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1. INTRODUCTION

Kalman filtering is one of the most frequently used techniques for estimating or
filtering a stochastic process {x,] on which linear observations | v, { are performed.
The technique supposes that the processes {x,} and { v.{ obey the discrete time-
varying linear system

Zper = Apx, + Biw, + Dy, (1)
and the linear observation process

yir = Crx, + vy (2)
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where x;, u;, and v, are, respectively, the state vector to be estimated (dimension
n), the deterministic input vector (dimension r), and the measurement vector
(dimension p), where w, and v, are the process noise (dimension m) and the
measurement noise (dimension p) of the system, and, finally, where A, By, C,,
and D, are known matrices of appropriate dimensions. The process noise and
measurement noise sequences are assumed zero mean and uncorrelated:

Elw,) =0, E{v.}=0, FElwuv'i=0, (3)
with covariances
E{ij‘;} = Qk(sj'k, E{UJU;\/,’ = R/,(S//‘\, (4)

where E{-} denotes the mathematical expectation, ' denotes the transpose, and
Q. and R, are positive semidefinite matrices. Now let the linear discrete-time
system (1 and 2) be given and the system matrices {A,, B, C., D;} and covariance
matrices {Q,, R.} be known. The problem then is to compute the minimum
variance estimate of the stochastic variable x,, provided vy, up to y; have been
measured:

iku = ik|;r]....,_xrj- (5)

When j = k, this estimate is called the filtered estimate, and for j = k — 1 it is
referred to as the one-step predicted or, shortly, the predicted estimate.

Kalman filtering is a recursive method for solving this problem. This is done
by computing the variances P,,. and/or P.,,—, and the estimates x,,, and/or
Xx - from their previous values for k = 1, 2, .... One assumes P, _, (i.e., the
variance of the initial state x,) and x,,-; (i.e., the mean of the initial state x,) to
be given. The solution can be computed by the following recurrence relations
(see, e.g., [1] for a derivation):

R = Ry + CoPyy i Cy, (6)
K, = APy 11 CL R ks (7)
Pojr = = Pryo1 CrRb kCilPy 1o,y (8)
Zrin = Zrjnor — Pryrm1 CLRGL W [CuZiy e — Yils 9
Pivryx = APy AL + B.Q.B,, (10)
Learik = ApXnyn + Diuy. (11)

The recursion clearly revolves around the covariance matrices Py, and P, ;.
In the sequel, we drop the term D,u, in (11) since it does not really enter the
iteration of P, and P, ,—,. These matrices are positive semidefinite and can
thus be factorized into Cholesky factors (often called “square roots” in the
filtering literature). These factorizations are the basis of a number of efficient
algorithms. Four of them are given below.
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2. SQUARE ROOQOT FILTERING

Here we recall two of the most popular “square root filters™ tor computing the
recursion (6-11). The Square Root Covariance Filter (SRCF) propagates the

Cholesky factor of P;,,—; using the Cholesky factors of the process and measure-
ment noise covariance matrices:

Piyror = SiS/, (12)

Q= @[Q1], (13)

R, = R{[R]]’, (14)

where the left factors are all chosen to be lower triangular. The computational
method is summarized by the following scheme [1] (here = means “equals by

definition”):
LGS, 0 REL 0O 0
o o= . (15)
0 A.S. B.Q; G, S... 0

\ J

Y Y
(prearray) (postarray |
K/: = G/\‘[Rr];wt.);]il, (16)
32/;+1\k = Akikuﬂ - K,‘,(C,,JZ,;“‘,,l =Mk (17)

where U, is an orthogonal transformation that (lower) triangularizes the prearray.

The Square Root Information Filter (SRIF) [2] propagates the Cholesky factor
of Py, using the Cholesky factor of the inverses of the process and measurement
noise covariance matrices (assumed to be invertible here);

P, =TT, (18)
Q' =[Q.1'Qf, (19)
R;' = [R.]'Ri, (20)

where the right factors are all chosen to be upper triangular. One recursion of
the SRIF algorithm is given by [1] and [2]:

Q}{ 0 Ql[\u-)/\ 1’71.4/1‘) +1 * *
U.Z TA'A;lB}\' TI\*AZI T/\'-ilcl k = 0 '[‘/ at ér LRI . (21)
0 Rl{;;—]clﬁ—l R/I‘v;lylﬁ—l 0 0 [
Y g ~ -
(prearray) ipostarrav)

Note that the effect of the mean value w, of the process noise was included in
the prearray. This was done here because the SRIF algorithm also works when
the process noise w;, in (1) is not zero mean, whereas this is not the case for the
SRCF. A disadvantage of the SRIF approach is the need for inverses in this
formulation (see [8] for a discussion and [6] for an alternative tormulation). The
new filtered state estimate is then computed via

i/ﬁ—l\kﬁ—l = T/:l]éfwl\/\w' (22)
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3. CONDENSED FORMS

When the system matrices {A, B, C} are time invariant, considerable savings can
be obtained using so-called condensed forms [7]. The idea of using these forms
comes from standard linear algebra techniques such as those used in the QR and
QZ algorithms. In these algorithms one performs preliminary unitary transfor-
mations on the given matrices in order to “condense” them or, in other words,
create as many zeros as possible. These zeros are exploited in the subsequent
iterative scheme in order to substantially reduce their operation count. (Note
that condensed forms can also be used in the time-varying case, but then without
any resulting savings since they have to be recomputed at each step k.) The
following two forms have been shown to be particularly appropriate for the
Kalman filter recursion [7, 8]:

—the controller Hessenberg form, where the compound matrix [UB|UAU '] is
upper trapezoidal or where [U AU’ | U B] is lower trapezoidal,
—the observer Hessenberg form, where the compound matrix [U( fzf;w

trapezoidal or where [%] is lower trapezoidal.

] is upper

An appropriate use of these forms in the implementation of the SRCF and
SRIF algorithms yields savings up to a factor 7 if n > m, p [8]. Two of these
forms are illustrated below for n = 6, m = 3, and p = 2. The lower observer
Hessenberg form is

[ x 000 0 0]
x x 0 0 0 0
x x xjx x x 0 0O 0
Con _|x x x|x x x x 0 0 , (23)
B, | Ao x x x|lx x x x x 0
X x x|x x x x x X
X x x|x x x x x x
X X x|x x x x «x xj
and the upper controller Hessenberg form is
[- x x x x x x|
X x x x X x
X x x|x x x x x X
Cen _ 0 x x{x x x x x X (24)
B..| A 0 0 x|x x x x x X
0 0 O0lx x x x x «x
0 0 010 x x x x «x
0 0 00 0 x x «x x|

These two forms are easily obtained using standard linear algebra methods
applied to the system model {A, B, C}. For each case, the matrix U consists of a
sequence of Householder reflections [8].
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4. TIME INVARIANT SQUARE ROOT FILTERS

For time invariant systems the complexity of the SRCF can significantly be
reduced using the lower observer Hessenberg form (23) for the model (namely,
n'/g + 3n’p/2 + n®m instead of 7Tn*/6 + 5n’p/2 + n-m per iteration step). The
pattern of zeros after a permutation (i.e., a unitary transformation) of the second
and third block columns of the prearray (15) looks like (for the same choice of
dimensions as above):

0 Olx, O O O O O
x x, 0 0 0 0

)
(=)

X3 X3 | Xa Xsy X3 0 0 ()
Xe |l x5 x4 x4 x¢ O 0

4 4 4 4 4 , (25)
X5 X5 X5 X5 X, 0

X X, X; X- X-

2 R R R R Mo o©

S OO DO O OIr
S OO OO OIR O
R OR R R M

X
X | X Xe Xo Xo Xo X
X
X

X X Xs X« xh_i

and all the elements x; up to xs can be eliminated using Householder reflections
only (using the x’s in the corresponding rows as pivots). Similar significant
savings with the upper controller Hessenberg form (24) can be obtained for
the SRIF by constructing a unitary transformation that condenses the pair
(A7', A7'B) to controller Hessenberg form (namely, n'/6 + 3n°m/2 + n’p
instead of 7n®/6 + Tnm/2 + n’p per iteration step). This, of course, re-
quires the additional construction of the matrices A ' and A 'B before con-
densing them to the form (24), but since this is done only once it is not a real
drawback. The numerical stability of the method, on the other hand, can
suffer from the inversion of the matrix A needed in this approach. Here again,
after a permutation of the second and third block row of the prearray (21), it
has the form:

( x x|0 0 0 0 0 0;ux
0 x/0 0 0 0 0 0]«x
0 0)lx x x x x x|x
0 Oflxs x x x x x|x
0 0 jxy x4, X x x x X (26)
X | X X X XX XX
0 xy]xy Xy X3 Xo X X X
0 O |xy xi x5 x5 x- X !X
0 010 xy x5 xs x- x.|x
0 010 0O x x5 x xs | X

0 0/0 0 0 x x xlx |

This clearly leads to an analogue of the previous method for the SRIF. Both
methods are more elaborately discussed in {8].
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5. ROUTINE CALLS AND PROGRAMMING DETAILS

SCRF and SRIF are both routines meant especially for systems whose param-
eters {Ay, By, Ci, @, R,} are time varying. Each routine implements only one
step of the Kalman filter recursion (6-11).

SCRF only updates the equations (15 and 16) using the model {A4,, B,, C,
Q’, R7} as well as the square root S, as input to the prearray, and then returns
Si+1 and K. From the latter, one can compute %, , via (17). Since this (rather
simple operation) is not always requested, it is not included in the routine.
The mode parameter WITHK allows the computation of K, to be suppressed
and is set to .FALSE. if R/, , is nearly singular (i.e., if its estimated condition
number X TOL is larger than 1). Finally, the mode parameter MULTBQ allows
B, and @7 to be provided separately or as their product. (For example, the latter
is chosen when @} = I,,.) Other parameters G, and R/, , are not returned but
may be recovered from the work array WRK if needed.

SRIF updates (21) and (22) using the model {A;', B., Cier, QL, R} as well
as Ty, Yr+1, % x, and w; as input to the prearray and returns T}, and X1 s41.
The mode parameter WITHX allows the computation of x,.. . .., to be suppressed
and is set to .FALSE. if T}, is nearly singular (i.e., if its estimated condition
number X TOL is larger than 1). The mode parameters MULTAB and
MULTRC allow the user to provide A;' and B, separately and R%,, and C;.,
separately or their respective products. (For example, the latter is chosen when
R/ ., =1,.) Other parameters e,.; and @}, , are not returned but may be recovered
from the work array WRK if needed.

The calling sequence for SRCF is SRCF (S, LDS, A, LDA, B, LDB, Q, LLDQ,
C,LDC,R,LDR,N, M, P K, LDK, WRK, LDW, MULTBQ, WITHK, TOL)
with parameters as follows (those preceded by an asterisk are altered by the
routine):

*S A two-dimensional real array containing the lower triangular
square root of the N X N state covariance matrix P,|,—,. Upon
return it contains the corresponding square root of P ,.

LDS The first (integer) dimension of S as declared in the calling
program.

A A two-dimensional real array containing the N X N state tran-
sition matrix A, of the discrete-time system.

LDA The first (integer) dimension of A as declared in the calling
program.

B A two-dimensional real array containing the N X M input weight
matrix B;, (or its product with Q if MULTBQ = .TRUE.).

1.DB The first (integer) dimension of B as declared in the calling
program.

Q A two-dimensional real array containing the M X M lower
triangular Cholesky factor @, of the process noise covariance
matrix.

LDQ The first (integer) dimension of @ as declared in the calling
program.

ACM Transactions on Mathematical Software, Vol. 15, No. 3, September 1988
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A two-dimensional real array containing the P X N output weight
matrix C, of the discrete-time system.

The first (integer) dimension of C as declared in the calling
program.

A two-dimensional real array containing the P X P lower trian-
gular Cholesky factor R! of the measurement noise covariance
matrix.

The first (integer) dimension of R as declared in the calling
program.

Dimension (integer) of the state (actual value used in SRCF).
Dimension (integer) of the input (actual value used in SRCF).
Dimension (integer) of the output (actual value used in SRCF).
A two-dimensional real array containing the N X P Kalman gain
K, upon return (if WITHK = .TRUE.).

The first (integer) dimension of K as declared in the calling
program.

A real working array of dimensions LDW X NW containing the
postarray upon return. NW must be at least (M + N + P).

The first (integer) dimension of WRK, which must be at least
(N + P).

Logical variable indicating how input matrices B and Q are
transferred. If MULTBQ = .TRUE., then the product B*Q is
transferred via B, and Q is not used. If MULTBQ = .FALSE.,
then B and Q are transferred via the parameters B and Q,
respectively.

Logical variable indicating whether or not K is requested. If a
nearly singular matrix is encountered during the calculation of
K, WITHK is set to .FALSE. upon return.

Real indicating the tolerance for the reciprocal condition number
of the computed RZ.. . when solving for K, .

The calling sequence for SRIF is SRIF(T, LDT, AINV, LDA, B, LDB,
RINV, LDR, C, LDC, QINV, LDQ, X, RINVY, W, N. M, P, WRK, LDW,
MULTAB, MULTRC, WITHX, TOL) with parameters as follows (those
preceded by an asterisk are altered by the routine):

*T

LDT

AINV

A two-dimensional real array containing the N X N upper tri-
angular square root T, of the inverse of the state covariance
matrix Py, .. Upon return, it contains the corresponding factor of
P, k41

The first (integer) dimension of T as declared in the calling
program.

A two-dimensional real array containing the inverse A;' of the
N x N state transition matrix of the discrete-time system (if
MULTAB = .FALSE.).
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LDA

LDB

RINV

LDR

LDC

QINV

LDQ

*X

MULTAB

MULTRC
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The first (integer) dimension of AINV as declared in the calling
program.

A two-dimensional real array containing the N X M input weight
matrix B, (or its product with AINV if MULTAB = . TRUE.)
of the discrete-time system.

The first (integer) dimension of B as declared in the calling
program.

A two-dimensional real array containing the P X P upper trian-
gular Cholesky factor R;,, of the inverse of the measurement
noise covariance (if MULTRC = .FALSE.).

The first (integer) dimension of RINV as declared in the calling
program.

A two-dimensional real array containing the P X N output weight
matrix C,; (or its product with RINV if MULTRC =.TRUE.).
The first (integer) dimension of C as declared in the calling
program.

A two-dimensional real array containing the M X M upper
triangular Cholesky factor @} of the inverse of the process noise
covariance.

The first (integer) dimension of @ as declared in the calling
program.

The real vector containing the estimated state x,, upon input
and containing the estimated state x..,,... upon return (if
WITHX = .TRUE.).

The real product of RINV with the measured output y;.,.

The real mean value of the state process noise w;.

Dimension (integer) of the state (actual value used in SRIF).
Dimension (integer) of the input (actual value used in SRIF).
Dimension (integer) of the output (actual value used in SRIF).
A real working array of dimensions LDW X NW containing the
postarray upon return. NW must be at least (M + N + 1).

The first (integer) dimension of WRK, which must be at least
(M+N+P).

Logical variable indicating how input matrices AINV and B are
transferred. If MULTAB = . TRUE., then the product AINV*B
is transferred via B, and AINV is not used. If MULTAB =
JFALSE., then AINV and B are transferred via their respective
parameters.

Logical variable indicating how input matrices RINV and C are
transferred. If MULTRC = .TRUE., then the product RINV*C
is transferred via C, and RINV is not used. If MULTRC =
FALSE., then RINV and C are transferred via their respective
parameters.
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*WITHX Logical variable indicating whether or not X is requested. If a
nearly singular matrix is encountered during the calculation of
X, WITHX is set to .FALSE. upon return.

TOL Real indicating the tolerance for the reciprocal condition number
of the computed T+, when solving for Zp., s+ -

The routines OBHESS and COHESS construct an orthogonal state-space
transformation [ to reduce an arbitrary time-invariant state-space model
{A, B, C} to observer or controller Hessenberg form, respectively. Both routines
have a logical mode parameter UPPER that allows choice between upper and
lower Hessenberg forms. Both routines provide the orthogonal transformation U
if requested (using the logical mode parameter WITHU). Each routine uses only
two matrices of the state-space model (4 and C for OBHESS and A and B for
COHESS) since these completely determine U. The application of the transfor-
mation U to the third matrix is not implemented since this is not always
requested. (Even when requested, no savings can be obtained by implementing it
within the routines.)

SRCFOB and SRIFCO are routines implementing respectively the SRCF and
SRIF algorithms for time-invariant systems {A, B, C} with time-invariant noise
covariances ¢ and R. They both exploit the time invariance by using the
condensed forms that can be obtained by OBHESS (with UPPER = . TRUE.)
and COHESS (with UPPER = .FALSE.), respectively. The assumption that
the system mode] is in condensed form is the main difference between SRCF
and SRIF, on the one hand, and SRCFOB and SRIFCO, on the other. The
parameter lists of SRCF and SRCFOB are indeed identical, while those of
SRIF and SRIFCO only differ in two parameters (namely, B and MULTAB).
The option in SRIF to pass AINV and B separately (i.e., the logical MULTAB)
is no longer appropriate in SRIFCO, since for time-invariant systems this
product should be computed only once for all time-steps k. In SRIFCO, this
product is passed via AINVB (replacing B), and the parameter MULTAB
disappears.

Remark. Although SRCFOB and SRIFCO are meant for time-invariant
systems {A, B, C} with time-invariant noise covariances ¢ and R, they can also
be applied to models where (some of) these matrices are time varying. The routine
SRCFOB can already be applied using an observer Hessenberg form when only
A and C are time invariant. The time dependency of the other matrices, of course,
induce some extra work at each step & (such as computing UB,), but this is
largely compensated by the savings obtained in the reduction to the postarray
via condensed forms. Similar comments also hold for the routine SRIFCO where,
in principle, only A and B are required to be time invariant. We remark that this
is the reason why the logical parameters MULTBQ and MULTRC were
maintained in these routines: the matrices corresponding to these mode param-
eters are not necessarily time invariant, and one may wish to perform their
products in the routines. Finally, we note that even for systems where all matrices
are time varying, one may still use condensed forms if the user can supply an
appropriate state-space coordinate system where the relevant matrices have the
correct pattern of zeros (see [8] for additional comments).
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The calling sequence for OBHESS is OBHESS(A,LDA, N, C,LDC, P, U,
LDU, WITHU, UPPER) with parameters as follows (those preceded by an
asterisk are altered by the routine):

*A

LDA

*C

LDC

*U

LDU

WITHU

UPPER

A two-dimensional real array containing the N X N state transition
matrix A to be transformed.

The first (integer) dimension of A as declared in the calling pro-
gram.

Dimension (integer) of the state (actual value used in OBHESS).
A two-dimensional real array containing the P X N input matrix C
to be transformed.

The first (integer) dimension of C as declared in the calling program.
Dimension (integer) of the output (actual value used in OBHESS).
A two-dimensional real array which upon return is multiplied (if
WITHU is .TRUE.) with the N X N state space transformation
U reducing the given pair to observer Hessenberg form.

The first (integer) dimension of U as declared in the calling
program.

Logical variable equal to .TRUE. when U is requested and
.FALSE. otherwise.

Logical variable equal to .TRUE. when upper Hessenberg is re-
quested and .FALSE. when lower Hessenberg is requested.

The calling sequence for COHESS is COHESS(A. LDA, N, B, LDB, M, U,
LDU, WITHU, UPPER) with parameters as follows (those preceded by an
asterisk are altered by the routine):

*A

LDA

*B

LDB

*U

LDU

WITHU

UPPER

A two-dimensional real array containing the N X N state transition
matrix A to be transformed.

The first (integer) dimension of A as declared in the calling
program.

Dimension (integer) of the state (actual value used in COHESS).

A two-dimensional real array containing the N X M input matrix
B to be transformed.

The first (integer) dimension of B as declared in the calling
program.

Dimension (integer) of the input (actual value used in COHESS).
A two-dimensional real array which, upon return, is multiplied (if
WITHU is .TRUE.) with the N X N state space transformation
U reducing the given pair to controller Hessenberg form.

The first (integer) dimension of U as declared in the calling
program.

Logical variable equal to .TRUE. when U is requested and
.FALSE. otherwise.

Logical variable equal to .TRUE. when upper Hessenberg is re-
quested and .FALSE. when lower Hessenberg is requested.
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The calling sequence for SRCFOB is SRCFOB(S, LDS, A, LDA, B, LDB,
Q, LDQ, C, LDC, R, LDR, N, M, P, K, LDK, WRK, LDW, MULTBQ,
WITHK, TOL) with parameters as follows (those preceded by an asterisk are
altered by the routine):

*S

LDS

LDA

LDB

LDQ

LDC

LDR

vz

*K

LDK

*WRK

LDW

A two-dimensional real array containing the lower triangular
square root of the N X N state covariance matrix P ,_,. Upon
return it contains the corresponding square root of Py .

The first (integer) dimension of S as declared in the calling
program.

A two-dimensional real array containing the N X N state tran-
sition matrix A of the discrete-time system.

The first (integer) dimension of A as declared in the calling
program.

A two-dimensional real array containing the N X M input weight
matrix B (or its product with @ if MULTBQ = . TRUE.).

The first (integer) dimension of B as declared in the calling
program.

A two-dimensional real array containing the M X M lower
triangular Cholesky factor @ of the process noise covariance
matrix.

The first (integer) dimension of Q as declared in the calling
program.

A two-dimensional real array containing the P x N output weight
matrix C of the discrete-time system.

The first (integer) dimension of C as declared in the calling
program.

A two-dimensional real array containing the P x P lower trian-
gular Cholesky factor R* of the measurement noise covariance
matrix.

The first (integer) dimension of R as declared in the calling
program.

Dimension (integer) of the state (actual value used in SRCFOB).
Dimension (integer) of the input (actual value used in SRCFOB).

Dimension (integer) of the output (actual value used in
SRCFOB).

A two-dimensional real array containing the N x P Kalman gain
K, upon return (if WITHK = .TRUE.).

The first (integer) dimension of K as declared in the calling
program.

A real working array of dimensions LDW X NW containing the
postarray upon return. NW must be at least (M + N + P).

The first (integer) dimension of WRK, which must be at least
(N + P).
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Logical variable indicating how input matrices B and Q are
transferred. If MULTBQ = .TRUE., then the product B*Q is
transferred via B, and Q is not used. If MULTBQ = .FALSE.,
then B and Q are transferred via the parameters B and Q,
respectively.

Logical variable indicating whether or not K is requested. If a
nearly singular matrix is encountered during the calculation of
K, WITHK is set to .FALSE. upon return.

Real indicating the tolerance for the reciprocal condition number
of the computed R/, ,, when solving tor k..

The calling sequence for SRIFCO is SRIFCO(T, LDT, AINV, LDA,
AINVB, LDB, RINV, LDR, C, LDC, QINV, LDQ. X, RINVY, W, N, M, P,
WRK, LDW, MULTRC, WITHX, TOL) with parameters as follows (those
preceded by an asterisk are altered by the routine):

*T

LDT

AINV

LDA

AINVB

LDB

RINV

LDR
C
LDC

QINV

A two-dimensional real array containing the N X N upper tri-
angular square root T} of the inverse of the state covariance
matrix P, .. Upon return it contains the corresponding factor of
P | h+1-

The first (integer) dimension of T as declared in the calling
program.

A two-dimensional real array containing the inverse A ' of the
N X N state transition matrix of the discrete-time system. The
matrix AINV, together with AINVB, is in upper controller
Hessenberg form.

The first (integer) dimension of AINV as declared in the calling
program.

A two-dimensional real array containing the N X M product of
AINV. with the input weight matrix B of the discrete-time
system. The matrix AINVB, together with AINV, is in upper
controller Hessenberg form.

The first (integer) dimension of B as declared in the calling
program.

A two-dimensional real array containing the P X P upper trian-
gular Cholesky factor R" of the inverse of the measurement noise
covariance (if MULTRC = .FALSE.).

The first (integer) dimension of RINV as declared in the calling
program.

A two-dimensional real array containing the P X N output weight
matrix C (or its product with RINV if MULTRC = .TRUE.).
The first (integer) dimension of C as declared in the calling
program.

A two-dimensional real array containing the M X M upper
triangular Cholesky factor @' of the inverse of the process noise
covariance,
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LDQ The first (integer) dimension of Q as declared in the calling
program.
*X The real vector containing the estimated state i, upon input

and containing the estimated state x.,, ., upon return (if
WITHX = .TRUE.).

RINVY The real product of RINV with the measured output y.;.

W The real main value of the state process noise wy,.

N Dimension (integer) of the state (actual value used in SRIFCO).

M Dimension (integer) of the input (actual value used in SRIFCO).

P Dimension (integer) of the output {actual value used in
SRIFCO).

*WRK A real working array of dimensions LDW x N'W containing the
postarray upon return. NW must be at least (M + N + 1).

LDW The first (integer) dimension of WRK, which must be at least
(M -+ N+ P).

MULTRC Logical variable indicating how input matrices RINV and C are
transferred. If MULTRC = .TRUE., then the product RINV*C
is transferred via C, and RINV is not used. If MULTRC =
JFALSE.,, then RINV and C are transferred via their respective
parameters.

*WITHX Logical variable indicating whether or not X is requested. If a
nearly singular matrix is encountered during the calculation of
X, WITHX is set to .FALSE. upon return.

TOL Real indicating the tolerance for the reciprocal condition number
of the computed T, when solving for x,., .+ .

We have made extensive use of LINPACK [3], BLAS [5], and XBLAS [4]
routines in order to make the code of the routines SRCF, SRIF, OBHESS,
COHESS, SRCFOB, and SRIFCO more readable and also enhance perfor-
mance for computers with machine-code versions of these basic routines. Some
additional “BLAS-like” Numerical Algorithms Group routines ( for implementing
Householder transformations) have been used for the same reason.
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