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Properties of the system matrix of a generalized
state-space systemf

G. VERGHESE], P. VAN DOOREN§ and T. KAILATH]

T(s) —Uls)
For an irreducible polynomial system matrix P(s):[ :I, Rosenbrock

Visy Wi(s)
(1970, p. 111) has shown that the polar structure of the associated transfer function
R(s)=V(s)T-Y(s)U(s) at any finite frequency is isomorphic to the zero structure of
T(s) at that frequency, while the zero structure of I(s) at any finite frequency is
isomorphic to that of P(s) at the same frequency. In this paper we obtain the
appropriate extensions for the structure af infinite frequencies m the particular case
of systems for which T(s)=sE— 4 (with E possibly singular). U{s)=DB, V{(s)=C,
and W(s)= D, under a strengthened irreducibility condition. We term such systems
generalized state-space systems, and note that any rational R(s) may be rcalized in
this form. We also demonstrate in this case that a minimal basis (in the sense of
Forney (1975) for the left or right null space of P(s) directly generates one with the
same minimal indices for the corresponding null space of R(s), and vice versa. These
results also enable us to identify the pole-zero excess of IX(s) as being equal to the
sum of the minimal indices of its null spaces. Connections with Kronecker’s theory
of matrix pencils are made.

1. Introduction
Given the rational matrix

R(s)=V(s)T-Us)U(s)+ W(s) (1)

where 7. U, V, W are polynomial matrices that constitute a realization of
R(s), it is of interest, as the pioneering work of Rosenbrock (1970) has shown,
to study the properties of the associated system matrix

T(s) —U(s)

and to relate them to properties of R(s).

It is by now well-known (see Rosenbrock (1970, p. L11)) that if P(s) is
trreductble, i.e. [T(s) —U(s)] and [T'(s) V’'(s)]’ have full row and column
rank respectively for all finite s, then, with the classical Nmith-MeMillan
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definition of pole-zero structure of a rational matrix (see, for example,
Rosenbrock (1970) or MeMilland (1952)) :

(i) the polar structure of R(s) at its finite poles is isomorphic to the zero
structure of the ‘ denominator > matrix 7'(s) at its finite zeros ;

(ii) the zero structure of R(s) at its finite zeros is isomorphic to the zero
strueture of the system matrix P(s) at its finite zeros. (3)

Here we shall develop certain important extensions of these results for an
interesting class of systems that we shall call generalized state-space systems,
namely with

Tis)y=sE—~A4, Us)=B, V)=C, W=D (4)

where E is permitted to be singular. In the special case where E is non-
singular, and assumed without loss of generality to be the identity, we have
the familiar regular state-space systems with proper transfer functions, i.e.
with R(oco) finite. Several aspects of generalized state-space systems are
explored in Verghese (1978) and Verghese et al. (1980). In particular, it is
demonstrated there (see Rosenbrock (1974) also) and we shall show again
here that an arbitrary rational matrix may be realized in this form.

For generalized state-space systems, (under a condition that we shall
term strong irreducibility), we shall prove the following extensions of (3):

(1) the polar structure of R(s) at its ¢nfinite poles is isomorphic to the
zero strueture of the denominator s B — A at its infinite zeros (Theorem
Li);

(ii) the zero structure of R(s) at its infinile zeros is isomorphic to the
zero structure of the system matrix P(s) at its {nfinite zeros (Theorem
Lii);

(iii) the left and right null-space structures of R(s) are directly related, in
a sense that will become clear shortly, to the corresponding null-space
structures of P(s) (Theorem 2). (5)

The results will also be used to prove (Theorem 3) an important relation
expressing the difference between the total number of poles and zeros of an
arbitrary rational matrix in terms of certain indices associated with its right
and left null spaces.

The poles and zeros at infinity of a rational matrix R(«) are of interest in
several problems of system theory, such as system inversion, asymptotic
root-locus determination, singular estimation and control, and also in circuit
theory. The null spaces of rational matrices likewise arisc in several contexts ;
some applications may be found, for example, in the paper of Forney (1973),
where the null spaces of polynomial matrices in particular are discussed. It
is therefore important to relate these elements of R(s) to the structure of
associated system matrices. Perhaps as important is the fact that for
generalized state-space systems both the denominator 7T'(s)=sE— A and the
system matrix P(s)=sG — H, where

I 0 4 B
G = , H= (6)
0 0 -C =D
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are in the form of matrix pencils, whose zero structure and null-space structures
have been well understood since the work of Kronecker, as reviewed by
Gantmacher (1960, Chap. 12) in considerable detail. Furthermore, several
algorithms for determining the structure of matrix pencils have been and
continue to be proposed ; see, for example, Van Dooren (1977).

2. Background
2.1. Pole-zero structure at infinity

The classical definition of the pole-zero structure at infinity of a rational
matrix @(s) simply gives it as the pole-zero structure at s =10 of the matrix
(s™!) (or uses some other first-order conformal mapping of the complex
plane to bring the point at infinity to a finite point): see McMillan (1952)
and Rosenbrock (1970) for example.

The following lemma on the infinite zeros of a general pencil sK —L is
important for the sequel :

Lemma 1
Use a constant non-singular transformation on the left of sA —L to bring
it to the form
K, Ly
8 - (7)
0 L,

where K| has full row rank. (This operation preserves the pole-zero structure
of sK —L.) Then the zero structure of sK —L at infinity is isomorphic to the
zero structure of

K,—Ls
(8)
_L2
at s=0.
Proof
The zero structure of the matrix in (7) at s= oo is isomorphic to that of
sIK, — Ly
(9)
—L,
at s=0. An irreducible realization of the latter matrix is given by
sl | K|~ Lys
Pus)y=| —1| o (10)
0 —L,

and by (3ii) P,(s) has the same finite zero structure as (9). Now P(s) is
easily seen to have the same finite zeros as (8), which completes the proof. |l
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Corollary 1
sK — L has no zeros at infinity if and only if

K,
rank =normal rank (sK — L) (11
_L2
Proof
The normal rank of sK — L equals the normal rank of (8), and the latter
matrix loses rank at s=0 if and only if sK — L has an infinite zero. [ |

Other proofs of the above lemma and its corollary are possible, see Verghese
(1978).

2.2, Minimal bases for rational vector spaces

We briefly summarize certain key ideas from the paper of Forney (1975).
A polynomial basis may be constructed for any finite-dimensional space of
rational vectors. The degree of a polynomial vector is defined to be the
highest degree among its entries. The columns of a polvnomial matrix M (s)
are said to form a minimal basis for the space spanned by them if

(i) M (s) has full column rank for all finite s, and

(i) M(s) is ‘ column-reduced ’, i.e. denoting the degree of the ith column
of M{s) by k;, and constructing the constant inatrix M, whose ith
column is the (vector) coefficient of s% in the ith column of JM(s),
we have A/, to be of full column rank. (12)

M, in (121i) is termed the highest-order column coefficient matrix.

The set of degrees of the vectors in any minimal basis for a given space is
known to be invariant, and these degrees are termed the minimal indices of
the space.

The following lemma will be useful in our discussion of bases for the null-
spaces of given matrices.

Lemma 2
Y, Y,
Let [X, X,] =0 and let X, have full column rank, then Y,
Yy Y,
must also have full column rank.
Proof
If there exists some v# 0 such that Y,»w=0, we must have Y,9#0, but
then X,(Y,»)=0, which is impossible. ||

3. Main results

A generalized state-space system, of the form (4), is termed strongly irreducible
if [s§—A —B] and [sE'— A" ('] have full row and column rank respec-
tively for all s, including s=co, i.e. if they have no zeros, finite or infinite.
While irreducibility at finite s is a familiar notion, irreducibility at infinity
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is more recent ; see Verghese (1978), Verghese ef al. (1980) for more detailed
discussion of its dynamical significance. For now we are interested only in
its algebraic aspects.

Theorem 1
For a strongly irreducible generalized state-space system (1), (2), (4),

(i) the polar structure of R(s) at s= 0o is isomorphic to the zero structure
of sE—-A4)ats=o00;

(ii) the zero structure of R(s) at s=co is isomorphic to the zero structure
of

sE—4 -B
Pys) A (13)
C D

at s= 0.

Proof
A preliminary constant non-singular transformation of the first (block)
row of (13) brings it to the form

ski—A4, | - B

-4, - b, (14)

C D

with K, of full row rank.

The pole-zero structures of sE— A, [sE—A4 — B[ [sk'—-4" C'T, and
P,(s) at all frequencies are preserved by this transformation. The strong
irreducibility of P,(s) implies, by Corollary 1 that

E,
E, 0

-4, —B,
have full row and column rank respectively.

Now note that since R(s)=C(sE — 4)"*B+ D, an irreducible realization of
R(1/s) is given by

E,—sd, | —sB,

Prls)= -4, - B, (16)

C D
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so that by (3ii) we have

(i) the polar strueture of R(1/s) at s =0 is isomorphic to the zero structure

. B, —-sd,
of at =0, and

-4,
(ii) the zero structure of R(1/s) at s=0 is isomorphic to the zero structure
of Pp(s) at s=0.

The theorem follows immediately on applying Lemma 1 to (i) and (ii)
above. |

Theorem 2

(i) Given a strongly irreducible generalized state-space realization of a
transfer function R(s), let N(s) be a minimal basis for the right null space of
its system matrix F,(s), so that

sE—A4 —BJ[N,s)
=0 (17)
C D || Ny

Then N,(s) is a minimal basis for the right null space of R(s), and has the
same minimal indices as N(s).

(ii) Conversely, let N,(s) be a minimal basis for the right null space of R(s).
Then with
Ni(s)=(sE—A)1BN,(s) (18)

we have that N(s)=[N',(s) N'y(s)]" is a minimal basis for the right null space
of P,(s), and has the same minimal indices as N,(s).

Proof
(i) By non-singular row operations on (17) we obtain

sE—A - B[ Ns)
~0 : (19)

0 R(s) || Ny(s)
which shows firstly that the right null space of R(s) has the same dimension
as that of P,(s), and secondly that N,(s) lies in this space. To show that
Ny(s) is indeed a minimal basis for this space, apply Lemma 2 to (17) and use
the fact that [sZ'— A" "] and N(s) have full column rank for all finite s to
prove that N,(s) also has fult column rank for all finite s, thus satisfying
condition (121). For condition (12ii), first bring /°,(s) to the form (14).

Denoting the highest column coefficient matrix of .V(s) byv N, (where N, has
full column rank since N(s) is a minimal basis), we see from (17) that

E, | o

ZV’“
—4,| - B, =0 (20)
*th

c D




Generalized state-space system mafrix 241

Using Lemma 2 again, and the strong irreducibility of P (). cf. (15), we have
that N, has full column rank. Thus N,, must be the highest column co-
efficient matrix of N,(s) and N,(s) must be column-reduced. with the same
column degrees as N (s).

(ii) For the converse, we first show that N,(s) in (18) must be polynomial.
It is well known, see Rosenbrock (1970, p.71) for example, that since
[sE"— A" C'] has no finite zeros, it has a polynomial left inverse. Pre-
multiplying (17) by this left inverse shows that N,(s) ix polynomial. Since
N,(s) has full column rank for all s, so has N(s), which is condition (121).
With N, defined as before, we again obtain (20), and the strong irreducibility
of P,(s) shows that no column of N,, can be zero. It follows that N, must
be the highest column coefficient matrix of N,(s). Nince N,(s) is column-
reduced, N,, has full column rank, hence N, has full rank too, which is
condition (12ii). Also N(s) must have the same column degrees as N,(s).
|
A dual theorem evidently holds for the left null spaces of P, (s) and E(s).
The following theoremt, whose proof we merely outline for lack of space,
demonstrates an important consequence of the preceding two theorems.

Theorem 3

Let §,(R) and §,(R) denote the total number of poles and zeros (finite
and infinite) respectively of an arbitrary rational matrix £R(s), and let «(R)
denote the sum of the minimal indices of the left and right null spaces of
R(s). Then

8, (R)=38,(R)+a(R) (21)

D
Proof

Let P,(s) be as before. Since it is in the form of a matrix pencil, its poles,
zeros and minimal indices are the same as those of its Kronecker canonical
form (see Gantmacher (1960)). From the Kronecker form, denoted by K(s),
it is easy to show that

8, (K) =0,(K)+«(K)
whence
Sp(Py)=8,(Py) + o Py) (22)
Now
8,(P,)=rank E=3§,(sE - A4)

=8,(sE—A4)
where the last equality follows from the fact that a non-singular matrix has
many poles as zeros. From Theorem 1 we have
8,(sE—A)=35,(R) (23 a)

and
)=8,(R) (23 b)

+ First obtained, in a slightly different way, by Van Dooren. in carlier unpublished
research.
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while from Theorem 2 and its dual

a(P,)=a(R) (23 ¢)

g

Substituting (23) in (22) proves the result. [ ]

There are other routes to Theorem 3, see, for example, Verghese (1978)
and Kung and Kailath (1979).

We conclude this section with a cautionary remark to the reader pursuing
the connections of this paper with the Kronecker pencil theory: a ‘kth
order infinite elementary divisor’ of a pencil, in the terminology of that
theory, corresponds to a (k— 1)th order zero at infinity in our sense.

4. Concluding remarks

For the special case of irreducible regular state-space realizations of proper
transfer functions the paper of Thorp (1973) contains the seeds of our Theorem
1 (ii) and Theorem 2 (i). We know of no other work in this vein.

For irreducible regular state-space systems realizing arbitrary rational
transfer functions, i.e. with T(s)=sl— A, U(s)= B, V'(s)= and W(s)= D(s),
a polynomial matrix, it may be shown quite straightforwardly that the results
of our Theorems 1 (ii) and 2 continue to hold (Instead of Theorem 1 (i), we
have that R(s) and D(s) have the same polar structures at infinity.)

Extension of our results to arbitrary polynomial svstems of the form (2)
appear to be considerably harder. It is possible to extend Theorem 2 to
such systems, under more complicated conditions whose dynamical inter-
pretation and significance is not yet clear. Appropriate extensions of
Theorem 1 are not known.

In conclusion, we note that it is easy in principle to obtain a strongly
irreducible generalized state-space realization of an arbitrary R(s) by using
standard procedures for regular state-space realization of proper transfer
functions. Thus let

R(s)= R(s)+ D(s) (24)
where
R(00)=0 (i.e. R(s)is ‘strictly proper )
and
D(s) is a polynomial matrix

We can then realize R(s) and s~'D(s~!) ‘ minimally ~ (i.c. such that the corres-
ponding system matrices are irreducible) in the form

EQ=MM—AWBI
: (25)
g4lxg4)=éﬂsl—zir13]

since both are strictly proper. Then a realization of F(s) in the desired form
is )

slI— A - B
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(We refer the reader to Verghese ef al. (1980) for further details.) A con-
sequence of our results is that the pencil (26) may be uscd to obtain structural
information on R(s). The process of obtaining a pencil that contains this
information on R(s) may be termed linearization of E(s).
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