. It can be computed by computing the vector Hen−1. In case
H(n, n − 1) equals zero, nothing special occurs, one can apply similar techniques as
those described in Sect. 6.2.

7 Numerical experiments

7.1 Balancing strategy

Because of the possible variation in magnitude of coefficients of the polynomial,
normally a preprocessing step is applied to the matrix as, e.g., in [8]. In fact this is
a balancing strategy, meaning that the variation in magnitude of the elements of the
matrix is reduced. Generally DC D−1 is computed with D a diagonal matrix. To obtain
again a unitary plus low rank matrix, the diagonal elements have to be chosen equal
to di = β i for some β. This results in

DC D−1 = β

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 − p0
βn

1 0 . . . 0 − p1
βn−1

...
. . .

. . .
...

...

0
. . .

. . . 0 − pn−2
β2

0 0 . . . 1 − pn−1
β

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= βĈ .

For an appropriate β, the eigenvalues of matrix C are then obtained by computing the
eigenvalues of matrix Ĉ and then multiplying them by the factor β. Empirically, they
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found the following criterion for choosing β to be useful. Choose β such that

Range{|ĉ1|, |ĉ2|, . . . , |ĉn|, 1} := max{|ĉ1|, |ĉ2|, . . . , |ĉn|, 1}
min{|ĉ1|, . . . , |ĉn|, 1}

is as small as possible, where ĉi = pn−i/β
i .

7.2 The implementation

The algorithm using a double shift as explained in Sect. 5 was implemented in Matlab3

Version 7.7 (R2008b). To avoid the fact that the Givens transformations for the last
two columns have to be computed explicitly, we do one iteration step with the two
shifts equal to zero, applied to the polynomial z2 p(z) which has clearly two addi-
tional zeros for z = 0. This iteration step brings these two zeros as eigenvalues of the
bottom 2 × 2 block of the (extended) companion matrix. So, after this iteration step,
one can deflate these two artificial roots and no explicit computation of the Givens
transformations based on the last two columns has to be computed again. We will
refer to our implementation as VanBarel. This software can be requested from the
authors. We wanted to compare this implementation with all other methods for which
we were able to obtain an implementation. We had access to the following implemen-
tations: Delvaux corresponds to a Matlab-implementation of the method proposed in
[9], Bini denotes the Matlab-implementation for the method from [6], Chandrasek-
aran denotes a Fortran-implementation for the method proposed in [8] and eig no
bal and eig bal correspond to the eig function of Matlab without and with balancing,
respectively (with balancing is meant an extra balancing inside the function eig).

7.3 The experiments

Two different errors will be considered in the experiments. The maximum eigenvalue
error (Max Eig) is defined as the distance between the sets λ(C) and λ̃(C):

dist(λ(C), λ̃(C)) = max

{
max

λ̃∈λ̃(C)

||λ̃ − λ(C)||, max
λ∈λ(C)

||λ − λ̃(C)||
}

,

where λ̃(C) are the eigenvalues computed with the algorithms and where λ(C) are
the exact eigenvalues, when they are known; otherwise we assume that the eigen-
values computed by the Matlab function eig are exact. The norm ||λ − λ̃(C)|| is
defined as minλ̃∈λ̃(C) |λ − λ̃| and minλ̃∈λ̃(C)(|λ − λ̃|/|λ|) for the absolute respectively
relative maximum eigenvalue error (Max Eig Abs/Max Eig Rel). The second errors
are the maximal componentwise absolute and relative error in the coefficients of the

3 Matlab is a registered trademark of The MathWorks, Inc.
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polynomials (Max Coeff Abs/Max Coeff Rel):

max
i

|pi − p̃i |, max
i

( |pi − p̃i |
|pi |

)
,

where p̃i , pi are the coefficients of the polynomial obtained by the computed and exact
eigenvalues, respectively. The coefficients p̃i are computed in multiple precision.

Experiment 1: In this experiment, we investigate the robustness of the different
methods with respect to the choice of the scaling factor β described in Sect. 7.1.

To do so, we consider the following monic polynomials each of degree 20 where
almost all of these polynomials have a large variation in the magnitude of their coef-
ficients [8,12]:

1. Wilkinson polynomial with roots: k with k = 1, . . . , 20.
2. Monic polynomial with roots: [−2.1 : 0.2 : 1.7].
3. Monic polynomial with roots: 2k with k = −10, . . . , 9.
4. Reversed Wilkinson polynomial with roots: 1

k with k = 1, . . . , 20.

5. Polynomial p(z) = (20!)∑20
k=0

zk

k! .
6. Polynomial p(z) = z20 + z19 + · · · + z + 1.

For the polynomials 1.−4. the roots are known, for 5)−6) this is not the case. Because
of the wide range of the coefficients of the polynomial, e.g. for the Wilkinson poly-
nomial |pi | ∈ [1, 1020], balancing, which is discussed in Sect. 7.1, is very important.
Therefore different balancing factors β are applied to the matrix C . Figure 1 contains
the result of varying the balancing factor β = 2 j , j = −10, . . . , 10 for the six poly-
nomials of degree 20. The result of the maximal componentwise relative error on the
coefficients is shown on a logarithmic scale for the six different methods: VanBarel,
Delvaux, Bini, Chandrasekaran, eig no bal and eig bal. In fact, a relative error
bigger than one does not give much information. However, we included them in the
figures to show compare the behaviour of the errors.

The figure shows that the methods Delvaux, Bini, and Chandrasekaran give a
(rather) accurate solution, for some specific scaling factors β. For the method Van-
Barel the choice of the scaling parameter β is not so crucial to obtain an accurate
solution. As long as the scaling factor is not too large, the method works. This shows
that this method is very robust with respect to the other O(n2) methods that we are
aware of. The function eig bal of Matlab always works well. Note that this is an
O(n3) method as well as eig with no balancing. Figure 2 shows the condition number
of the eigenvectors for the different scaling parameters β, giving an indication of the
ill-conditioning of the problems.

In Tables 1, 2, 3, 4, 5 and 6, the maximal eigenvalue error (Max Eig Abs/Rel) and the
maximal componentwise error on the coefficients (Max Coeff Abs/Rel) for the optimal
choice of the parameter β are shown for the methods Bini, Delvaux, Chandrasek-
aran, VanBarel, Eig no bal and Eig. These tables show that the method Chandr-
asekaran gives accurate results followed by the method VanBarel and Delvaux when
scaling is required. The selected balancing parameter correspond to the minimum of
the cond(V ) as shown in Fig. 2.
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Fig. 1 Experiment 1: looking for the optimal balancing factor β = 2 j for polynomials 1–6
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Fig. 2 Experiment 1: condition of eigenvectors cond(V ) for different balancing factors β = 2 j with
j = −10, . . . , 10 for polynomials 1–6
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Table 1 Experiment 1: polynomial 1 with balancing factor β = 23

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 1.6374e − 02 7.2081e − 02 4.4348e − 02 2.4255e − 03 6.8288e − 02 6.6512e − 01
Max Eig Rel 1.0328e − 03 5.0278e − 03 2.9636e − 03 1.8658e − 04 4.9016e − 03 4.8500e − 02
Max Coeff Abs 4.3777e + 07 2.6171e + 07 4.5311e + 08 3.9322e + 05 5.5520e + 08 2.1709e + 05
Max Coeff Rel 1.0588e − 11 2.9900e − 12 1.8624e − 10 7.1132e − 14 2.2821e − 10 1.5727e − 14

Table 2 Experiment 1: polynomial 2 with balancing factor β = 1

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 3.0608e − 10 3.2560e − 10 4.8209e − 09 1.0378e − 12 3.3662e − 10 3.3314e − 10
Max Eig Rel 2.0405e − 10 2.1706e − 10 2.8358e − 09 6.1049e − 13 2.2441e − 10 2.2209e − 10
Max Coeff Abs 1.0118e − 11 6.6237e − 12 8.5017e − 11 1.5859e − 11 3.9790e − 12 3.0127e − 12
Max Coeff Rel 2.4399e − 11 3.4542e − 11 4.2490e − 10 1.7465e − 12 3.0063e − 11 9.0659e − 13

Table 3 Experiment 1: polynomial 3 with balancing factor β = 2−2

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 1.0183e − 07 4.3739e − 04 3.8646e + 14 8.7539e − 11 3.4902e − 07 5.7270e − 12
Max Eig Rel 5.5336e − 05 3.9111e − 06 7.5480e + 11 3.8769e − 13 1.7927e − 04 1.0374e − 12
Max Coeff Abs 8.6250e + 00 3.0235e + 07 3.8646e + 14 1.8531e + 01 3.9062e + 00 9.1719e + 00
Max Coeff Rel 1.6926e − 05 3.4559e − 07 3.7740e + 11 4.2721e − 13 5.1920e − 05 9.2531e − 14

Table 4 Experiment 1: Polynomial 4 with balancing factor β = 2−3

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 2.6257e − 03 2.6713e − 03 5.6555e − 03 9.1241e − 05 6.7330e − 03 9.5857e − 04
Max Eig Rel 4.3290e − 02 4.2742e − 02 8.2913e − 02 1.2360e − 03 9.6674e − 02 1.2015e − 02
Max Coeff Abs 2.7622e − 13 4.5785e − 12 3.5232e − 12 1.7764e − 15 5.3291e − 15 6.2172e − 15
Max Coeff Rel 1.2944e − 11 1.0349e − 11 1.2226e − 10 7.9069e − 14 3.6591e − 11 1.2709e − 14

In Tables 7, 8, 9, 10, 11 and 12, the maximal eigenvalue error (Max Eig Abs/Rel)
and the maximal componentwise error on the coefficients (Max Coeff Abs/Rel) for
parameter β = 2−7 are shown for the methods Bini, Delvaux, Chandrasekaran,
VanBarel, Eig no bal and Eig. These tables show that the method VanBarel gives
accurate results in contrast to the results of Bini, Delvaux, Chandrasekaran for a
small balancing factor, except for polynomial 6.

Experiment 2: To check that the computational complexity is of order O(n2), we
constructed random polynomials of degree n, by computing the coefficients p� ∈ C,
� = 0, . . . , n by using randomly distributed complex numbers. The matrix sizes were
chosen as n = 25 · 2i−1, with i = 1, . . . , 6. We assume that no balancing (β = 1) is
necessary. For each of these sizes n, five samples were considered.

Figure 3a shows the ratio Ti+1/Ti averaged over the five samples for the method
Delvaux, Bini, Chandrasekaran and VanBarel. As you can see this is of the order
O(n2). Figure 3b shows the average number of Q R iterations per eigenvalue. For the
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Table 5 Experiment 1: polynomial 5 with balancing factor β = 23

EigVanBarel EigDelvaux EigBini EigChan Eig bal

Max Eig Abs 5.9114e − 11 1.6175e − 10 7.0761e − 10 6.1573e − 11 4.6811e − 11
Max Eig Rel 9.1362e − 12 2.4998e − 11 1.0936e − 10 9.5162e − 12 7.2347e − 12
Max Coeff Abs 2.3962e + 05 2.6881e + 05 2.3500e + 07 1.7459e + 05 1.0547e + 05
Max Coeff Rel 9.8490e − 14 1.1049e − 13 9.6591e − 12 7.1763e − 14 4.3352e − 14

Table 6 Experiment 1: Polynomial 6 with balancing factor β = 1

EigVanBarel EigDelvaux EigBini EigChan Eig bal

Max Eig Abs 3.3643e − 15 2.2888e − 15 3.6367e − 15 1.6653e − 15 2.4980e − 15
Max Eig Rel 3.3643e − 15 2.2888e − 15 3.6367e − 15 1.6653e − 15 2.4980e − 15
Max Coeff Abs 4.5963e − 14 1.8886e − 14 2.7124e − 14 1.1324e − 14 1.9984e − 14
Max Coeff Rel 4.5963e − 14 1.8886e − 14 2.7124e − 14 1.1324e − 14 1.9984e − 14

Table 7 Experiment 1: polynomial 1 with balancing factor β = 2−7

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 4.0024e − 02 5.6829e + 15 1.0311e + 13 1.1943e + 01 5.1384e − 03 1.1387e + 00
Max Eig Rel 2.5078e − 03 2.8415e + 14 5.1557e + 11 8.0482e − 01 3.6703e − 04 8.6411e − 02
Max Coeff Abs 2.2323e + 05 1.1975e + 32 1.3804e + 19 1.3679e + 18 4.7923e + 05 1.1674e + 05
Max Coeff Rel 2.4903e − 14 9.5275e + 25 4.9102e + 10 1.0981e − 01 3.7881e − 14 2.5039e − 14

Table 8 Experiment 1: polynomial 2 with balancing factor β = 2−7

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 3.9778e − 10 1.9012e + 11 4.8435e + 12 8.3272e − 01 1.5159e − 09 2.8514e − 10
Max Eig Rel 2.6235e − 10 9.0535e + 10 2.3064e + 12 3.9653e − 01 1.1661e − 09 1.9009e − 10
Max Coeff Abs 3.9064e − 09 7.2437e + 17 4.8435e + 12 3.1687e + 02 3.9671e − 09 5.0022e − 12
Max Coeff Rel 1.9956e − 10 1.2708e + 17 1.2109e + 12 5.2838e + 00 4.3421e − 10 1.1332e − 13

Table 9 Experiment 1: polynomial 3 with balancing factor β = 2−7

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 6.3915e − 09 3.9321e + 13 4.1811e + 12 4.1906e − 02 6.0751e − 13 5.7270e − 12
Max Eig Rel 3.8842e − 11 7.6800e + 10 8.1662e + 09 6.5521e − 04 2.3204e − 13 1.0374e − 12
Max Coeff Abs 1.4423e + 02 1.2160e + 14 1.2160e + 14 4.5075e + 10 5.3594e + 00 9.1719e + 00
Max Coeff Rel 1.2391e − 11 3.8400e + 10 4.0831e + 09 3.7750e − 04 4.8907e − 14 9.2531e − 14

Table 10 Experiment 1: polynomial 4 with balancing factor β = 2−7

EigVanBarel EigDelvaux EigBini EigChan Eig bal Eig

Max Eig Abs 1.3461e − 04 1.6513e + 00 3.1757e + 12 3.6395e − 01 2.1203e − 05 3.7008e − 03
Max Eig Rel 2.0192e − 03 2.1695e + 00 3.1757e + 12 7.4831e − 01 2.5450e − 04 4.9816e − 02
Max Coeff Abs 4.6274e − 13 7.7114e + 00 3.1757e + 12 1.2757e − 01 1.7764e − 15 2.3981e − 14
Max Coeff Rel 4.9316e − 13 1.3591e + 00 8.8269e + 11 1.6896e − 01 6.1913e − 15 1.2475e − 14

123



Implicit double shift Q R-algorithm for companion matrices 209

Table 11 Experiment 1: polynomial 5 with balancing factor β = 2−7

EigVanBarel EigDelvaux EigBini EigChan Eig bal

Max Eig Abs 1.1566e − 10 6.1650e + 13 1.6160e + 13 3.6562e + 00 4.5040e − 08
Max Eig Rel 1.7875e − 11 4.3386e + 12 1.1372e + 12 4.9664e − 01 6.9610e − 09
Max Coeff Abs 4.2547e + 06 2.4329e + 18 2.4329e + 18 1.4933e + 18 3.3156e + 08
Max Coeff Rel 1.7488e − 12 3.9944e + 12 8.0799e + 11 6.1377e − 01 1.7974e − 09

Table 12 Experiment 1: polynomial 6 with balancing factor β = 2−7

EigVanBarel EigDelvaux EigBini EigChan Eig bal

Max Eig Abs 1.4138e + 03 2.5229e + 14 5.2627e + 12 3.9242e + 09 1.2930e − 06
Max Eig Rel 1.4138e + 03 2.5229e + 14 5.2627e + 12 3.9242e + 09 1.2930e − 06
Max Coeff Abs 1.2319e + 12 2.5229e + 14 5.2627e + 12 9.0749e + 49 1.4591e − 05
Max Coeff Rel 1.2319e + 12 2.5229e + 14 5.2627e + 12 9.0749e + 49 1.4591e − 05

method Delvaux the average is between 2 and 3. For the method Bini it is a little bit
more, between 5 and 6. For the methodVanBarel, it is between 1 and 2 and for the
method Chandrasekaran is it around three iterations per eigenvalue.

This number is strongly influenced by the policy used for stopping the iteration,
the deflation criterion and the type of iteration (double or single shift). Let us briefly
comment on these three items for all implementations in the following.

The method Delvaux uses a Wilkinson shift for a single-shift Q R-iteration. Defla-
tion is allowed anywhere in the matrix and occurs when the non-relative criterion
is satisfied |hi,i−1| < ε (hi,i−1 represents a subdiagonal element in the Hessenberg
matrix). In practice they take ε as the machine precision. All subdiagonal elements are
computed explicitly in order to check for deflation. Subblocks are considered suffi-
ciently small when they are of size less then or equal to 8×8, then their eigenvalues are
computed by standard matlab routines eig for computing eigenvalues of Hessenberg
matrices and not by the presented fast iteration anymore.

The method Van Barel uses a double shifted Q R-iteration based on Francis shift
strategy to retain real arithmetic. For single shift iterations the standard Rayleigh shift
is taken. Deflation is allowed anywhere in the matrix and occurs as discussed in Sect. 6
when a Givens rotation becomes diagonal. Since Givens rotations are unitary a non-
relative criterion based on the machine precision is used to see if the off-diagonal ele-
ments are small enough. Only the final subdiagonal element of the Hessenberg matrix
is computed explicitly and a relative criterion |hn,n−1| < ε(|hn−1,n−1| + |hn,n|) is
used (ε depends on the machine precision). A block is considered small enough when
it is of size 3 × 3.

In Chandrasekaran also double shifted Q R-iterations with Francis shift strategy
are performed and single shift iterations use the Raileigh shift. In this method the tra-
ditional deflation criterion |hi,i−1| < ε(|hi−1,i−1| + |hi,i |) is also used, but translated
to the representation of the Hessenberg matrix. Hence the subdiagonal and diagonal
elements are not computed explicitly to check for deflation, but a specific procedure
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Fig. 3 Experiment 2: a time ratio, b average number of iterations per eigenvalue

Table 13 Experiment 2: results Bini

n Max Eig Abs Err Max Eig Rel Err Max Coeff Abs Err Max Coeff Rel Err

25 1.27 × 10−14 1.21 × 10−14 5.88 × 10−14 4.65 × 10−14

50 2.88 × 10−14 2.53 × 10−14 2.48 × 10−13 1.73 × 10−13

100 6.70 × 10−14 7.19 × 10−14 1.01 × 10−12 7.24 × 10−13

200 2.67 × 10−13 2.37 × 10−13 5.50 × 10−12 4.17 × 10−12

400 5.58 × 10−12 4.90 × 10−12 3.26 × 10−11 2.41 × 10−11

800 7.24 × 10−11 6.24 × 10−11 1.57 × 10−10 1.31 × 10−10

Table 14 Experiment 2: results Delvaux

n Max Eig Abs Err Max Eig Rel Err Max Coeff Abs Err Max Coeff Rel Err

25 5.55 × 10−15 5.14 × 10−15 4.22 × 10−14 3.08 × 10−14

50 9.02 × 10−15 8.23 × 10−15 7.93 × 10−14 6.33 × 10−14

100 1.40 × 10−14 1.28 × 10−14 2.82 × 10−13 2.45 × 10−13

200 6.22 × 10−14 5.39 × 10−14 9.43 × 10−13 7.57 × 10−13

400 1.89 × 10−13 1.80 × 10−13 6.01 × 10−12 5.17 × 10−12

800 1.31 × 10−12 1.22 × 10−12 5.13 × 10−11 4.71 × 10−11

acting on its Hierarchical representation is used. Submatrices are deflated when they
are of size 3 × 3.

In the method of Bini a single shifted Q R-iteration with Rayleigh shift is consid-
ered. Deflation is only checked at the trailing subdiagonal element, which is explicitly
computed, and the relative criterion |hn,n−1| < ε(|hn−1,n−1| + |hn,n|) is also utilized
here to check if deflation can be applied. Since deflation is only allowed in the lower
right part of the matrix, all deflated blocks have size 1 × 1.
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Table 15 Experiment 2: results Chandrasekaran

n Max Eig Abs Err Max Eig Rel Err Max Coeff Abs Err Max Coeff Rel Err

25 2.78 × 10−15 8.99 × 10−15 1.79 × 10−14 1.34 × 10−14

50 9.23 × 10−15 6.32 × 10−14 7.11 × 10−14 5.66 × 10−14

100 1.19 × 10−14 7.52 × 10−14 3.31 × 10−13 2.97 × 10−13

200 2.15 × 10−14 4.01 × 10−13 2.09 × 10−12 1.82 × 10−12

400 3.871 × 10−13 1.81 × 10−12 1.04 × 10−11 8.96 × 10−12

800 1.98 × 10−11 3.97 × 10−11 1.73 × 10−10 1.30 × 10−10

Table 16 Experiment 2: results Van Barel

n Max Eig Abs Err Max Eig Rel Err Max Coeff Abs Err Max Coeff Rel Err

25 1.92 × 10−14 1.65 × 10−14 1.15 × 10−13 8.59 × 10−14

50 3.16 × 10−14 2.82 × 10−14 5.13 × 10−13 4.04 × 10−13

100 1.20 × 10−13 1.19 × 10−13 2.69 × 10−12 2.21 × 10−12

200 3.67 × 10−13 3.36 × 10−13 2.11 × 10−11 1.92 × 10−11

400 2.54 × 10−12 2.02 × 10−12 1.89 × 10−10 1.11 × 10−10

800 6.98 × 10−12 5.74 × 10−12 1.81 × 10−09 1.74 × 10−09

In Tables 13, 14, 15 and 16, the maximal componentwise error on the coefficients
(Max Coeff Abs/Rel) and the maximal eigenvalue error (Max Eig Abs/Rel) are shown
for the methods, Bini, Delvaux, Chandrasekaran and VanBarel. For the errors it
can be seen that if n increases the errors increase slightly. Looking at the errors the
results obtained with method Delvaux are slightly better.

8 Conclusion

In this paper an algorithm to compute the eigenvalues of a monic polynomial is
described. This is done by computing the eigenvalues of the corresponding companion
matrix. We showed how the Q R algorithm can be adjusted such that the algorithm
exploits the unitary plus rank one structure of the matrices involved and how the
matrices can be represented by O(n) parameters using sequences of Givens transfor-
mations. The numerical performance of the algorithm was demonstrated by means of
numerical experiments showing the good accuracy and efficiency of the algorithm.
Especially the robustness with respect to the scaling parameter β is as far as we know
not observed in any other O(n2) method.

In the near future, we plan to make an implementation in C or C++ to study the effi-
ciency of the method compared to standard eigenvalue solvers, e.g., from LAPACK.
We also want to prove the numerical stability of our algorithm.
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