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Abstract

A unifving approach is formulated for estimating zero bies
errors on input signals of linear discrete dynamic systems
in real time applications.

Generally, these parameters are treated by extending the
state vector, hence introducing eigenvalues on the unit
circle and uncontrollable modes. These two effects cause
convergence difficulties of the Ricatti Equation (RE). 1In
the paper, a technique has been developed to make the
system maximally controllable with minimal system
modification. Hereby, 'good' ccnvergence behaviour of the
RE is assured &nd linear fcrgetting 1is estatlished
sutcmatically for the bias parameters. This allows to
deal with constant or slowly time-varying zero bias
errors,
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structure and exploits the modelling of the bias terms.
This leads to substantial savings in computing time

compared to the conventional Kalman Filter impiementation,
with numerical superiority.

The resulting technique is demonstirated by simulation on
the flight-path reconstruction problem that occurs in a
two-step identification method. Here the system model |is
inherently 'condensed'.

1.Introduction

The system model used in INS (Inertial Navigation Systems)
or in the flight-path reccnstruction problem of a two-step
aircraft model identification method is accurately known.
For a given stationai-y flight reference condition the
model is linear, time-invarisnt with known systexm matrices
[1,22. This mathemaetical system description is ideally
suited for Kazlman-Bucy recursive filter techniques [2] to
reconstruct the aircreft's flight path (or the state of
the system). In practical applicstions, it is well known
that the filter estimztes are only useful over a
restricted period of time, depending on the accuracy of
the i{nertisl measurement syvstem used. One of the main
reasons is the presence of accelerometer zero bias errors
and gyro drifts. To reduce tne estimation errors caused
by these psrameters ,it 1s a common practice to extend the
state of the original system with the bias errors,
assuming the latter parameters are constant. In this
case, the filter will estimate both the states of the
original system and the bias terms.

Until now, a lot of effort is spent in the development of
efficient computational techniques [4] to solve the
extended filtering problem. These techniques are based on
the generallzed partitioning estimation method of

lLziniotis [5], to separate the estimation of the state
variables {rom the bias terms.
However, the influence of this modelling on the numerical

behaviour of the discrete RE is not yet discussed., But
simulations studies have already shown that it may lead to
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severe deterioration of the estimation results, especially
in real-time applications.

In this paper, the influence of extending the state vector
by the input zero bias errors on the convergence of the RZ

23 well &8s on the accuracy of the estimation results will
be analyzed.
In section 2, the problem cf extending the state

description to 1include the zero bias errors on the input
signals is formulated. Also the special features of the
mathematical model wused in the simulation to reconstruct
the aircraft's flight-path are discussed in this section.
The method to make the corresponding modes of the zero
bias terms controllable is given in section 3, as well as
the effect on the convergence of the Ricatti Fecursion
(RR). An efficient implementation of the results of
section 3 in 2 more reliable Square Root Covasriance Filter
(SRCF) will be given in section 4, In section 5, we will
demonstrate the good performance of the derived algorithm
in the cese of simulated constant and linear time-varying
bias errors. Section 6, presents the conclusicns of this
aralysis,

2.The extended state space description

time-invariant
light-path

Let us consider the following discrete
system, that also appears in the
reconstruction model [1,2]:

process: Xy.1 = A xy + Fux +« B [w+ byl (M
observation: yg = C xg (2)
where xy € RP, wi€ RP and vk € RP. The deterministic
input signal 1is given by wuyx. The sequence wg and vk

mean and
input 1is

are Gaussian uncorrelated white noise with zero
covariances Qx and Rk, respectively. Tne

contaminated witn bias errors by FK® assumed to be
constant, i.e.
bks1 = bk (2)
Tnhe inclusion of these bias errors in an extenced state
vector, gives rise to the following model:
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Yk = Ce xe(k) (7



where 1p 1s an (m,m) unit matrix
and the deterministic input signal is left out for the
sake of brevity.

At this point, 1t should be remarked that prior to solving
any problem it should be verified that the extended state
space model only 1includes those blas errors that oare
observable. The number of observable bias errors is nb<m.
From the extended state description (6-7), the following
observations can be drawn directly:

1. the inclusion of the bias terms introduces a set
of pb eigenvalues on the unit circle.

2. the stste matrices (Ae,Be) clearly heve nb
uncontrollable modes corresponding to the bias
parameters.

On the other hand, the model (6-7) can be used to estimate
the state quantity x,, that 1s the original state and the
zero bias terms, by linear filtering [3].
It is the aim of this paper to

implications of the observations (1) and

investigate the
(2) on this

method and to formulate efficient and reliable
implementations for the RR.
The flight-path reconstruction model of a two-5step

aircraft model identification method [1] will be used in
the experiments to evaluate the results.

This model describes the perturbation of motion from a
stationaliry flight condition, based on Newton's second
law, when accelerometer and rate gyro signals are defined
as input signals [1].

First, this model allows to reconstruct the flight path by
linear filtering of a2 stochastic process, Secondly, the
syster structure of this model given as in eq. (1-2) 1is
inherently condensed, 1.e. the state matrix A& is in lower
Schur form:

1 o] 0 0
-g sianAt/Vo 1 0 0

A = -g cosY At 0 1 o] (8)
VocosYoAt -V, cosYpit sinYpAt 1

where the quantities Y, and V. and the state quantities

giving rise to this model are defined in figure 1 and
table 1, and At is the discretization period. The state
in this table also includes those blias parameters that are
observable, referring to the extended model (6-7).

yinput | quantity i symboli unit)
) ] t t )
1 r= - ¥ 1 t
) | acceleration along X-axis | Ay | m/s%)
i ! acceleration along 2-axis | A, | m/ =2}
i i rate of pitch iq {rad/s)|
1 . ¥ 1 t
’ - ) 1 i
'state | angle of pitch 8 ' rad !
t | angle of attack H \ rad |
' | speed along X-axlis i u ! m/s |
! 1 altitude deviation i Ah I m i
H ! bias on Ay o Ax i
i | bias on A D P |
i - ; i i
youtput | speed along X-axls | u | m’s
i ! altitude deviation ' Ah o !
Tgble 1: System state variables of the mathematical
model for flight-path reconstruction.
!OR:
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AX /
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Figure 1: Definition of state quantities.
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3.The algorithm to meke the biass terms controllstle

In [6) 4t has been shown that the gombination of
eigenvalues on the unit circle of the system model used in

linear filtering and uncontrollability of the
corresponding modes has dlisastruous effect on the RE.
First, it mekes the recursion very sensitive to numerical

round-off, model errors and discretization errors, causing
divergence of the RR when using conventional KF
techniques., And secondly, when convergence is achieved by
using more reliable SRCF techniques, the rate of

convergence 1s very slow. This makes the method not
useful for real-time applications.

A general solution to these convergence problems is
obtained by making the extended state space model

completely controllable,

Since, the only modes we have to check for controllabiiivy
are egual toc one, we can use the Popov-Belevitch-Hautus
(PBH) eigenvector test [8] a¢t A = 1 only, tc verify
controllability.

The algorithm can now be summarized into the following two
steps:

STEP 1: Calculste a basis Y of all left eigenvectors of
the system matrix A in the model (6-7), with eigenvzlue
1. This can be done by & SVD (Singular Value
Decomposition) of the matrix (Ae - I), given as:

_Z_.II_O_] vT (9)

SVWD(ke ~ 1) =L U YY)

STEP 2: Calculate the perturbation of the input
distribution matrix Be, i.e. AX according the following
theorem,

Theorem:
The perturbation AX,

o} | )
X =Y [ U ‘.. 0 [Vv' ] (1)

a' |

ob’
with Ol to C' > sigme

nb
U'(nb,nb),V'(m,m) given by a SVD of YTEe =urgtvT

of the input distribution matrix B, of the
ensures that lYT(Be + AX)iz > sigma
stands for the Z-norm). Proof:(left out here)

nocel (6-7)
(where }.ip

Corollary 1: The perturbation &4X guarantees full column
rank for the matrix YT(Ee + B8X) that appears in the PBH
test of which its smallest singular value is greater than
the specified value sigma.

Based on the defirniticn of & general measure
v(A,B)Y [B],

Corollary 2:
of controllability of the system {A,B), i.e.

given by:

H(A,B) = min (iB8Aiz,!2BI2) such that the systen
defined by (A+LA,B+AE) is uncontrcllable.

the AX gives exactly the 'distance' of the controllable
system (Ae,Be+tX) to any uncontrollable system, and
therefore zlsc to (Ae,Be). The above construction c¢f
& X thus gives 2 "minimal™ perturbstion achieving

"meximal" contrcllability.

Corollary 3: The procedure of making the system

controllable corresponds to inserting more input noise to
the zero bias errors. This &llows the corresponding
entries of the state error covariance matrix to increase

linearly. (selective linear forgetting)

Tne influence of this perturbation on the convergence rate
of the RE in the SRCF (to be described in section &) is
illustrated in figure 2.

Let © .4, Dbe the smallest

controllebility matrix of the

of the
(4,B),

value
system

singular
original



an=1 B)
Then, for (4 Xi2 ¢ Omin, (le=-3 4in our flight-path
recontruction problem) the rate of convergence is slowed
down compsred to the rete that occured when only the
original system was considered (see figure 2 for (A X|p =
le-3).

With larger perturbations, the rate of
increased compared to the original rate.
:AX‘Z = le=-~1,

Moreover, 8 similar improvement on the
computed estimates is obtained eas
section 5.

convergence is
See figure 2 for

accuracy of the
we will describe in
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Figure g: Rate of convergence of the Discrete Riccati
Equation for different perturbations of Be.

L.An  efficient Squere Rool Covariance Filter
implementation
The algebraic RE that appeers in the 1linear optimal

filtering problem formulates a recursion for the one-step
predicted state covariance matrix, denoted by Py.
The SRCF propagates the square root of P in time.
roots S, k'/?and G'/‘are

If the

square chosen to be lower
trianguler:
Py = Sy S§ (1)
R = RV pI/2 (12>
Q = QW2 I/ (13)

then the computational scheme for the SRCF is summarized

below:

( p1/2 0 \‘ ’ RET/? KRTAT \!
| | !
i - I ] \
0 Qi/2eT | = ¢ SRet | ()
| i
T ‘ ‘
| sgc  SEA | e o )!

(pre-array) (post-array)

with the one-step precicte state estimate x, .1 given by:

Xket = A Ui+ KRRETVZ (v = € X)) (15)

Kere T is an arbitrery orthogonal transformation that
triangularizes the pre-array. First, the special structure
of the extended state space model {(6-7) and the triangular
structure of the original system (1-2) allows to construct
the pre-array very efficiently,i.e. to save_ computin

time in the calculation of the products S{(CT , SEAe
G‘(Be + 4X). The special forms -of these matrices is
visualized in the exampie given in eq. 16.

Secondly, this particular structure of the pre-array is
exploited to derive Bn efficjent triangularization. This
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is briefly outlined in the following example.

Example:
For arbitrary dimensions of the system quantities, resg.
n=2,m=3,p=2 &md nb=2 (as appesrs in the {light-path
reconstruction problem) the pre-array has the following
form:
x x {0 0o 10 0
x ;0 0 10 0
i- i
VXyoox X X
10 xp 1 ox x
P00 x3 X
- ! ! (16)
x7 Xg i Xy xp i x3 Xy
X5  Xg 1 X2 4 X3 Xy
X3 X4 H !ox3 xy
x7 X2 | : Xy
where 'x' denote the non-zero entries
The anihillation of the (1,3) block in this array is done

by Givens orthogonal transformation in the order denoted
by the subscripts. 1In this way the special structure of
the remaining blocks is preserved.

Further triangularization is then done by using
Householder transformations that operates on low
dimensional matrices in the order given by the subscripts
in the blocks (2,2);(2,3);(3,2) 8nd (3,3). Depending on
the proportion of the system cimensions this 'new' [filter
implementation can lead to considerable reductions in the
computational burden, Again in the fligrht-path
reconstruction probiem, discussed in secticn 2, & saving
of N0% computation time resulted each recursion comparecd
to the conventional KF technique.

5.Performance analysis

In section 3, we highlighted the positive effects of
making the corresponding modes of the zero bias errors
controllable on the rate of convergence of the RE.

The additional advantages of this method in real time
application will be demonstrated in this section. In
these circumstances the bias parameters may no longer be
assumed constant, but they can vary slowly in time.
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Using the reliable SRCF technique, without application of
the a&lgorithm of section 3, leads to severe deterioration
of the estimation results in time, when the simulated bias
errors and vary slowly and 1linearly in time as
indicated in figure 6. This is clearly confirmed by the
reconstruction results 1in figure 3 and the norm of
(ym—C}) (SSE=Sum of Square Fkoots) in figure K.
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Figh: The norm of the residuals for different
filter circumstances

On the other hand, applying the technique of section 3,
where the sigma parameter can be adapted in relstion to
the SSR magnitude, enables the SRCF to correct the state
reconstruction results very accurately. First, in the
case of constant blas terms the SSR values decreeses (see
figure 4) with time. Secondly, 1in the case of linear
variation of the bias errors the S3R does not increase,
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Furthermore, the estimated flight-path (figure 5) which in

the simulation was obtained from highly eccurate inertial
signals (table 2) still remazins very accurate.
quantity

1- 0 | unit
i

6.98e-3! m/s
6.97e-5] red/s

acceleration along Z-axis

1 )
) [
| 1
| 2.7Be-3! m/s? |
H i
rate of pitch H i

|
H
i
| acceleratior along X-exis
)
i
'
)

Table 2: Measurement error statistics of the inertial

signals.
Bereby, the applied method of section 3 not only allows
the filter algorithm to follow small time variations of

the observable bias errors (see figure 6) it also does not
deteriorate the reconstructed state (i.e. flight-path)
accuracy.

This is opposite when using exponential weighting [9]. In
this case, elready for =smell forgetting factors the
estimation results were highly inaccurate and hence not
useful for any further manipulation.
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6.Conclusions

derived to
distribution

calculiate the
matrix of the

In this paper an algorithm is
perturbation of the input
extended state space model.
This perturbation first improves the rate of convergence
of the Discrete Riccati Equation and secondly allows the
linear filtering procedure to estimate observable 3lowly
time-varying bias errors on the input signels.

The spectral norm of the perturbation, specified by the
value sigma can be related to the norm of the residuals of

the 1linear filter. This 1in combination with the
formulation of very time consuming and reliable SRCF
implementation clearly make the proposed 1linear filter
technique attractive for on-line application. This is

demonstrated by simulations in E
reconstruction problem.

fiight-path
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