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Similarity matrices for colored graphs ∗

Paul Van Dooren Catherine Fraikin

Abstract

In this paper, we extend the notion of similarity matrix, which has been
used to define similarity between nodes of two graphs, to the case of colored
graphs, where the coloring is either on the nodes or on the edges of both
graphs. The proposed method tries to find the optimal matching between
the nodes or edges of both graphs but only performs the comparison when
their colors are the same. The proposed cost function nevertheless uses the
connectivity between all nodes and edges of both graphs. We then also show
how to extend this to the notion of low rank similarity matrix, by defining it
as a constrained optimization problem.

1 Introduction

Graphs are a powerful tool for many practical problems such as pattern recogni-
tion, shape analysis, image processing and data mining. A fundamental task in
this context is that of graph matching. The notion of similarity between nodes of
two graphs has been introduced in [1] and it was shown there that it had a signif-
icant potential for such applications. In this paper we propose various extensions
of this definition, analyze their properties and propose algorithms for computing
them.

We first introduce the notion of similarity matrix of two colored (node or edge)
graphs and show how it extends the ideas introduced in [1] and [7]. This exten-
sion can be viewed as a modified graph matching method to compare two graphs
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with nodes that have been subdivided into classes of different type or color. This
paper also unifies preliminary results obtained in [4], [5] and presents them more
formally. The nodes of the same color in the two graphs are compared to each
other, but taking into account the complete interconnection pattern of the graphs.
This is applied to graphs with colored nodes or colored edges and we show that
these problems can still be solved via an appropriately defined eigenvalue prob-
lem, just as in the case of the similarity matrix introduced in [1].

When computing the similarity (or its extensions) of large graphs, the com-
plexity can still be quite high, since one needs to solve an eigenvalue problem of
a dimension that is essentially the product of the number of nodes in both graphs.
In order to reduce the complexity of this problem, we introduced in [3] projected
correlation matrices, which can be viewed as low rank approximations of simi-
larity matrices. We show here that also these ideas can be extended to colored
graphs. The computation of these projected correlation matrices is done via the
constrained optimization of a certain cost function. The method specializes to the
spectral method of Caelli and Kosinov [2] in the case that the graphs to be com-
pared are undirected and contain only one type of nodes. It is also an extension
of the method described in [3] which handles the directed graph case for nodes
of one type only, which in turn is a low rank approximation of the similarity ma-
trix introduced in [1]. Preliminary results on this subject were already presented
in [4], [5] but we unify these results here using an optimization framework that
shows how these problems relate to each other. The computational technique
that we propose is also very similar to that of the above two methods and is es-
sentially a modified power method with special correction applied at each step
of the iteration. Since the basic operation to be performed at each step is that of
multiplying certain bases with the adjacency matrices of the two graphs, the basic
step of the computational procedure can be implemented at reasonable cost for
large sparse graphs.

Notation. In this paper we will consider various linear matrix functions of
matrix ℓ-tuples (Y1, . . . , Yℓ) = M(X1, . . . , Xℓ) where Xi, Yi ∈ ℜmi×ni . We associate
with this vector space the following inner product

〈(Y1, . . . , Yℓ), (X1, . . . , Xℓ)〉 := ∑
i

trace(YT
i Xi)

and the corresponding norm

‖(X1, . . . , Xℓ)‖ := 〈(X1, . . . , Xℓ), (X1, . . . , Xℓ)〉
1
2 .

For ℓ = 1 (single matrices X, Y ∈ ℜm×n) this is known as the Frobenius inner
product and the Frobenius norm. For ℓ = n = 1 (single vectors x, y ∈ ℜm) this
is the standard vector inner product and the so-called 2-norm. We use vec(X) to
denote the vector containing the successive columns of X, which implies that
‖vec(X)‖ = ‖X‖. Similarly vec(X1, . . . , Xℓ) denotes the vector of successive
columns of the ℓ-tuple (X1, . . . , Xℓ), and we also have that ‖vec(X1 , . . . , Xℓ)‖ =
‖(X1, . . . , Xℓ)‖. When rewriting linear functions of matrix ℓ-tuples into their vec
form, we will need the Kronecker product B ⊗ A of two matrices B ∈ ℜm×n and
A ∈ ℜs×t, which is a real matrix of dimension ms × nt with subblocks Bi,jA for
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i = 1, . . . m and j = 1, . . . n. For properties of Kronecker products, we refer to [6].
We will also use 1d to denote a d-vector of all ones and 1m,n to denote a m × n
matrix of all ones.

2 The similarity matrix with type constraints

In [1] one uses an extremal solution of the non-negative matrix equation

ρ S = M(S) := ASBT + ATSB (1)

to define the similarity matrix S between two graphs GA and GB with node adja-
cency matrices A and B. This is actually an eigenvector equation, since the right
hand side is a linear map M(S) in the matrix S. This is made more explicit when
rewriting the equation using the vector form vec(S), which stands for a vector
containing the successive columns of the matrix S :

ρ vec(S) = Mvec(S) := (B ⊗ A + BT ⊗ AT)vec(S). (2)

Note that the matrix M := (B ⊗ A + BT ⊗ AT) is a natural matrix representation
of the linear map M(·) and that it is symmetric and non-negative, which means
that the non-negative vector vec(S) is a Perron vector of M, corresponding to the
Perron root (i.e. the spectral radius) ρ = maxλx=Mx |λ|, and that S is a Perron
vector of M with the Perron root ρ = maxλS=M(S) |λ|. Since M is symmetric, its
eigenvalues are real and hence it can have only two extremal eigenvalues, ρ and
possibly −ρ. On the other hand, M2 is also non-negative and its only extremal
eigenvalue is ρ2, but its geometric multiplicity can be larger that 1. Let Pρ be

the orthogonal projector on the space of eigenvectors of M2 with eigenvalue ρ2,
then Pρ is also a non-negative map (satisfying ρ2Pρ = M2Pρ) and any matrix

S = Pρ(S0), with S0 non-negative, will then be a non-negative solution of ρ2S =

M2(S). We make the definition of the similarity matrix S unique by choosing the
non-negative solution corresponding to S0 = 1m,n:

ρ2Pρ = M2Pρ, S := Pρ(1m,n)/‖Pρ(1m,n)‖. (3)

Note that when M does not have an extremal eigenvalue −ρ, Pρ is also a the
projector onto the eigenspace of M corresponding to the eigenvalue ρ (i.e. ρPρ =
MPρ), and S will then be an extremal solution of (1). It was shown in [1] that the
even iterates of the following recurrence

S0 = 1m,n, Sk+1 = M(Sk)/||M(Sk)||, k = 0, 1, 2, ... (4)

converges to the unique solution (3). This iteration is in fact the power method
applied to the symmetric matrix M defined above, as can be seen from the vec
form of the above recurrence :

vec(S0) = 1, vec(Sk+1) = Mvec(Sk)/||Mvec(Sk)||, k = 0, 1, 2, ... (5)
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and its even iterates will converge to the unique normalized projection of the
vector 1mn on the eigenspace of M2 corresponding to the Perron root ρ2. The odd
iterates will converge to the solution of the problem

ρ2Pρ = M2Pρ, S := Pρ(M1m,n)/‖Pρ(M1m,n)‖

which is also non-negative, but can be shown to have a smaller 1-norm than the
previous one (see [1]). Notice that the matrix iteration (4) is usually more eco-
nomical to implement (see [1] for details).

One way to interpret the above matrix equations is to say that (1) expresses an
equilibrium of the following implicit relation

the similarity between node i of GA and node j of GB is large
if the similarity of their respective children and parents is large.

Indeed, rewriting one iteration of (4) as follows:

Sk+1 = (ASkBT + ATSkB)/||(ASk BT + ATSkB)|| (6)

one sees that its (i, j) element replaces si,j (this is the similarity between node i of

GA and node j of GB) by a scalar times the (i, j) element of ASBT + ATSB (this is
in fact the sum of the similarities of the children and parents of node i of GA and
node j of GB). The same can be said about the even iterates and hence about the
similarity matrix defined in (3). The eigenvector equation (3) thus expresses an
equilibrium of the above implicit relation.

Let us now extend this to graphs with ℓ different types of nodes (one can think
of them as having different colors). We will assume that the nodes in both graphs
are relabeled such that those of color 1 come first, then those of color 2 etc. The
corresponding adjacency matrices can thus be partitioned as follows

A =











A11 A12 . . . A1ℓ

A21 A22 . . . A2ℓ

...
...

. . .
...

Aℓ1 Aℓ2 . . . Aℓℓ











, B =











B11 B12 . . . B1ℓ

B21 B22 . . . B2ℓ

...
...

. . .
...

Bℓ1 Bℓ2 . . . Bℓℓ











where the blocks Ai,j ∈ ℜ
mi×mj

+ and Bi,j ∈ ℜ
ni×nj

+ describe the edges between
nodes of type i to nodes of type j in both A and B.

In this extension we only want to compare nodes of the same color in both
graphs, which means that we define similarity matrices Sii, i = 1, ..., ℓ of respec-
tive dimensions mi × ni , which we could put in a block-diagonal similarity matrix

S =











S11 0 . . . 0
0 S22 . . . 0
...

...
. . .

...
0 0 . . . Sℓℓ











. (7)

If we rewrite equation (1) for such a constrained block diagonal matrix, we obtain

ρ S = Π(ASBT + ATSB) (8)
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where Π is the projector of a matrix to a block diagonal form of the type (7). Since
the right hand side is again a linear map M(S) on the linear space of ℓ-tuples
S = (S11, . . . , Sℓℓ), this is still an eigenvector equation and it in fact expresses the
implicit relation

the similarity between two nodes of the same color in GA and GB is large
if the similarity of their respective children and parents is large.

We should point out here that the connections between nodes of different colors
are still used in this relation since the children and parents may change color.

In order to make this more explicit we take ℓ = 2 (two types of nodes) and
thus consider two graphs with partitioned adjacency matrices

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

with Ai,j ∈ ℜmi×mj and Bi,j ∈ ℜni×nj , i = 1, 2 and j = 1, 2. Equation (8) then
specializes to

ρ S11 = A11S11BT
11 + AT

11S11B11 + A12S22BT
12 + AT

21S22B21

ρ S22 = A21S11BT
21 + AT

12S11B12 + A22S22BT
22 + AT

22S22B22 (9)

which in vec notation becomes

ρ

[

vec(S11)
vec(S22)

]

= M

[

vec(S11)
vec(S22)

]

(10)

where

M :=

[

B11 ⊗ A11 + BT
11 ⊗ AT

11 B12 ⊗ A12 + BT
21 ⊗ AT

21

B21 ⊗ A21 + BT
12 ⊗ AT

12 B22 ⊗ A22 + BT
22 ⊗ AT

22

]

(11)

is the matrix representation of the linear map M(·). The diagonal blocks in the
matrix M are related to links staying within the node sets of the same color, while
the off diagonal blocks refer to links with nodes of another color.

Notice that the matrix M is again symmetric for this new problem and hence
we can define a unique solution of the equation (8) via (3) and compute it since
the even iterates of the vector recurrence (4) will converge to it. The general re-
currence is given by

Sk+1 = Π(ASkBT + ATSkB)/||Π(ASk BT + ATSkB)|| (12)

and for the special case of two blocks considered above, this specializes to

Z1 = A11S11BT
11 + AT

11S11B11 + A12S22BT
12 + AT

21S22B21

Z2 = A21S11BT
21 + AT

12S11B12 + A22S22BT
22 + AT

22S22B22

(S11, S22)+ = (Z1, Z2)/‖(Z1 , Z2)‖, (13)

where the subscript .+ refers to the next iteration value. Notice that this itera-
tion is more economical than the full matrix iteration (6), since only the diagonal
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blocks are carried along in the calculations. Imposing color constraints makes
the problem thus simpler. A simple special case of such a constraint would be
to choose a separate color for one particular node in both GA and GB. These two
nodes would then only be compared to each other and would simplify (but also
affect) the calculation of the similarity of the remaining nodes.

Example 1 The following small example illustrates this. It consists of two
types of nodes (those with full lines and those with dashed lines) both arranged
in a circular ring of five nodes. The constrained similarity matrix for graph A and
graph B (Figure 1) is then given by

S =













0.43 0 0 0 0
0.26 0.27 0 0 0

0 0.43 0 0 0
0 0 0.43 0.26 0
0 0 0 0.27 0.43













. (14)

As one could expect, the highest similarity score (0.43) is obtained for the pairs

1

2

3

4

5

1

2

3

4

5

Figure 1: Graph A and graph B with two types of nodes (full and dashed)

of nodes that are at the transition between two types of nodes, i.e. the pairs (1,1),
(3,2), (4,3) and (5,5).

3 Similarity between colored edges

In [7] a definition is given for the similarity between edges of two graphs GA and
GB. This similarity measure is based on the following observation:

the similarity between an edge in GA and an edge in GB is large
if the similarity between their respective source and terminal nodes is large.

In [7] this is transformed into matrix equations as follows. Let GA(EA, VA) be a
graph with mA elements in the edge set EA and nA elements in the node set VA.
Let sA(i) denote the source node of edge i in this graph, and let tA(i) denote the
terminal node of edge i. The adjacency structure of the graph can then described
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by a pair of nA × mA matrices, the source-edge matrix AS and the terminal-edge
matrix AT, defined as follows:

[AS]ij = 1 if sA(j) = i (0 otherwise), (15)

[AT]ij = 1 if tA(j) = i (0 otherwise). (16)

The node-node adjacency matrix A of the graph GA is an nA × nA matrix which
is then given by

A := AS AT
T

while the edge-edge adjacency matrix Ae is an mA × mA matrix given by

Ae := AT
S AT

which says when one edge originates at the terminal node of another edge, i.e.
[

AT
S AT

]

ij
= 1 if sA(i) = tA(j) (0 otherwise). (17)

The diagonal element [AT
S AT]ii = 1 of this matrix is 1 if edge i is a self-loop.

Notice also that DAS
= AS AT

S and DAT
= AT AT

T are diagonal matrices with
respectively the out-degree and in-degree of node i in the ith diagonal entry.

The matrices HAS
:= AT

S AS and HAT
:= AT

T AT can also be viewed as edge-
edge adjacency matrices, which tell us when two edges start or terminate at the
same node, respectively, i.e.

[

HAS

]

ij
= 1 if sA(i) = sA(j) (0 otherwise), (18)

[

HAT

]

ij
= 1 if tA(i) = tA(j) (0 otherwise). (19)

These matrices are symmetric and have 1’s on the diagonal.
In [7] one then introduces a node similarity matrix X and an edge similarity

matrix Y, which are linked via the matrix equations

σ X = ASYBT
S + ATYBT

T , (20)

σ Y = AT
S XBS + AT

TXBT. (21)

The right hand side is a linear transformation M(X, Y) of the pair of matrices
(X, Y) and this is therefore again an eigenvector equation, as is easily seen from
its vec form:

σ

[

vec(X)
vec(Y)

]

=

[

0 BS ⊗ AS + BT ⊗ AT

BT
S ⊗ AT

S + BT
T ⊗ AT

T 0

] [

vec(X)
vec(Y)

]

. (22)

This is clearly again a symmetric map, which can be rewritten as

σ

[

vec(X)
vec(Y)

]

=

[

0 G
GT 0

] [

vec(X)
vec(Y)

]

, G := BS ⊗ AS + BT ⊗ AT. (23)

The similarity matrix pair (X, Y) can be uniquely defined using (3) and computed
using the even iterates of (4) which here takes the following form:

(X, Y)+ = M(X, Y)/‖M(X, Y)‖, M(X, Y) := (G(Y),GT(X)), (24)
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where G(Y) := ASYBT
S + ATYBT

T , GT(X) := AT
S XBS + AT

TXBT are the linear maps
corresponding to (23). Moreover, the even iterates of (24) are also the iterates of
the normalized map M2(X, Y) which decouples into:

X+ = G(GT(X))/‖G(GT (X))‖, Y+ = GT(G(Y))/‖GT (G(Y))‖, (25)

but with a scaling that differs from the joint scaling of (24).

Remark 1. Note also that one can obtain from (20) the decoupled equations :

σ2X = G(GT(X)) = AS(AT
S XBS + AT

TXBT)BT
S + AT(AT

S XBS + AT
TXBT)BT

T (26)

σ2Y = GT(G(Y)) = AT
S (ASYBT

S + ATYBT
T)BS + AT

T(ASYBT
S + ATYBT

T)BT (27)

which can be rewritten as

σ2X = AXBT + ATXB + DAS
XDBS

+ DAT
XDBT

, (28)

σ2Y = AeYBT
e + AT

e YBe + HAS
YHBS

+ HAT
YHBT

. (29)

The equation for X can thus be seen as an enhanced similarity matrix equation since the
first two terms are the adjacency matrix terms appearing also in (1). The additional terms
amplify the scores of nodes that are highly connected. In the equation for Y the first two
terms are also edge-edge adjacency matrix terms while the second terms involve positive
semi-definite matrices with ones on diagonal. Notice that the decoupled equations could
be normalized independently of each other. But this will only yield a relative scaling
between the matrices as a whole, and not between the elements within each matrix.

Let us now try to rewrite this for graphs with edges of ℓ different colors. The
edges can be relabeled such that those of the same color are adjacent in the source-
edge and terminal-edge matrices:

AS =
[

AS1
. . . ASℓ

]

, AT =
[

AT1
. . . ATℓ

]

,

BS =
[

BS1
. . . BSℓ

]

, BT =
[

BT1
. . . BTℓ

]

.

The blocks ASi
, ATi

∈ ℜna×mai and BSi
, BTi

∈ ℜnb×mbi , i = 1, ..., ℓ thus correspond
to edges of the same type, where mai

and mbi
, represent the number of edges of

type i in GA and GB respectively.
The edge similarity matrix has to be block-diagonal because we compare only

edges of the same type. This matrix has thus a block diagonal structure with
blocks Yii of dimension mai

× mbi
:

Y =











Y11 0 . . . 0
0 Y22 . . . 0
...

...
. . .

...
0 0 . . . Yℓℓ











. (30)

If we rewrite equation (20) for such a constrained block diagonal matrix, we
obtain

σ X = ASYBT
S + ATYBT

T , (31)

σ Y = Π(AT
S XBS + AT

TXBT), (32)
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where Π is the projector of a matrix to a block diagonal form of the type (30).
Since the right hand side is again a linear map M(X, Y11, . . . , Yℓℓ) in the (ℓ + 1)-
tuple (X, Y11 , . . . , Yℓℓ) this is still an eigenvector equation and it in fact expresses
the implicit relation

the similarity between two edges of the same color in GA and GB is large
if the similarity of their respective source and terminal nodes is large.

We make this again explicit for the two color case (ℓ = 2) and thus consider
two graphs with partitioned matrices

AS =
[

AS1
AS2

]

, AT =
[

AT1
AT2

]

,

BS =
[

BS1
BS2

]

, BT =
[

BT1
BT2

]

,

and

Y =

[

Y11 0
0 Y22

]

.

Equation (20) in partitioned form becomes

σX = AS1
Y11BT

S1
+ AS2

Y22BT
S2

+ AT1
Y11BT

T1
+ AT2

Y22BT
T2

,

σY11 = AT
S1

XBS1
+ AT

T1
XBT1

,

σY22 = AT
S2

XBS2
+ AT

T2
XBT2

, (33)

which is an eigenvector equation σ(X, Y11, Y22) = M(X, Y11, Y22). By applying
the vec operator, we indeed get an explicit eigenvalue problem

σ





vec(X)
vec(Y11)
vec(Y22)



 = M





vec(X)
vec(Y11)
vec(Y22)



 (34)

with

M :=

[

0 G
GT 0

]

, G := [BS1
⊗ AS1

+ BT1
⊗ AT1

, BS2
⊗ AS2

+ BT2
⊗ AT2

]

which shows again that the linear map M is symmetric. One can then again
apply (3) to define a unique solution, and use the even iterates of (4) to construct
an algorithm to converge to that solution. That iteration essentially consists of
normalizing the right hand sides of (33) to define the updating matrix triple

(X, Y11, Y22)+ = M(X, Y11, Y22)/‖M(X, Y11 , Y22)‖.

The even iterates will again decompose into the (separately scaled) iterations:

X+ = G(GT(X))/‖G(GT (X))‖, (Y11, Y22)+ = GT(G(Y11 , Y22))/‖GT(G(Y11 , Y22))‖.

Remark 2. One can also consider the combination of colored nodes and colored edges.
The matrices X and Y will in this case both be block diagonal, possibly with a different
number of blocks. In order to simplify the discussion, we develop this for the case that



714 P. Van Dooren – C. Fraikin

there are two types of nodes and two types of edges. The matrices X and Y then have the
form

X =

[

X11 0
0 X22

]

, Y =

[

Y11 0
0 Y22

]

and the source-edge and terminal-edge matrices for graphs A and B then become:

AS =

[

AS11
AS12

AS21
AS22

]

, AT =

[

AT11
AT12

AT21
AT22

]

,

BS =

[

BS11
BS12

BS21
BS22

]

, BT =

[

BT11
BT12

BT21
BT22

]

.

The iteration matrix still has the same structure as for the case of colored edges:

M :=

[

0 G
GT 0

]

, G :=

[

BS11
⊗ AS11

+ BT11
⊗ AT11

BS12
⊗ AS12

+ BT12
⊗ AT12

BS21
⊗ AS21

+ BT21
⊗ AT21

BS22
⊗ AS22

+ BT22
⊗ AT22

]

which is why we do not analyze this in more detail.

Example 2 The two graphs of Figure 2 are very similar in the sense that node
3 of graph A has been replaced by three identical nodes 3, 4 and 5 in graph B. This
is also detected by the node and edge similarity matrices for these two graphs,
which are given by

X =





0.22 0 0 0 0
0 0.89 0 0 0
0 0 0.22 0.22 0.22



 , Y =

[

0.5 0 0 0
0 0.5 0.5 0.5

]

. (35)

Notice that the matrix Y is block diagonal, indicating that both edges (1-2) are

1

2

3

1

2

3 4 5

Figure 2: Comparison between the edges of graph A and graph B

only similar to each other, while edge (2-3) in A is equally similar to edges (2-3),
(2-4) and (2-5) in B and not at all similar to edge (1-2) in B. Clearly we would
have obtained the same results with the colored edge graphs A and B of Figure
3 since now we are imposing the matrix Y to be block diagonal. Clearly the same
can be said about the combined colored node and edge graphs in Figure 3 since
then we are imposing the block diagonal structure in both X and Y. Let us point
out here that matrices X and Y are equal for all three figures only because we
impose a global normalization rather than a normalization of individual blocks
in these matrices.
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1

2

3

1

2

3 4 5

Figure 3: Comparison between the colored edges of graph A and graph B

1

2

3

1

2

3 4 5

Figure 4: Comparison between the colored edges and nodes of graph A and
graph B

4 Similarity matrices as an optimization problem

In this section we interpret the eigenvalue problems presented in the previous
section as optimization problems, for which the eigenvalue problems yield the
stationary points. The reason for doing that is that we will then see how to extend
these problems to a more general setting. In particular we will show in the next
section how we can cast low rank approximation problems for similarity matrices
as constrained optimization problems.

Every (extremal) eigenvalue equation λS = M(S) can be viewed as a station-
ary point of a quadratic optimization problem on a normed vectorspace :

max
〈S,S〉=1

〈S,M(S)〉. (36)

Here S can be a vector x ∈ ℜm, a matrix X ∈ ℜm×n, or an ℓ-tuple of matrices Xi ∈
ℜmi×ni . Introducing a Lagrange multiplier λ for the norm constraint 〈S, S〉 = 1,
one obtains the unconstrained problem

max
S

L(S, λ) := max
S

〈S,M(S)〉 + λ(1 − 〈S, S〉) (37)

and deriving the Lagrangian L(S, λ) versus S and λ then yields the first order
optimality conditions

∇SL(S, λ) = M(S) − λS = 0, ∇λL(S, λ) = 1 − 〈S, S〉 = 0. (38)

The connection with the previous sections is obvious, except that we considered
there the squared map M2. If M has no eigenvalue equal to minus its spectral
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radius then these problems become identical. Since this is almost always the case
(it corresponds to the absence of even cycles in the underlying graphs), we will
make this assumption in the rest of the paper. The more general treatment would
require to consider the squared map M2 (which is also linear) and all equations
would just become harder to read.

If we now apply these ideas to the four problems discussed in the previous
section, we find equivalent optimization problems. The combination of colored
edges and nodes is similar and will not be developed further here.

1. The similarity matrix S in (1) is an extremal point of the optimization problem

max
‖S‖=1

2〈S, ASBT〉 = max
‖S‖=1

〈S, ASBT + ATSB〉. (39)

The first-order optimality condition is indeed (1) with Lagrange multiplier λ = ρ.

2. The constrained similarity matrix pair (S11, S22) in (9) is the solution of the
optimization problem

max
‖(S11,S22)‖=1

2〈(S11, S22), (A11S11BT
11 + A12S22BT

12, A22S22BT
22 + A21S11BT

21)〉. (40)

The Lagrange multiplier in the first-order optimality condition is again λ = ρ.

3. The coupled node-edge similarity matrix pair (X, Y) (20) is the solution of the
optimization problem (with λ = σ)

max
‖(X,Y)‖=1

〈(X, Y), (ASYBT
S + ATYBT

T , AT
S XBS + AT

TXBT)〉. (41)

4. The coupled node-edge similarity matrix triple (X, Y11, Y22) (33) is the solution
of the optimization problem (with λ = σ)

max‖(X,Y11,Y22)‖=1 〈(X, Y11 , Y22), (AS1
Y11BT

S1
+ AT1

Y11BT
T1

+ AS2
Y22BT

S2
+ AT2

Y22BT
T2

,

AT
S1

XBS1
+ AT

T1
XBT1

, AT
S2

XBS2
+ AT

T2
XBT2

)〉.

5 Optimization of projected matrices

The extensions presented in this paper are given without proof. The basic ideas
of the modified optimization problems and their stationary points, the iterative
algorithm and their proofs of convergence can also be found in [3], [4] and [5]. In
this section we make the same assumptions about the underlying linear map M
as in the previous section.

5.1 Projected similarity

In [3] it is suggested to compare two large square matrices A and B, possibly of
different dimension nA and nB, via projections of the matrices on a k dimensional
subspace where k ≤ min(nA, nB). The k × k projected matrices AU and BV are
obtained as follows

AU := UT AU, UTU = Ik, BV := VTBV, VTV = Ik
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and the isometries U and V are obtained from the optimization of the following
cost function

max
UTU=VTV=Ik

2〈AU , BV〉 = max
UTU=VTV=Ik

2〈UT AU, VTBV〉. (42)

The first-order optimality conditions can be derived from the Lagrangian

L(U, V, F, G) = 〈UT AU, VTBV〉+ 〈UT ATU, VTBTV〉+ 〈F, I −UTU〉+ 〈G, I −VTV〉
(43)

where F and G are symmetric matrices of Lagrange multipliers for the isometry
constraints. Partial gradients of L with respect to (U, V) lead to the following first
order optimality conditions

∇UL = AU
(

VTBTV
)

+ ATU
(

VTBV
)

− UF = 0
∇V L = BV

(

UT ATU
)

+ BTV
(

UT AU
)

− VG = 0

or equivalently

UF = AU(VT BTV) + ATU(VTBV)
VG = BV(UT ATU) + BTV(UT AU)

and of course the constraints UTU = VTV = I. It is shown in [3] that F = G and
can be chosen equal to a diagonal matrix Λ, which finally yields necessary and
sufficient conditions for a stationary point of the optimization problem

UΛVT = SVDk(AUVTBT + ATUVTB), UTU = VTV = Ik, (44)

where SVDk(Z) is the best rank k approximation of the matrix Z, and can be
obtained by truncating the singular values decomposition of Z.

This last equation is quite similar to the equation (1) introduced in the defini-
tion of the similarity matrix of two graphs GA and GB, except for the restriction
to a rank k matrix. The connection is even clearer when looking at the above
optimization problem (42), which can be rewritten as

max
UTU=VTV=Ik

2〈UVT, AUVTBT〉. (45)

Clearly the role of S in (39) is replaced here by the rank k matrix UVT with a
normalization now imposed on the factors U and V. For more comments on how
U and V are actually used to compare the individual nodes of the two graphs, we
refer to [3],[2].

In [3] it is also proved that the following iteration converges to such a station-
ary point under very mild conditions :

U+ΣVT
+ = SVDk(AUVTBT + ATUVTB + sUVT). (46)

The shift s has to be chosen such that Σ = Λ + sIk is positive definite. The above
iteration then defines an iteration on the product (UVT)+ = φ(UVT) that is com-
patible with (46) and converges to a stationary point of (45).
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5.2 Colored projected similarity

Let us revisit the node similarity matrix problem with two types of nodes and
with the following partitioned adjacency matrices:

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

.

The blocks Ai,j ∈ ℜmi×mj and Bi,j ∈ ℜni×nj , i = 1, 2 and j = 1, 2, describe the edges
between nodes of type i to nodes of type j in both A and B. Since the projections
U and V should not mix nodes of different types, we constrain them to have a
block diagonal form:

U =

[

U1 0
0 U2

]

, V =

[

V1 0
0 V2

]

, UVT =

[

U1VT
1 0

0 U2VT
2

]

, (47)

where Ui has dimension mi × k and UT
i Ui = Ik, Vi has dimension mi × k and

VT
i Vi = Ik. The optimization problem (42) then becomes

max
UT

i Ui=VT
i Vi=Ik

2〈(U1VT
1 , U2VT

2 ), (A11U1VT
1 BT

11 + A12U2VT
2 BT

12, A22U2VT
2 BT

22 + A21U1VT
1 BT

21)〉

(48)

which again is very similar to (40) with Sii replaced by the product UiV
T
i . The

first-order conditions can be derived from the Lagrangian L(U1, U2, V1, V2, F1, F2,
G1, G2):

〈UT
1 A11U1, VT

1 B11V1〉 + 〈UT
1 A12U2, VT

1 B12V2〉+

〈UT
2 A21U1, VT

2 B21V1〉 + 〈UT
2 A22U2, VT

2 B22V2〉+

〈F1, (I − UT
1 U1)〉 + 〈F2, (I − UT

2 U2)〉+

〈G1, (I − VT
1 V1)〉 + 〈G2, (I − VT

2 V2)〉 (49)

where Fi and Gi are symmetric matrices of Lagrange multipliers for the orthogo-
nality constraints. By setting the partial gradients of this Lagrangian to zero, the
first order conditions are found to be :

U1F1 = [A11U1VT
1 BT

11 + AT
11U1VT

1 B11 + A12U2VT
2 BT

12 + AT
21U2VT

2 B21]V1,

V1G1 = [B11V1UT
1 AT

11 + BT
11V1UT

1 A11 + B12V2UT
2 AT

12 + BT
21V2UT

2 A21]U1,

U2F2 = [A22U2VT
2 BT

22 + AT
22U2VT

2 B22 + A21U1VT
1 BT

21 + AT
12U1VT

1 B12]V2,

V2G2 = [B22V2UT
2 AT

22 + BT
22V2UT

2 A22 + B21V1UT
1 AT

21 + BT
12V1UT

1 A12]U2,

where Fi = Gi are symmetric matrices that can be chosen equal to a diagonal
matrix Λi. We finally obtain from the combination of these equations

U1Λ1VT
1 = SVDk(A11U1VT

1 BT
11 + AT

11U1VT
1 B11 + A12U2VT

2 BT
12 + AT

21U2VT
2 B21), (50)

U2Λ2VT
2 = SVDk(A22U2VT

2 BT
22 + AT

22U2VT
2 B22 + A21U1VT

1 BT
21 + AT

12U1VT
1 B12).(51)

This yields again iteration functions (UiV
T
i )+ = φi(UiV

T
i ), i = 1, 2 that are based

on the following rank k approximations

U1+Σ1VT
1+ = SVDk(A11U1VT

1 BT
11 + AT

11U1VT
1 B11 + A12U2VT

2 BT
12 + AT

21U2VT
2 B21 + sU1VT

1 ),

U2+Σ2VT
2+ = SVDk(A22U2VT

2 BT
22 + AT

22U2VT
2 B22 + A21U1VT

1 BT
21 + AT

12U1VT
1 B12 + sU2VT

2 ),
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which converge to a stationary point (U1VT
1 , U2VT

2 ) of (48) provided the two
diagonal matrices Σi := Λi + sIk are positive.

5.3 Projected node-edge similarity

We now consider the projected version of the node-edge similarity matrices in-
troduced in (20) and for which the corresponding optimization problem is given
in (41). The matrices X and Y are here approximated by U1VT

1 and U2VT
2 , respec-

tively, where U1 ∈ ℜna×k, V1 ∈ ℜnb×k, U2 ∈ ℜma×k and V2 ∈ ℜmb×k. The matrices
U1, U2, V1 and V2 are obtained from the optimization problem

max
UT

i Ui=VT
i Vi=Ik

1

2
〈(U1VT

1 , U2VT
2 ), (ASU2VT

2 BT
S + ATU2VT

2 BT
T , AT

S U1VT
1 BS + AT

TU1VT
1 BT)〉.

Optimality conditions can be derived from the Lagrangian
L(U1, V1, U2, V2, F1, G1, F2, G2), given by

〈UT
1 ASU2, VT

1 BSV2〉 + 〈UT
1 ATU2, VT

1 BTV2〉 + (52)

〈F1, (I − UT
1 U1)〉 + 〈G1, (I − VT

1 V1)〉 + 〈F2, (I − UT
2 U2)〉 + 〈G2, (I − VT

2 V2)〉

where Fi and Gi are symmetric matrices of Lagrange multipliers that are equal
and can be chosen diagonal : Fi = Gi = Λi, i = 1, 2. The first order conditions
are then found to be :

U1Λ1VT
1 = ASU2VT

2 BT
S + ATU2VT

2 BT
T ,

U2Λ2VT
2 = AT

S U1VT
1 BS + AT

TU1VT
1 BT, (53)

which again leads to a simple updating scheme (UiV
T
i )+ = φi(UiV

T
i ), i = 1, 2

given by

U1+Σ1VT
1+ = SVDk(ASU2VT

2 BT
S + ATU2VT

2 BT
T + sU1VT

1 ),

U2+Σ2VT
2+ = SVDk(AT

S U1VT
1 BS + AT

TU1VT
1 BT + sU2VT

2 ),

which converge under mild conditions to a stationary point (U1VT
1 , U2VT

2 ) of the
above optimization problem provided the diagonal matrices Σi := Λi + sIk are
positive.

5.4 Colored projected node-edge similarity

As explained in (31), the extension to graphs with different types of edges re-
quires a partitioning of the edge-node matrices :

AS =
[

AS1
AS2

]

, AT =
[

AT1
AT2

]

,

BS =
[

BS1
BS2

]

, BT =
[

BT1
BT2

]

,
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where the edges of the same type i = 1, 2 correspond to the same blocks in all four
matrices. The matrices X, Y1 and Y2 are now approximated by low rank matrices :

X = U1VT
1 , Y =

[

U2VT
2 0

0 U3VT
3

]

,

where the isometries Ui and Vi matrices have all only k columns, and obtained
from the optimization problem

maxUT
i Ui=VT

i Vi=Ik

1
2〈(U1VT

1 , U2VT
2 , U3VT

3 )

(AS1
U2VT

2 BT
S1

+ AT1
U2VT

2 BT
T1

+ AS2
U3VT

3 BT
S2

+ AT2
U3VT

3 BT
T2

,

AT
S1

U1VT
1 BS1

+ AT
T1

U1VT
1 BT1

, AT
S2

U1VT
1 BS2

+ AT
T2

U1VT
1 AT2

)〉.

(54)

The first order optimality conditions can be derived from the Lagrangian
L(Ui , Vi, Fi, Gi), which is given by

〈UT
1 AS1

U2, VT
1 BS1

V2〉 + 〈UT
1 AT1

U2, VT
1 BT1

V2〉 +

〈UT
1 AS2

U3, VT
1 BS2

V3〉+ 〈UT
1 AT2

U3, VT
1 BT2

V3〉 + 〈F1, I − UT
1 U1〉+ 〈G1, I − VT

1 V1〉 +

〈F2, I − UT
2 U2〉 + 〈G2, I − VT

2 V2〉 + 〈F3, I − UT
3 U3〉+ 〈G3, I − VT

3 V3〉

where Gi and Fi are symmetric matrices of Lagrange multipliers which can be
chosen equal to a diagonal matrix Λi. The conditions then become :

U1Λ1VT
1 = AS1

U2VT
2 BT

S1
+ AT1

U2VT
2 BT

T1
+ AS2

U3VT
3 BT

S2
+ AT2

U3VT
3 BT

T2
,

U2Λ2VT
2 = AT

S1
U1VT

1 BS1
+ AT

T1
U1VT

1 BT1
,

U3Λ3VT
3 = AT

S2
U1VT

1 BS2
+ AT

T2
U1VT

1 BT2
,

which again leads to iterations (UiV
T
i )+ = φi(UiV

T
i ), i = 1, 2, 3 given by

U1+Σ1VT
1+ = SVDk(AS1

U2VT
2 BT

S1
+AT1

U2VT
2 BT

T1
+AS2

U3VT
3 BT

S2
+AT2

U3VT
3 BT

T2
+sU1VT

1 ),

U2+Σ2VT
2+ = SVDk(AT

S1
U1VT

1 BS1
+ AT

T1
U1VT

1 BT1
+ sU2VT

2 ),

U3+Σ3VT
3+ = SVDk(AT

S2
U1VT

1 BS2
+ AT

T2
U1VT

1 BT2
+ sU3VT

3 ),

and which converge to a stationary point (U1VT
1 , U2VT

2 , U3VT
3 ) of (54) provided

the diagonal matrices Σi := Λi + sIk are positive.

Example 3 The following small example shows the use of projected similarity
matrices. We created two graphs A and B which are equal to each other up to a
labeling of nodes and edges (see Fig. 5), i.e. there exist permutation matrices Pn,
Pe1 and Pe2, applied to the nodes and two sets of edges of graph A, respectively,
in order to yield graph B:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Pn−→ (10, 7, 6, 9, 2, 5, 1, 8, 3, 4),

(1, 2, 3, 4, 5, 6)
Pe1−→ (3, 2, 5, 1, 6, 4),

(7, 8, 9, 10, 11, 12, 13)
Pe2−→ (7, 12, 13, 9, 10, 8, 11).
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Figure 5: Permuted graphs A and B

Therefore, the source-edge and terminal-edge matrices of A and B must be per-
mutations of each other as well:

BS = Pn

[

AS1
AS2

]

[

Pe1

Pe2

]

, BT = Pn

[

AT1
AT2

]

[

Pe1

Pe2

]

(55)

and the projected similarity matrices must then be related as follows:

V1 = PnU1, U2 = Pe1V2, U3 = Pe2V3. (56)

Our algorithm managed to reconstruct the exact permutation from the matrices
Ui and Vi because these matrices did not contain any repeated rows. In such case,
it suffices to order the rows of these matrices in order to reconstruct the permu-
tation. This example is a particular instance of the graph isomorphism problem,
for which there is no polynomial time algorithm yet, while our algorithm seems
to solve the problem. But when the matrices Ui and Vi have repeated rows, one
has to check all possible permutations of these repeated rows, leading to a combi-
natorial problem. In such a case, one may help the algorithm by assigning a few
pairs of nodes for which the correspondence is known. This can be achieved by
assigning them a separate color thereby forcing the match. This illustrates the use
of separate colors in the similarity matrix problem. We presented in this paper a
few academic examples in order to illustrate the concept of similarity matrix for
colored graphs, but we refer to [1], [4] for a few larger problems.

6 Concluding remarks

In this paper we presented a number of extensions of the notion of similarity
matrix defined in [1] as a tool to compare nodes between two graphs. In [7]
this was already extended to compare edges between two graphs. In both pa-
pers, the definition was made based on a linear map M(S) of a particular matrix.
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We extended this here to matrix ℓ-tuples and showed how a particular linear
map M(X1, · · · , Xℓ) can be used to introduce the notion of similarity matrix be-
tween colored graphs, where either the nodes or edges have different “colors”
or “types”. We then extended this further to allow for low rank similarity matri-
ces, by combining the linear map M(X1, · · · , Xℓ) with projections on low rank
ℓ-tuples. It is shown in [3] that this has the additional advantage of making the
iterative algorithm particularly efficient since the updating formulas of the iter-
ation will have a complexity that is linear in the dimensions of the graphs, and
quadratic in the rank of the matrices. We are currently investigating the conver-
gence of the iterative schemes described in this paper. We hope to be able to
prove global linear convergence of the projected iterative schemes to local max-
ima of the objective function, and numerous experiments have confirmed this.
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