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Abstract

We consider the problem of approximating a p × m rational transfer function H(s) of high degree by another p × m rational
transfer function Ĥ(s) of much smaller degree. We derive the gradients of theH2-norm of the approximation error and show how
stationary points can be described via tangential interpolation.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work we will consider the problem of approximating a real p × m rational transfer function H(s) of
McMillan degree N by a real p × m rational transfer function Ĥ(s) of lower McMillan degree n using the H2-norm
as approximation criterion. Since a transfer function has an unboundedH2-norm if it is not proper (a rational transfer
function is proper if it is zero at s = ∞), we will constrain both H(s) and Ĥ(s) to be proper. Such transfer functions
have state space realizations (A, B, C) ∈ RN 2

× RNm
× RpN and ( Â , B̂ , Ĉ ) ∈ Rn2

× Rnm
× Rpn satisfying

H(s) := C(s IN − A)−1 B and Ĥ(s) := Ĉ (s In − Â )−1 B̂ . (1)

The realization { Â , B̂ , Ĉ } is not unique in the sense that the triple { Â T , B̂ T , Ĉ T } := {T −1 Â T, T −1 B̂ , Ĉ T } for any
matrix T ∈ GL(n, R) defines the same transfer function:

Ĥ(s) = Ĉ (s In − Â )−1 B̂ = Ĉ T (s In − Â T )−1 B̂ T .

It is known (see e.g. Theorem 4.7 in Byrnes and Falb [3]) that the geometric quotient of Rn2
× Rnm

× Rpn under
GL(n, R) is a smooth, irreducible variety of dimension n(m + p). This implies that the set Ratnp,m of p × m proper
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rational transfer functions of degree n can be parameterized with only n(m + p) real parameters in a locally smooth
manner.

A possible approach for building a reduced order model { Â , B̂ , Ĉ } from a full order model {A, B, C} is
tangential interpolation, which can always be achieved (see [4]) by solving two Sylvester equations for the unknowns
W, V ∈ RN×n

AV − V Σσ + B R = 0, (2)

W T A − ΣT
µ W T

+ LTC = 0, (3)

and constructing the reduced order model (of degree n) as follows:

{ Â , B̂ , Ĉ } := {(W TV )−1W T AV, (W TV )−1W T B, CV }, (4)

provided the matrix W TV is invertible (which also implies that V and W must have full rank n). The “interpolation
conditions” {Σσ , R} and

{
Σµ, L

}
(where Σµ,Σσ ∈ Rn×n , R ∈ Rm×n and L ∈ Rp×n) are known to uniquely

determine the projected system { Â , B̂ , Ĉ } [4]. The equations above can be expressed in another coordinate system by
applying invertible transformations of the type

{
Q−1Σσ Q, RQ

}
and

{
P−1Σµ P, L P

}
to the interpolation conditions,

which yields transformed matrices V P and W Q but does not affect the transfer function of the reduced order model
{ Â , B̂ , Ĉ } (see [4]). Therefore, the interpolation conditions essentially impose n(m + p) real conditions, since Σσ

and Σµ can be transformed to their Jordan canonical form. In the case where both matrices are simple (no Jordan
blocks of size larger than 1) we can assume Σσ and Σµ to be block diagonal with a 1 × 1 diagonal block σi or µi

for each real condition and a 2 × 2 diagonal block
[

σi σi+1
−σi+1 σi

]
or

[
µi µi+1

−µi+1 µi

]
for each pair of complex conjugate

conditions. We refer the reader to [1] for a more elaborate discussion on this and for a discrete-time version of the
results of this work.

In this work we first compute the gradients of the H2 error of the approximation problem and then show that its
stationary points satisfy special tangential interpolation conditions that generalize earlier results for SISO systems and
help understand numerical algorithms for solving this model reduction problem.

2. The H2 approximation problem

Let E(s) be an arbitrary proper transfer function, with realization triple {Ae, Be, Ce}. If E(s) is unstable, its H2-
norm is defined to be ∞. Otherwise, its squaredH2-norm is defined as the trace of a matrix integral [2]:

J := ‖E(s)‖2
H2

:= tr
∫

∞

−∞

E( jω)H E( jω)
dω

2π
= tr

∫
∞

−∞

E( jω)E( jω)H dω

2π
.

By Parseval’s identity, this can also be expressed using the state space realization as (see [2])

J = tr
∫

∞

0
[Ce exp(Aet)Be][Ce exp(Aet)Be]

Tdt = tr
∫

∞

0
[Ce exp(Aet)Be]

T
[Ce exp(Aet)Be]dt.

This can also be related to an expression involving the Gramians Pe and Qe defined as

Pe :=

∫
∞

0
[exp(Aet)Be][exp(Aet)Be]

Tdt, Qe :=

∫
∞

0
[Ce exp(Aet)]T

[Ce exp(Aet)]dt,

which are also known to be the solutions of the Lyapunov equations

Ae Pe + Pe AT
e + Be BT

e = 0, Qe Ae + AT
e Qe + CT

e Ce = 0. (5)

Using these, it easily follows that the squaredH2-norm of E(s) can also be expressed as

J = tr BT
e Qe Be = tr Ce PeCT

e . (6)

We now apply this to the error function E(s) := H(s) − Ĥ(s). A realization of E(s) in partitioned form is given
by

{Ae, Be, Ce} :=

{[
A

Â

]
,

[
B
B̂

]
,
[
C −Ĉ

]}
,
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and the Lyapunov Eq. (5) become

Pe :=

[
P X

XT P̂

]
,

[
A

Â

] [
P X

XT P̂

]
+

[
P X

XT P̂

] [
AT

Â T

]
+

[
B
B̂

] [
BT B̂ T]

= 0, (7)

and

Qe :=

[
Q Y

Y T Q̂

]
,

[
AT

Â T

] [
Q Y

Y T Q̂

]
+

[
Q Y

Y T Q̂

] [
A

Â

]
+

[
CT

−Ĉ T

] [
C −Ĉ

]
= 0. (8)

To minimize theH2-norm, J , of the error function E(s) we must minimize

J = tr
([

BT B̂ T] [
Q Y

Y T Q̂

] [
B
B̂

])
= tr

(
BT Q B + 2BTY B̂ + B̂ T Q̂ B̂

)
, (9)

where Q, Y and Q̂ depend on A, Â , C and Ĉ through the Lyapunov Eq. (8), or equivalently

J = tr
([

C −Ĉ
] [

P X
XT P̂

] [
CT

−Ĉ T

])
= tr

(
C PCT

− 2C XĈ T
+ Ĉ P̂Ĉ T

)
, (10)

where P , X and P̂ depend on A, Â , B and B̂ through the Lyapunov Eq. (7). Note that the terms BT Q B and C PCT

in the above expressions are constant, and hence can be discarded in the optimization.

3. Optimality conditions

The expansions above can be used to express first-order optimality conditions for the squaredH2-norm in terms of
the gradients of J versus Â , B̂ and Ĉ . We define a gradient as follows.

Definition 3.1. The gradient of a real scalar function f (X) of a real matrix variable X ∈ Rn×p is the real matrix
∇X f (X) ∈ Rn×p defined by

[∇X f (X)]i, j =
d

dX i, j
f (X), i = 1, . . . , n, j = 1, . . . , p.

It yields the expansion

f (X + ∆) = f (X) + 〈∇X f (X),∆〉 + O(‖∆‖
2), where 〈M, N 〉 := tr (MT N ).

The following lemma is useful in the derivation of our results (see [7]).

Lemma 3.2. If AM + M B + C = 0 and N A + B N + D = 0, then tr (C N ) = tr (DM).

Starting from the characterizations (7)–(10) of theH2-norm and using Lemma 3.2 we easily derive succinct forms
of the gradients. This theorem is originally due to Wilson [8].

Theorem 3.3. The gradients ∇ ÂJ , ∇B̂ J and ∇Ĉ J of J := ‖E(s)‖2
H2

are given by

∇ ÂJ = 2(Q̂ P̂ + Y T X), ∇B̂ J = 2(Q̂ B̂ + Y T B), ∇Ĉ J = 2(Ĉ P̂ − C X), (11)

where

ATY + Y Â − CTĈ = 0, Â T Q̂ + Q̂ Â + Ĉ TĈ = 0, (12)

XT AT
+ Â XT

+ B̂ BT
= 0, P̂ Â T

+ Â P̂ + B̂ B̂ T
= 0. (13)

Proof. For finding an expression for ∇ ÂJ we consider the characterization

J = tr
(

BT Q B + 2BTY B̂ + B̂ T Q̂ B̂
)

, ATY + Y Â − CTĈ = 0, Â T Q̂ + Q̂ Â + Ĉ TĈ = 0.
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Then the first-order perturbation ∆J corresponding to ∆ Â is given by

∆J = tr
(

2B̂ BT∆Y + B̂ B̂ T∆Q̂

)
where ∆Y and ∆Q̂ depend on ∆ Â via the equations

AT∆Y + ∆Y Â + Y∆ Â = 0, Â T∆Q̂ + ∆Q̂ Â + ∆T
Â

Q̂ + Q̂∆ Â = 0. (14)

It follows from applying Lemma 3.2 to the Sylvester Eqs. (13) and (14) that

tr
(

B̂ BT∆Y

)
= tr

(
XTY∆ Â

)
and tr

(
B̂ B̂ T∆Q̂

)
= tr

(
P̂(∆T

Â
Q̂ + Q̂∆ Â )

)
and therefore

∆J = tr
(

2XTY∆ Â + P̂(∆T
Â

Q̂ + Q̂∆ Â )
)

= tr
(

2XTY∆ Â + 2P̂ Q̂∆ Â

)
= 〈2(Q̂ P̂ + Y T X),∆ Â 〉.

Since ∆J also equals 〈∇ ÂJ ,∆ Â 〉, it follows that ∇ ÂJ = 2(Q̂ P̂ + Y T X).
To find an expression for ∇B̂ J we perturb B̂ in the characterization

J = tr
(

BT Q B + 2BTY B̂ + B̂ T Q̂ B̂
)

.

which yields the first-order perturbation

∆J = tr
(

2BTY∆B̂ + ∆T
B̂

Q̂ B̂ + B̂ T Q̂∆B̂

)
= 〈2(Y T B + Q̂ B̂ ),∆B̂ 〉.

Since ∆J also equals 〈∇B̂ J ,∆B̂ 〉, it follows that ∇B̂ J = 2(Q̂ B̂ + Y T B).
In a similar fashion we can write the first-order perturbation of

J = tr
(

C PCT
− 2C XĈ T

+ Ĉ P̂Ĉ T
)

to obtain ∇Ĉ J = 2(Ĉ P̂ − C X). �

The gradient forms of Theorem 3.3 allow us to derive our fundamental theoretical result.

Theorem 3.4. At every stationary point of J where P̂ and Q̂ are invertible, we have the following identities:

Â = W T AV, B̂ = W T B, Ĉ = CV, W TV = In with W := −Y Q̂−1, V := X P̂−1 (15)

where X, Y , P̂ and Q̂ satisfy the Sylvester Eqs. (12) and (13).

Proof. Since we are at a stationary point of J , the gradients versus Â , B̂ and Ĉ must be zero:

Q̂ P̂ + Y T X = 0, Q̂ B̂ + Y T B = 0, Ĉ P̂ − C X = 0.

Since P̂ and Q̂ are invertible, we can define W := −Y Q̂−1 and V := X P̂−1. It then follows that

W TV = In, B̂ = W T B, Ĉ = CV .

Multiplying the first equation of (13) with W and using XT
= P̂V T yields

P̂V T ATW + Â P̂V TW + B̂ BTW = 0.

Using V TW = I , BTW = B̂ T and the second equation of (13) it then follows that Â = W T AV . �

If we rewrite the above theorem as a projection problem, then we are constructing a projector Π := V W T (implying
W TV = In) where V and W are given by the following (transposed) Sylvester equations:

(Q̂W T)A + Â T(Q̂W T) + Ĉ TC = 0, A(V P̂) + (V P̂) Â T
+ B B̂ T

= 0. (16)

Notice that P̂ and Q̂ can be interpreted as normalizations to ensure that W TV = In .
It was shown in [4] that projecting a system via Sylvester equations always amounts to satisfying

tangential interpolation conditions. The Sylvester Eq. (16) shows that the parameters of reduced order models



Author's personal copy

P. Van Dooren et al. / Applied Mathematics Letters 21 (2008) 1267–1273 1271

corresponding to stationary points must have specific relationships with the parameters of the tangential interpolation
conditions (2)–(4). First note that − Â = Σσ = Σµ requires that the left and right interpolation points are identical
and equal to the negatives of the poles of the reduced order model. For SISO systems, choosing identical left and right
interpolation point sets implies that Ĥ(s) and H(s) and, at least, their first derivatives match at the interpolation points.
Theorem 3.4 therefore generalizes to MIMO systems the conditions of [6] on theH2-norm stationary points for SISO
systems. The simple additive result for the orders of rational interpolation for SISO systems, however, is replaced by
more complicated tangential conditions for MIMO systems that require the definition of tangential direction vectors
that can be vector polynomials of s. The Sylvester equation (16) shows that these direction vectors are also related to
parameters of realizations of Ĥ(s). If the Sylvester equations are expressed in the coordinate system with Â in Jordan
form then the transformed B̂ and Ĉ contain the parameters that define the tangential interpolation directions.

4. Tangential interpolation revisited

Theorem 3.4 provides the fundamental characterization of the stationary points of J via tangential interpolation
conditions and their relationship to the realizations of Ĥ(s). It is instructive to illustrate those relationships in a
particular coordinate system and derive an explicit form of the tangential interpolation conditions. We assume here
that all poles of Ĥ(s) are distinct but possibly complex (the so-called generic case). Hence the transfer functions
H(s) and Ĥ(s) have real realizations {A, B, C} and { Â , B̂ , Ĉ } with Â diagonalizable. The interpretation of these
conditions for multiple poles or higher order poles becomes more involved and can be found in an extended version
of this work [1].

Given our assumptions, we have for Ĥ(s) the partial fraction expansion

Ĥ(s) =

n∑
i=1

ĉi b̂H
i

s − λ̂i
, (17)

where b̂i ∈ Cm and ĉi ∈ Cp and where (̂λi , b̂i , ĉi ), i = 1, . . . , n, is a self-conjugate set.
We must keep in mind that the number of parameters in

{
Â , B̂ , Ĉ

}
is not minimal and hence that the gradient

conditions of Theorem 3.3 must be redundant. We make this more explicit in the theorem below. For this we will need
si , t H

i , the (complex) left and right eigenvectors of the (real) matrix Â corresponding to the (complex) eigenvalue λ̂i .
Because of the expansion (17), we then have

Â si = λ̂i si , Ĉ si = ĉi , t H
i Â = λ̂i t

H
i , t H

i B̂ = b̂H
i .

Theorem 4.1. Let Ĥ(s) =
∑n

i=1 ĉi b̂H
i /(s − λ̂i ) have distinct first-order poles where (̂λi , b̂i , ĉi ), i = 1, . . . , n, is

self-conjugate. Then

1
2
(∇B̂ J )Tsi = [HT(−̂λi ) − ĤT(−̂λi )]̂ci (18)

1
2

t H
i (∇Ĉ J )T

= b̂H
i [HT(−̂λi ) − ĤT(−̂λi )] (19)

1
2

t H
i (∇ ÂJ )Tsi = b̂H

i
d
ds

[HT(s) − ĤT(s)]

∣∣∣∣
s=−̂λi

ĉi (20)

1
2

t H
i (∇ ÂJ )Ts j =

1

2(̂λi − λ̂ j )
[̂bH

i (∇B̂ J )Ts j − t H
i (∇Ĉ J )Tĉ j ]. (21)

Proof. Define yi := Y si , q̂i := −Q̂si , xi := −Xti and p̂i := −P̂ti . Then from (12) and (13) we have

(AT
+ λ̂i I )yi = CTĉi , ( Â T

+ λ̂i I )̂qi = Ĉ Tĉi ,

x H
i (AT

+ λ̂i I ) = b̂H
i BT, p̂H

i ( Â T
+ λ̂i I ) = b̂H

i B̂ T.

It follows that

yi = (AT
+ λ̂i I )−1CTĉi , q̂i = ( Â T

+ λ̂i I )−1Ĉ Tĉi , (22)
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x H
i = b̂H

i BT(AT
+ λ̂i I )−1, p̂H

i = b̂H
i B̂ T( Â T

+ λ̂i I )−1, (23)

from which we obtain

1
2
(∇B̂ J )Tsi = (B̂ T Q̂ + BTY )si = [HT(−̂λi ) − ĤT(−̂λi )]̂ci ,

1
2

t H
i (∇Ĉ J )T

= t H
i (P̂Ĉ T

− XTCT) = b̂H
i [HT(−̂λi ) − ĤT(−̂λi )].

From the (22) and (23) it also follows that

1
2

t H
i (∇ ÂJ )Ts j = t H

i (P̂ Q̂ + XTY )s j = b̂H
i [B̂ T( Â T

+ λ̂i I )−1( Â T
+ λ̂ j I )−1Ĉ T

− BT(AT
+ λ̂i I )−1(AT

+ λ̂ j I )−1CT
]̂ci .

If we use d
ds H(s) = −C(s I − A)−2 B and d

ds Ĥ(s) = −Ĉ (s I − Â )−2 B̂ , then for i = j we obtain

1
2

t H
i (∇ ÂJ )Tsi = b̂H

i
d
ds

[HT(s) − ĤT(s)]

∣∣∣∣
s=−̂λi

ĉi .

For i 6= j we use the identity

(M + λ̂ j I )−1(M + λ̂i I )−1
=

1

λ̂i − λ̂ j
[(M + λ̂ j I )−1

− (M + λ̂i I )−1
]

to obtain

1
2

t H
i (∇ ÂJ )Ts j =

1

λ̂i − λ̂ j
t H
i

(
[HT(−̂λi ) − ĤT(−̂λi )] − [HT(−̂λ j ) − ĤT(−̂λ j )]

)
s j

and finally

1
2

t H
i (∇ ÂJ )Ts j =

1

2(̂λi − λ̂ j )
[̂bH

i (∇B̂ J )Ts j − t H
i (∇Ĉ J )Tĉ j ]. �

Let S :=
[
s1 . . . sn

]
, then the above theorem shows that the off-diagonal elements of S−1(∇ ÂJ )TS vanish

when (∇B̂ J )T and (∇Ĉ J )T vanish. Therefore we need to impose only conditions on diagS−1(∇ ÂJ )TS, on (∇B̂ J )T

and on (∇Ĉ J )T to characterize stationary points of J . These are exactly n(m + p) conditions since the vectors b̂H
i

or ĉi can be scaled as indicated in Section 1. Moreover one can view them as n(m + p) real conditions since the poles
λ̂i come in complex conjugate pairs. The following corollary easily follows.

Corollary 4.2. If (∇B̂ J )T
= 0, (∇Ĉ J )T

= 0 and diag S−1(∇ ÂJ )TS = 0 then ∇ ÂJ = 0 and the following
tangential interpolation conditions are satisfied for all λ̂i , i = 1, . . . , n:

[HT(−̂λi ) − ĤT(−̂λi )]̂ci = 0, b̂H
i [HT(−̂λi ) − ĤT(−̂λi )] = 0, b̂H

i
d
ds

[HT(s) − ĤT(s)]

∣∣∣∣
s=−̂λi

ĉi = 0.

(24)

Notice that we retrieve the conditions of [6] for the SISO case since then b̂H
i and ĉi are just nonzero scalars that

can be divided out. The conditions above then become the familiar 2n interpolation conditions

H(−̂λi ) = Ĥ(−̂λi ),
d
ds

H(s)

∣∣∣∣
s=−̂λi

=
d
ds

Ĥ(s)

∣∣∣∣
s=−̂λi

, i = 1, . . . , n.
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5. Concluding remarks

The H2-norm of a stable proper transfer function E(s) is a smooth function of the parameters {Ae, Be, Ce} of
its state space realization because the squared norm of E(s) is differentiable versus the parameters {Ae, Be, Ce} as
long as Ae is stable (the Lyapunov equations are then invertible linear maps and the trace is a smooth function of its
parameters). If Ĥ(s) is an isolated local minimum of the error function ‖H(s) − Ĥ(s)‖2

H2
, then the continuity of the

norm implies that a small perturbation of H(s) will induce also only a small perturbation of that local minimum. This
explains why we can construct a characterization of the optimality conditions without assuming anything about the
structure of the poles of the transfer functions H(s) and Ĥ(s).

Those ideas also lead to algorithms. One can view (12), (13) and (15) as two coupled equations

(X, Y, P̂, Q̂) = F( Â , B̂ , Ĉ ) and ( Â , B̂ , Ĉ ) = G(X, Y, P̂, Q̂)

for which we have a fixed point ( Â , B̂ , Ĉ ) = G(F( Â , B̂ , Ĉ )) at every stationary point of J ( Â , B̂ , Ĉ ). This
automatically suggests an iterative procedure

(X, Y, P̂, Q̂)i+1 = F( Â , B̂ , Ĉ )i+1, ( Â , B̂ , Ĉ )i+1 = G(X, Y, P̂, Q̂)i ,

which is expected to converge to a nearby fixed point. This is essentially the idea behind existing algorithms using
Sylvester equations in their iterations (see [2]). Another approach would be to use the gradients (or the interpolation
conditions of Theorem 4.1) to develop descent methods or even Newton-like methods, as was done for the SISO case
in [5].

The two fundamental contributions of this work are, first, the characterization of the stationary points of J via
tangential interpolation conditions and their relationship to the realizations of Ĥ(s) given by Theorem 3.4, and,
second, the fact that this can be done using Sylvester equations without assuming anything about the structure of either
H(s) or Ĥ(s), thereby providing a framework for relating existing algorithms and for developing and understanding
new ones. During the submission of this paper we were also informed that similar results for discrete-time systems
had been obtained independently in [9].
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