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ITERATIVE FILTERING IN REPUTATION SYSTEMS∗
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Abstract. We present a class of voting systems that we call “iterative filtering” systems. These
systems are based on an iterative method that assigns a reputation to n+ m items, n objects, and
m raters, applying some filter to the votes. Each rater evaluates a subset of objects leading to an
n × m rating matrix with a given sparsity pattern. From this rating matrix a formula is defined
for the reputation of raters and objects. We propose a natural and intuitive nonlinear formula and
also provide an iterative algorithm that linearly converges to the unique vector of reputations. In
contrast to classical outlier detection, no evaluation is discarded in this method, but each one is
taken into account with different weights for the reputations of the objects. The complexity of one
iteration step is linear in the number of evaluations, making our algorithm efficient for large data sets.
Experiments show good robustness of the reputation of the objects against cheaters and spammers
and good detection properties of cheaters and spammers.
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Introduction: Motivations and challenges in voting systems.

Short review of voting systems. Many measures of reputation have been pro-
posed over the years under the names of reputation, voting, ranking, or trust systems,
and they deal with various contexts ranging from the classification of football teams
to the reliability of each individual in peer-to-peer systems. Surprisingly enough, the
most used method for reputation on the Web amounts simply to averaging the votes.
In that case, the reputation is, for instance, the average of scores represented by five
stars on YouTube, or the percentage of positive transactions on eBay. Therefore such
a method evenly trusts each rater of the system. Besides this method, many other
algorithms exploit the structure of networks generated by the votes: raters and evalu-
ated items are nodes connected by votes. A great many of these methods use efficient
eigenvector-based techniques or trust propagation over the network to obtain the rep-
utation of every node [2, 3, 4, 5, 6, 7, 8]. They can be interpreted as a distribution
of some reputation flow over the network where reputations satisfy some transitivity:
you have a high reputation if you have several incoming links coming from nodes with
a high reputation. The average methods, the eigenvector-based techniques and trust
propagation, may suffer from noise in the data and bias from dishonest raters. For
this reason, they are sometimes accompanied by statistical methods for spam detec-
tion [9, 10], as in the context of web pages trying to boost their PageRank scores by
adding artificial incoming links [11, 12]. Detected spam is then simply removed from
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the data. Therefore, the three main strategies for voting systems are simple meth-
ods averaging votes where raters are evenly trusted, eigenvector-based techniques and
trust propagation, where reputations depend directly on reputations of the neighbors,
and, finally, statistical measures to classify and possibly remove some of the items.

Iterative filtering systems. We will propose a method drawn largely from
the algorithm of Laureti et al. in [14] and Yu et al. in [15], where we compare the
evaluations of the raters to deduce some weights of trust for these votes and then
update the reputations of each item accordingly. Obviously the choice of a specific
reputation system, with specific interpretations of the votes, depends on subjective
properties that we just accept. For example, in the average method, we agree that
every rater is taken into account in the same manner. In the PageRank algorithm, we
accept that a random walk over the network is a good model of real navigation for a
web surfer. In trust propagation over networks, we accept the transitivity of trust: if
A trusts B and B trusts C, then A will trust C.

Concerning the iterative filtering (IF) systems, we will make the following as-
sumption: raters whose opinions often differ from those of other raters are assigned
less weight. We label this the IF -property and will formally define it later on. This
property is at the heart of the filtering process and implies that all votes are taken into
account, but with a continuous validation scale, in contrast with the explicit deletion
of outliers. Moreover, the weight of each rater depends on the distance between his
votes and the reputation of the objects he evaluates: typically weights of random
raters and outliers decrease during the iterative filtering. The main criticism one can
have about the IF -property is that it discriminates against “marginal” evaluators,
i.e., raters who vote differently from the average opinion for many objects. However,
IF systems may have several basins of attraction, each corresponding to a group of
people with a coherent opinion.

Dynamical data. Votes, raters, and objects can appear, disappear, or change,
making the system dynamical. This is, for example, the case when we consider a
stream of news as in [13]: news sources and articles are ranked according to their
publication over time. Nowadays, most sites driven by raters involve dynamical opin-
ions. For instance, blogs, the site Digg, and the site Flickr are good places to exchange
and discuss ideas, remarks, and votes about various topics ranging from political elec-
tions to photos and videos. We will see that IF systems allow evolving rating matrices
and then provide time-varying reputations.

Structure of the paper. Section 1 introduces the definitions and the properties
of IF systems. Then section 2 discusses the choice of the discriminant function that
allows us to penalize the raters differently according to their votes. Section 3 focuses
on our choice of discriminant function (that is, affine) and analyzes the convergence
of IF systems with this function. Section 4 extends some results to sparse rating
matrices and dynamical data. Section 5 presents simulations on two real data sets
that deal with the effect of malicious users (not analyzed in the previous section).
Section 6 concludes and gives some perspectives for further research.

1. Iterative filtering systems: Definitions and properties. For the sake
of clarity, we first consider the case where the votes are fixed, i.e., the rating matrix
does not change over time, and all objects are evaluated by all raters, i.e., the rating
matrix is full. The dynamical case and the sparsity pattern for the rating matrix will
be analyzed in section 4. With these assumptions, we present the main properties of
IF systems and then we restrict ourselves to the natural case of quadratic IF systems,
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1814 CRISTOBALD DE KERCHOVE AND PAUL VAN DOOREN

where the reputations are given by a linear combination of the votes and the weights
of the raters are based on the Euclidean distance between the reputations and the
votes.

1.1. General notation. Let X ∈ R
n×m be the rating matrix, r ∈ R

n be the
reputation vector of the objects, and w ∈ R

m be the weight vector of the raters. The
entry Xij is the vote to object i given by rater j, and the vector xj , the jth column
of X , represents the votes of rater j:

X = [x1 . . . xm] .

The bipartite graph formed by the objects, the raters, and their votes is represented
by the n×m adjacency matrix A; i.e., Aij = 1 if object i is evaluated by rater j, and
0 otherwise. For the sake of simplicity, we assume in this section that every object has
been evaluated by all raters Aij = 1 for all i, j. The general case where the bipartite
graph is not necessarily complete will be handled later.

The belief divergence dj of rater j is the normalized distance between his votes
and the reputation vector r,

d =
1

n

⎛
⎜⎝

‖x1 − r‖22
...

‖xm − r‖22

⎞
⎟⎠ .(1.1)

Therefore equations (1.1) are quadratic equations in r and give an estimate of the
variances of the votes for every rater compared to a given reputation vector r.

1.2. Definition of IF systems. Before introducing IF systems, we define the
two basic functions of these systems:

(1) the reputation function F : Rm → R
n : F (w) = r,

which gives the reputation vector depending on the weights of the raters and implicitly
on the rating matrix X ;

(2) the filtering function G : Rn → R
m
≥0 : G(r) = w,

which gives the weight vector for the raters depending on the belief divergence d of
each rater defined in (1.1).

We formalize the so-called IF-property described in the introduction that assumes
that raters diverging often from the opinion of other raters are assigned less weight.
We will make the reasonable assumption that raters with identical belief divergence
receive equal weights. Hence, we can write

(1.2) G(r) =

⎡
⎢⎣

g(d1)
...

g(dm)

⎤
⎥⎦ .

We call the scalar function g the discriminant function associated with G. Equation
(1.2) indicates that every rater has the same discriminant function g, but we could
also consider personalized functions gj penalizing raters to different degrees.

A filtering function G satisfies the IF -property if its associated discriminant
function g : R → R is nonnegative and monotonically decreasing. Therefore, the
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IF -property merely implies that a decrease in belief divergence dj for any rater j
corresponds to a larger (or equal) weight wj . Laureti et al. [14] and Yu et al. [15]
introduced the case where the discriminant function is given by g(d) = d−k (with
k ≥ 0). We propose g(d) = 1 − k d as discriminant function with some condition on
k to avoid negative weights. These two choices will be discussed later and compared
in a small example.

1.3. Quadratic IF systems. We define the quadratic IF systems by fixing the
reputation function F (w) that is naturally given by taking the weighted average of
the votes:

F (w) = Xw/

m∑
j=1

wj(1.3)

for any nonnegative vector w. If we assume that the votes are in [a, b], we then have
that the reputation vector r belongs to the hypercube

H := [a, b]
n

(1.4)

and, more precisely, that it belongs to the convex hull P ⊆ H for the set of points
{xj : j = 1, . . . , p}; that is,

P =

⎧⎨
⎩r ∈ R

n | r =

m∑
j=1

wjxj with

m∑
j=1

wj = 1 and wj ≥ 0

⎫⎬
⎭ .(1.5)

Definition 1.1. Quadratic IF systems are systems of equations in the reputa-
tions rt of the objects and the weights wt of the raters that evolve over discrete time
t according to the rating matrix X:

rt+1 = F (wt) = Xwt/

m∑
j=1

wj ,(1.6)

wt+1 = G(rt+1),(1.7)

starting with equal weights w0 = 1.
Then our method uses the affine function g(d) = 1 − k d. This leads to the

following definition.
Definition 1.2. Our method is a quadratic IF system with affine discriminant

function g(d) = 1− k d for some positive k with

rt+1 = Xwt/

m∑
j=1

wj ,(1.8)

wt+1 = 1− k
1

n

⎛
⎜⎝

‖x1 − rt+1‖22
...

‖xm − rt+1‖22

⎞
⎟⎠ ,(1.9)

starting with equal weights w0 = 1.
We will show in the next subsection that quadratic IF systems correspond to

taking the steepest descent direction and minimizing a particular energy function.
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1816 CRISTOBALD DE KERCHOVE AND PAUL VAN DOOREN

1.4. Energy functions for quadratic IF systems. By using the trivial re-
lation

∑m
j=1 wj = 1Tw, we can reformulate one iteration step of rt for a quadratic

IF system as rt+1(1Twt) = Xwt; hence a fixed point r∗ (if it exists) is given by
quadratic equations in r∗ and w∗,

(1.10) r∗(1Tw∗) = Xw∗,

where w∗ = G(r∗). Hence, for any integrable function G, the fixed points in (1.10)
are the roots of the function

(1.11) D(r) :=
2

n
(r1T −X) ·G(r),

which is the gradient of some scalar function introduced in the next theorem and
labeled the energy function E.

Theorem 1.3. The fixed points of quadratic IF systems with integrable discrim-
inant function g are the stationary points of the energy function

(1.12) E(r) =
m∑
j=1

∫ dj(r)

0

g(u) du+ c,

where dj is the belief divergence of rater j that depends on r, and c ∈ R is a constant.
Moreover, one iteration step in quadratic IF systems corresponds to a steepest descent
direction with a particular step size

(1.13) rt+1 = rt − αt∇rE(rt), with αt =
n

2
∑m

j=1 wj
.

Proof. We have ∇rE(r) = ∇rd
T · ∇dE(r) with

∇rd
T = − 2

n
(X − r1T ) and ∇dE(r) = G(r).

Therefore a stationary point r∗ in E satisfies

− 2

n
(X − r∗1T ) ·G(r∗) = 0,

(X − r∗1T )w∗ = 0,

r∗(1Tw∗) = Xw∗,

which corresponds to the fixed point equation given in (1.10).
We also have ∇rE(rt) = ∇r(d(r

t))T · ∇dE(rt) with

∇r(d(r
t))T = − 2

n
(X − rt1T ) and ∇dE(rt) = G(rt) = wt.

Therefore

∇rE(rt) = − 2

n
(X − rt1T )wt(1.14)

= − 2

n
(1Twt)(rt+1 − rt) = − 1

αt
(rt+1 − rt).

The stable fixed points of quadratic IF systems minimize the sum of the integrals∫ dj

0
g(u) du on j = 1, . . . ,m, meaning that they minimize the sum of surfaces below g

in the intervals [0, dj] for j = 1, . . . ,m. For example, when g is constant, the weights
are always equal and the unique fixed point is given by the average of the votes
minimizing ‖d‖1.
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Fig. 2.1. (g1) The discriminant function is constant, and weights are independent from the
belief divergence; (g2, g3) intermediate cases; and (g4) weights are null except at the origin.

2. The discriminant function. We discuss in this section the different prop-
erties of quadratic IF systems depending on their discriminant function g.

2.1. The compromise. Two extreme cases are shown in Figure 2.1: the con-
stant function g1 leads to equal weights and consequently to merely averaging the
votes for the reputations. In that case, the belief divergence is not taken into account
for the calculation of the weights, and the solution is unique. On the other hand, the
function g4 that gives positive weights only for the raters with zero belief divergence
leads to quadratic IF systems with only m reputations. Therefore, the fixed points
correspond to very local opinions, where the weight of rater j is maximal, while the
weights of other raters are minimal.

Clearly, we are interested in intermediate cases with the following compromise:
the discriminant function must be sufficiently discriminating to penalize the outliers,
but it has to avoid meaningless local solutions.

2.2. One versus several solutions. The number of stable fixed points is de-
termined by the rating matrix X and the discriminant function g. The former gives
the distribution of the votes and can have clusters of opinions in the data. The latter
can be defined such that the cost function always has a unique minimum, or such that
several clusters lead to several minima.

When the function g guarantees the uniqueness of the solution, we avoid the
choice between different solutions and we also simplify the dynamics of IF systems
since multiple stable points imply the existence of unstable points or bifurcations.

Let us remark that dynamical IF systems with possibly several minimizers mean
that we need to track several trajectories during the iterations. Every fixed point will
have a basin of attraction depending on its iteration function. We will then need to
provide methods that avoid reproducing identical solutions.

2.3. The candidates. Let us introduce three choices of function g having in-
teresting properties:

g(d) = d−k,(2.1)

g(d) = e−k d,(2.2)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1818 CRISTOBALD DE KERCHOVE AND PAUL VAN DOOREN

g(d) = 1− k d.(2.3)

All discriminant functions g are positive and decrease with d for positive k and
therefore satisfy the IF -property. However k must be small enough to keep g posi-
tive in (2.3) and hence to avoid negative weights. We will see that this condition is
sufficient for (2.3) to guarantee the uniqueness of the minimum of the energy func-
tion E defined in (1.12). However, the condition of uniqueness is different and not
established for (2.1), (2.2). When k = 0, we recover the average method, where the
weights are equal. For increasing values of k, the functions g become more and more
penalizing. Let us analyze in more detail these three candidates which we name the
inverse, exponential, and affine functions.

Inverse function. The first definition was proposed in [14, 15] with k ≥ 0 (in
particular, k = 1 and k = 1/2). The choice of function g comes from the maximization
of some multivariate density function representing the distribution of the votes. There
dj is taken as an estimate of the variance σ2

j of rater j’s votes. In most cases, the
method converges to a unique stable fixed point. However, if there exist several
divergent opinions among the raters (that are sufficiently far away from each other),
then more than one stable fixed point may appear. In addition, unstable fixed points
can make the iterations sensitive to initial conditions, as we will see in a small example.

Exponential function. The function g in (2.2) leads to another quadratic IF system
based on a similar argument. The probability density function f for the votes xj of
rater j with given r and the positive scalar σ is

f(xj |r, σ) =
∏
i

1√
2πσ

e−
(Xij−ri)

2

σ2 .(2.4)

This time, we assume that the raters have the same variance σ for their votes. As-
suming the same variance for all raters leads to some limitations in the model. More
complex models have been developed in [14, 15] to take into account different vari-
ances and a bias for each rater. However, the model can be made more complex in
further studies (e.g., different discriminant functions for the raters).

We recover the quadratic IF system with g(d) = e−k d by considering the iterations

on the reputations, rt+1 = X wt

1Twt , and those on the weights (up to a scaling factor),

wt+1 =

⎡
⎢⎣

f(x1|rt+1, σ)
...

f(xm|rt+1, σ)

⎤
⎥⎦ =

(√
2πσ

)−n

⎡
⎢⎢⎣

e−
n
σ2 dt+1

1

...

e−
n
σ2 dt+1

m

⎤
⎥⎥⎦ .

The parameter k is then proportional to the inverse of the variance, that is, n/σ2.
Therefore, by assuming a large variance for all votes, we decrease k, and this nat-
urally implies a larger acceptance of divergent opinions, making the function g less
discriminating.

Affine function. Function g in (2.3) links the belief divergence d to the weights
w in a simple way: by an affine function. It has the advantage of making the analysis
tractable with a direct condition of uniqueness on the parameter k. Its associated
quadratic IF system also has a statistical interpretation. For this purpose, we use
the log-likelihood of the density function in (2.4) for the iterations of the weights.
This gives a degree of belief for each rater that was used in [9] but without iterative
process. The quadratic IF system with g(d) = 1− k d is recovered by considering the
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iterations on the reputations rt+1 = X wt

1Twt and those on the weights (up to a scaling
factor)

wt+1 = log

⎡
⎢⎣

f(x1|rt+1, σ)
...

f(xm|rt+1, σ)

⎤
⎥⎦ ,

where log is applied componentwise and parameter k is proportional to 2n
σ2 log

1
2πσ2 .

The same remark as before can be made about the link between the variance of the
votes and the discriminant parameter k.

Let us give in the following table the equivalent energy functions for the four
discriminant functions we discussed.

Function g r∗ minimizes

g(d) = 1
d

∑
j log dj

g(d) = 1√
d

∑
j −
√
dj

g(d) = e−k d
∑

j −e−k dj

g(d) = 1− k d .
∑

j dj − k
2

∑
j d

2
j .

Let us remark that the function g(d) = 1− k d implies that the system minimizes∑
j dj − k

2

∑
j d

2
j . The first term

∑
j dj is minimized by taking the average votes for

r, and the second term −k
2

∑
j d

2
j is minimized by taking r in [0, 1]n. Therefore we

have a compromise between the simple average and a solution on the border of the
hypercube that diverges from this average. The parameter k strengthens the impact of
belief divergences on the weights and makes the solution move away from the average.

Other functions. The list of possible discriminant functions can be long. Among
other things, we can also recover a form of the expected maximization (EM) algorithm
[16]. The choice of a function will then be motivated by its convergence properties,
its sensitivity on the initial conditions, and the number of minima associated with its
energy function.

Small example. In order to illustrate some of the quadratic IF systems presented
above with different discriminant function g, we show the sequences (rt) and (wt) for
a given rating matrix X , say in the context of ice skating, and their limit points r∗

and w∗. We propose the following fictitious rating matrix:

X =

[
3.3 3.4 4.9
4.2 4.5 2.8

]
,

where the two rows correspond to the votes given to two ice skaters and the three
columns represent the three raters. The third rater tries to favor the first ice skater.
If equal weights are given to the raters, we obtain the average votes: 3.87 for the first
skater and 3.83 for the second. We show the different results according to the choice
of discriminant function discussed before.

The table below shows the weights and the reputations for several discriminant
functions g and the initial vector w0 = 1.

Rows 1–2. The first row gives reputations not far from the average, and the
second considers a larger k which is more penalizing. Consequently, the third rater
is more severely weighted, and, therefore, the gap between the two skaters increases.
Larger k would continue to decrease the third weight. Results do not change if the
initial vector w0 is different.
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g(d) (w∗)T (r∗)T

1− 1
5 d

[
1.0 1.0 0.8

] [
3.8 3.9

]
1− 1

3 d
[
1.0 1.0 0.5

] [
3.7 4.0

]
d−1

[
1 0 0

] [
3.3 4.2

]
d−1 (∗) [

0 0 1
] [

4.9 2.8
]

d−1/2
[
35.2 4.8 .7

] [
3.3 4.2

]
e−d

[
1.0 1.0 0.1

] [
3.4 4.2

]

Rows 3–4. The iterations are numerically unstable because the belief divergence
d1 of rater 1 tends to zero, making his weight infinite. Disregarding this instability, the
normalized weights tend to [1 0 0]T , and therefore the convergent reputations vector
corresponds to the first column of X . However, the final reputations and weights
depend on the initial vector w0. The fourth row (∗) considers w0 = [114]T instead of
equal weights. Then the third rater gains all the confidence, and the final reputations
are given by his votes: the third column of X .

Row 5. In this case, the initial point does not matter, provided that we avoid a
zero belief divergence. We see that this function almost disqualifies the third rater:
it makes a large difference between the first two raters and is more penalizing than
g(d) = 1− 1

3 d.

Row 6. Finally, we look at the iterations given by (2.2): g(d) = e−k d. From a
certain k on, several final reputations are possible depending on the initial vector w0.
Similarly as for g(d) = d−1, if w0 favors the third rater, then this rater will have an
advantageous weight at the end. For k = 1, we avoid multiple reputations and we
obtain the results in row 6.

3. An iterative filtering method with affine discriminant function. We
look at the quadratic IF system with the discriminant function g defined in (2.3). The
energy function in (1.12) for the constant c = −m/2k associated with our method in
(1.8), (1.9) is given by

E(r) = − 1

2 k
wTw,(3.1)

where w depends on r according to the function G(r); i.e.,

w = 1− k
1

n

⎛
⎜⎝

‖x1 − r‖22
...

‖xm − r‖22

⎞
⎟⎠ .

Therefore, the energy function is a fourth-order polynomial in r:

(3.2) E(r) = − 1

2 k

m∑
j=1

(
1− k

1

n
‖xj − r‖22

)2

.
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r∗ r̃mr̃Ma b

E

Fig. 3.1. If r∗ is a strict minimum, then another minimum r̃m leads to a contradiction. If
r̃M is a strict maximum, then there would be two other maxima (before a and after b) leading to a
contradiction.

We will see that (under some assumption on k) this energy function decreases with the
iteration steps, i.e., the sequence (E(rt)) is monotonically decreasing, and it converges
to the unique minimum.

3.1. Uniqueness. The following proposition proves that the stable point of our
method is unique. For that purpose, we consider the set of admissible k to guarantee
that the weights w = G(r) remain positive for every possible reputation vector r in
the hypercube H; that is,

(3.3) K =

⎧⎪⎨
⎪⎩k ∈ R≥0 : 1− k

1

n

⎛
⎜⎝

‖x1 − r‖22
...

‖xm − r‖22

⎞
⎟⎠ > 0 for all r ∈ H

⎫⎪⎬
⎪⎭ .

The result in the next proposition follows directly from the nature of the energy
function E that gives several conditions on the existence of stationary points. These
conditions are exposed in the following lemma.

Lemma 3.1. Let the function E : Rn → R : E(r) = z be a fourth-order polynomial
and let H be some hypercube in R

n. If

lim
‖r‖→∞

E(r) = −∞

and the steepest descent direction on the boundary of H points strictly inside H, then
E has a unique stationary point in H which is a strict minimum.

Proof. Since the steepest descent on the boundary of H points strictly inside H,
there is no stationary point on the boundary, and there is at least one strict minimum
in int(H) that we label r∗. Let us prove that the existence of another stationary point
leads to a contradiction with the hypothesis.

Let us first assume that r̃m is another minimum of E (strict or not). The line
passing through the two points r∗ and r̃m is given by �(y) = r∗ + y (r̃m − r∗), and
the restriction

e(y):=E ◦ �(y)
is a polynomial of degree 4 with two minima in y = 0 and y = 1. But this is not
possible with the hypothesis lim‖r‖→∞ E(r) = −∞; see Figure 3.1.
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Let us now assume that r̃M is a maximum of E (strict or not). The line passing
through r̃M with the direction e1 is given by �′(y) = r̃M + e1(y − (r̃M )1). The
restriction

e′(y):=E ◦ �′(y)
would be a polynomial of degree 4 with three maxima: one in ]−∞, 0[ , one at
y = (r̃M )1, and one in ]1,∞[; see Figure 3.1.

Finally, let us assume that r̃ is a saddle point in H. This implies that there is
an increasing trajectory starting in r̃ and following the steepest ascent directions. By
the condition on the boundary, such a trajectory cannot escape from H. Therefore,
it should reach a maximum r̃M in H, which is impossible.

Proposition 3.2. If k ∈ K, the system in (1.8), (1.9) has a unique fixed point r∗.
Proof. For the sake of conciseness, we restrict ourselves to the case where all

objects receive at least two different votes. The proof for the general case is similar
if we merge the objects with equal votes (the reputations of such objects remain the
same).

Since every object has at least two different votes in [a, b] given by two raters with
positive weights (k ∈ K), we have that the sequence1 (rt) remains in int(H). Then
by Theorem 1.3, it is sufficient to show that the energy function in (3.2) has a unique
stationary point in int(H).

The steepest descent direction at any point rt ∈ H is given by (1.13),

−∇rE(rt) =
1

αt
(rt+1 − rt),

and since for any point rt on the boundary of H, the next point rt+1 belongs to
int(H) (all weights are strictly positive), the steepest descent direction of E on the
boundary of H points strictly inside H. Therefore, using Lemma 3.1 for E, there is
a unique stationary point in H which is a minimum, and by Theorem 1.3, it is the
unique fixed point of the system in (1.8), (1.9).

Figure 3.2 illustrates the stationary points of E when k is taken larger. First,
if k = supK, then the weights w are nonnegative (rather than positive); therefore
maxima and saddle points can appear on the boundary of H (Figure 3.2(b) is close
to this case). Therefore iterations have to avoid these unstable points. Second, if k
is strictly larger than supK, then maxima can appear inside H; see Figure 3.2(c).
Moreover, the existence of a minimum is not guaranteed anymore. However, if it
exists, it remains unique, and it can be shown that its basin of attraction contains an
open neighborhood of that point. This choice of larger k is discussed at the end of
the section.

3.2. The search method. Our method represents the naive method for reach-
ing the minimum of the energy function E in H. We prove that it converges by taking
the steepest descent direction at every iteration step.

Before introducing the theorem that proves that the energy function decreases
after every iteration step, we present the following lemma that is useful for that
theorem. It will also be used later when we will consider a sparsity pattern in the
rating matrix. We will use M ◦M = M◦2 as componentwise product.

Lemma 3.3. Given two matrices M ∈ R
n×m and A ∈ {0, 1}n×m such that

M ◦A = M , we have

[MT −AT ◦ 1cT ]◦21 = [MT ]◦21− 2MTc+AT c◦2.

1To emphasize the importance of the order, we are not using the standard notation {rt : t ∈ N0}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE FILTERING IN REPUTATION SYSTEMS 1823

0 0

1

1

E
n
er
g
y
fu
n
ct
io
n
E

0 0

1

1

E
n
er
g
y
fu
n
ct
io
n
E

(a) (b)

0 0

1

1

E
n
er
g
y
fu
n
ct
io
n
E

0 0

1

1

E
n
er
g
y
fu
n
ct
io
n
E

(c) (d)

Fig. 3.2. Four energy functions with two objects and increasing values of k. We have in the
unit square (a) a unique minimum; (b) a unique minimum, but with other stationary points close
to the boundary; (c) a unique minimum and other stationary points; (d) a unique maximum.

Proof.

[MT −AT ◦ 1cT ]◦21 =
(
AT ◦ [MT − 1cT ]◦2

)
1 (by definition A ◦A = A)

=
(
AT ◦ [(MT )◦2 − 2MT ◦ 1cT + (1cT )◦2]

)
1

=
(
(MT )◦2 − 2MT ◦ 1cT +AT ◦ (1cT )◦2)1

= [MT ]◦21− 2MT c+AT c◦2.

Proposition 3.4. If k ∈ K, the system (1.8), (1.9) converges to the unique fixed
point r∗ ∈ H.

Proof. First, we show that the energy function E decreases between any two
iterations (see Figure 3.3); i.e., E(rt+1) ≤ E(rt) for all t ≥ 0. This is equivalent to
proving that (wt+1)T (wt+1) ≥ (wt)T (wt). Let us express wt+1 in terms of wt:

wt+1 = 1− k

n
[XT − 1(rt+1)T ]◦21

= 1− k

n
[XT − 1(rt)T − 1(rt+1 − rt)T ]◦21

(by Lemma 3.3 with A = 11T , MT = XT − 1(rt)T , and c = rt+1 − rt)

= wt +
k

n

(
2 (XT − 1(rt)T )(rt+1 − rt)− (rt+1 − rt)T (rt+1 − rt)1

)
= wt +

k

n
q,
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Fig. 3.3. Two iteration steps by our method. Each decreases the energy function E. They take
the steepest descent direction and converge to the minimum r∗.

with q:=
(
2 (XT − 1(rt)T )(rt+1 − rt)− (rt+1 − rt)T (rt+1 − rt)1

)
. Hence,

(wt+1)T (wt+1) =

(
wt +

k

n
q

)T (
wt +

k

n
q

)

= (wt)T (wt) +
k2

n2
qT q + 2

k

n
qTwt.

Therefore, it is sufficient to show that qTwt ≥ 0. This follows from

qTwt = 2 (rt+1 − rt)T (X − rt1T )wt − (rt+1 − rt)T (rt+1 − rt)1Twt

= 2 (rt+1 − rt)T (rt+1 − rt)1Twt − (rt+1 − rt)T (rt+1 − rt)1Twt

= ‖rt+1 − rt‖22 1Twt,(3.4)

which is greater than 0 since wt is a positive vector because of the condition on k.
This shows that the energy is strictly decreasing when rt+1 = rt with

E(rt+1)− E(rt) ≤ − δ

n
‖rt+1 − rt‖22,(3.5)

where we use
∑m

j=1 wj > δ for some δ > 0 (every weight is positive). Since E is lower

bounded in H, the sequence (rt) converges to a single limit point r∗ ∈ H. Then it
follows from (1.13) that

‖∇rE(rt)‖2 =
2
∑m

j=1 wj

n
‖rt+1 − rt‖2 ≤ 2m

n
‖rt+1 − rt‖2,

where we used
∑m

j=1 wj = m − k
∑m

j=1 dj(r
t) ≤ m. Therefore at r∗, the gradient is

zero, and by Proposition 3.2, the point r∗ is the unique fixed point.

3.3. The choice of parameter k. In Propositions 3.2 and 3.4 we assumed that
the condition k ∈ K guarantees uniqueness or convergence. But, there exist larger
values of k such that the minimum of E remains unique and the previous methods
converge to this minimum. By increasing k such that k ≥ supK, we allow the maxima
of E to appear in H; see Figure 3.2(c). Then, we need to verify during the iteration
steps whether (rt) remains in the basin of attraction of the minimum r∗ of E.
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Proposition 3.5. If the energy function E in (3.1) has a minimum, then the
system (1.8), (1.9) is locally convergent and its rate of convergence is q-linear.

Proof. We will prove that the function of iteration F ◦ G(r) is a contraction
mapping in some neighborhood N of the minimum r∗ of E. For that purpose, it is
sufficient to show that ‖∇rF ◦G(r∗)‖2 < 1. This gradient is given by

(3.6) ∇r (F ◦G(r∗)) =
2k

n1Tw∗ (X − r∗1T )(X − r∗1T )T ,

where w∗ = G(r∗). Therefore, this gradient is positive semidefinite when 1Tw∗ > 0
(not guaranteed anymore since the weights can be negative). On the other hand, the
Hessian of E at r∗ must be positive definite (otherwise it contradicts the hypothesis
of r∗ as a minimum). The Hessian is given by

∇2
rE(r∗) =

2 1Tw∗

n
I − 4k

n2
(X − r∗1T )(X − r∗1T )T

=
2 1Tw∗

n

[
I −∇r (F ◦G(r∗))

]
.

This implies that 1Tw∗ > 0 and the eigenvalues of 4k
n2 (X − r∗1T )(X − r∗1T )T have

to be strictly less than 2 1Tw∗
n . Therefore the spectrum of ∇r (F ◦G(r∗)) belongs to

[0, 1[ and hence its 2-norm is strictly less than 1.
In order to find the asymptotic rate of convergence, we consider the error at time

k given by εk := rk − r∗. This error is given using the first-order Taylor expansion
at r∗ by

εk = ∇r (F ◦G(r∗)) εk−1 +O(‖εk−1‖2).
Since the gradient in (3.6) is a symmetric matrix with all eigenvalues in [0, 1[, the
asymptotic convergence is q-linear and the rate of convergence is ρ (∇r (F ◦G(r∗)))
for the Euclidean norm.

The idea of increasing k is to make the discriminant function g more penalizing
and therefore to have a better separation between honest and dishonest raters. A
possibility is to take, during the first steps, the largest value of k such that the
weights remain nonnegative; that is, at time t,

(3.7) kt : min
j

wt
j = 0,

where wt is now given by

G(rt, kt) = 1− kt
1

n

⎛
⎜⎝

‖x1 − rt‖22
...

‖xm − rt‖22

⎞
⎟⎠ .

In this manner, the worst rater at time t receives no weight for his own votes, and
wt is nonnegative. Usually, the sequence (kt) converges, and one reaches the unique
stable fixed point. This will be illustrated later by simulations.

4. Sparsity pattern and dynamical votes. This section extends some pre-
vious results to the case where the rating matrix has some sparsity pattern, that is,
when an object is not evaluated by all raters. Moreover, we analyze dynamical rating
matrices representing votes that evolve over time.
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4.1. Sparsity pattern. In general, the structure of real data is sparse. We
hardly find a set of raters and objects with a vote for all possible pairs. An absence
of a vote for object i from rater j will imply that the entry (i, j) of the matrix X is
equal to zero; that is, by using the adjacency matrix A, if Aij = 0, then Xij = 0.
These entries must not be considered as votes but instead as missing values. Therefore
the previous equations presented in matrix form require some modifications that will
include the adjacency matrix A. We write the new equations and their implications
using the order of the previous section.

IF systems. The belief divergence for IF systems in (1.1) becomes

d =

⎛
⎜⎝

1
n1

‖x1 − a1 ◦ r‖22
...

1
nm

‖xm − am ◦ r‖22

⎞
⎟⎠ ,(4.1)

where aj is the jth column of the adjacency matrix A and nj is the jth entry of
the vector n containing the numbers of votes given to each item, i.e., n = AT1. The
scalar n remains the total number of objects.

Quadratic IF systems. Equation (1.3) for quadratic IF systems will now be given
in matrix form by

F (w) =
[Xw]

[Aw]
,

where [·]
[·] is the componentwise division. Let us remark that every entry of Aw must

be strictly positive. This means that every object is evaluated by at least one rater
with nonzero weight. With these modifications, the iterations and the fixed point are
given by quadratic equations in r and w:

(A ◦ rt+11T )wt = Xwt,(4.2)

(A ◦ r∗1T )w∗ = Xw∗.(4.3)

Hence we expect an energy function to exist, and Theorem 1.3 is generalized by the
following theorem.

Theorem 4.1. The fixed points of quadratic IF systems with integrable discrim-
inant function g are the stationary points of the energy function

(4.4) E(r) =
1

n

m∑
j=1

nj

∫ dj(r)

0

g(u) du+ c,

where dj is the belief divergence of rater j that depends on r and c ∈ R is a constant.
Moreover, one iteration step in quadratic IF systems corresponds to a dilated steepest
descent direction with a particular step size

(4.5) rt+1 = rt −αt ◦ ∇rE(rt), with αt =
n

2

[1]

[Awt]
.

Proof. We have ∇rE(r) = ∇rd
T · ∇dE(r) with

∇rd
T = −2

[
X −A ◦ r1T

]
[1nT ]

and ∇dE(r) =
1

n
[n ◦G(r)] .
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Therefore a stationary point r∗ in E satisfies

− 2

n

[
X −A ◦ r∗1T

]
[1nT ]

(n ◦G(r∗)) = 0,

− 2

n
(X −A ◦ r∗1T )G(r∗) = 0,

(A ◦ r∗1T )w∗ = Xw∗,

which corresponds to the fixed point equation given in (4.3).
We also have ∇rE(rt) = ∇r(d(r

t))T · ∇dE(rt) with

∇r(d(r
t))T = −2

[
X −A ◦ rt1T

]
[1nT ]

and ∇dE(rt) =
1

n

[
n ◦G(rt)

]
=

1

n

[
n ◦wt

]
.

Therefore

∇rE(rt) = − 2

n
(X −A ◦ rt1T )wt(4.6)

= − 2

n
(Awt) ◦ (rt+1 − rt) = −

[
rt+1 − rt

]
[αt]

.

The number of votes nj somehow gives a weight of importance for the mini-

mization of the surface
∫ dj

0
g(u) du. Therefore a rater with more votes receives more

attention in the minimization process. Moreover, the table in section 2.3 becomes

Function g r∗ minimizes

g(d) = 1
d

∑
j nj log dj

g(d) = 1√
d

∑
j −nj

√
dj

g(d) = e−k d
∑

j −nje
−k dj

g(d) = 1− k d .
∑

j njdj − nj
k
2

∑
j d

2
j .

Affine quadratic IF systems. The system for the discriminant function g(d) =
1− k d is given by

rt+1 = F (wt) =
[Xw]

[Aw]
,(4.7)

wt+1 = G(rt+1) = 1− k

⎛
⎜⎝

1
n1

‖x1 − a1 ◦ rt+1‖22
...

1
nm

‖xm − am ◦ rt+1‖22

⎞
⎟⎠ ,(4.8)

starting with equal weights w0 = 1.
The energy function is given by

E(r) = − 1

2 kn
wT [w ◦ n],(4.9)

where w depends on r according to the function G(r).
Proposition 3.2 remains valid for the system (4.7), (4.8), and the arguments are

similar. The steepest descent method adapted to the system (4.7), (4.8) converges
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with the property that the sequence (E(rt)) decreases. The proofs are closely related
to those presented in Proposition 3.4.

Proposition 4.2. If k ∈ K, the system (4.7), (4.8) converges to the unique fixed
point r∗ ∈ H.

Proof. First, we show that the energy function E decreases between any two
iterations; i.e., E(rt+1) ≤ E(rt) for all t ≥ 0. By (4.9), this is equivalent to proving
that (wt+1)T (wt+1 ◦ n) ≥ (wt)T (wt ◦ n). Let us express wt+1 in terms of wt; then
we obtain

wt+1 = 1− [k 1]

[n]
◦ [XT −AT ◦ 1(rt+1)T ]◦21

= 1− [k 1]

[n]
◦ [XT −AT ◦ 1(rt)T −AT ◦ 1(rt+1 − rt)T ]◦21

(by Lemma 3.3 with MT = XT −AT ◦ 1(rt)T and c = rt+1 − rt)

= wt +
[k 1]

[n]
◦ (2 (XT −AT ◦ 1(rt)T )(rt+1 − rt)−AT (rt+1 − rt)◦2

)
= wt +

[k 1]

[n]
◦ q,

where q :=
(
2 (XT −AT ◦ 1(rt)T )(rt+1 − rt)−AT (rt+1 − rt)◦2

)
. Hence,

(wt+1)T (wt+1 ◦ n) =
(
wt +

[k 1]

[n]
◦ q
)T

(wt ◦ n+ k q)

= (wt)T (wt ◦n) +
([

k21
]

[n]
◦ q
)T

q + 2k qTwt.

Therefore, it is sufficient to show that qTwt ≥ 0:

qTwt = 2 (rt+1 − rt)T (X −A ◦ rt1T )wt − ((rt+1 − rt)◦2)TAwt

= 2 ((rt+1 − rt)◦2)TAwt − ((rt+1 − rt)◦2)TAwt

= ((rt+1 − rt)◦2)TAwt.

Then, since every entry of Awt is larger than some δ > 0 by the condition on k, the
energy is strictly decreasing when rt+1 = rt:

E(rt+1)− E(rt) ≤ − δ

n
‖rt+1 − rt‖22,(4.10)

as, in addition, E is lower bounded in H, and the sequence (rt) converges to a single
limit point r∗ ∈ H. Then the gradient of E must be zero in r∗ because we have by
(1.13)

‖∇rE(rt)‖2 =
2

n

∥∥Awt ◦ (rt+1 − rt)
∥∥
2

≤ 2

n
‖rt+1 − rt‖2,

where we used that Awt is componentwise upper bounded by 1. Therefore the gra-
dient is zero at r∗, and by Proposition 3.2 (also valid for our method with sparse
matrix), the point r∗ is the unique fixed point.
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The choice of k can be made larger to better separate honest from dishonest raters,
as discussed in section 3.3. Proposition 3.5 remains valid with a few modifications in
its proof to take into account the adjacency matrix A.

This section has demonstrated that the earlier analysis can still be applied when
we introduce a sparsity pattern in the rating matrix.

4.2. Dynamical votes. We consider in this section the case of time-varying
votes. Formally, we consider discrete sequences

(Xs)s≥0, (As)s≥0

of rating matrices and adjacency matrices evolving over discrete time s. Let us remark
that the scale time for that sequence must be chosen according to the frequency of
new votes, e.g., every time we have some percentage of new votes. Hence the IF
system (1.6), (1.7) takes into account the new rating matrix Xs+1 in the functions
Fs+1 and Gs+1 that become time-dependent:

rt+1 = Fs+1(w
t),(4.11)

wt+1 = Gs+1(r
t+1).(4.12)

The system (4.7), (4.8) for dynamical rating matrices is then given by

rt+1 = Fs+1(w
t) =

[
Xs+1wt

]
[As+1wt]

,(4.13)

wt+1 = Gs+1(r
t+1) = 1− k

⎛
⎜⎜⎝

1
ns+1

1

‖xs+1
1 − as+1

1 ◦ rt+1‖22
...

1
ns+1

m
‖xs+1

m − as+1
m ◦ rt+1‖22

⎞
⎟⎟⎠ ,(4.14)

starting with equal weights w0 = 1.

We already know that for subsequent constant matrices Xs with T1 ≤ s ≤ T2,
the iterations on rt and wt of system (4.13), (4.14) tend to fixed vectors r∗ and w∗,
provided that k is not too large.

Each iteration on rt decreases an energy function Et dependent on the iteration
step t. Intuitively, if the votes hardly change over time, then the sequence (r∗t),
where r∗t is the minimum of Et, evolves slowly. Therefore the mapping will be mostly
contracting: different initial conditions will eventually converge to the same trajectory
that follows this sequence of minima. However, if we have significant changes in the
votes, reflecting a lack of consensus in the opinions, then no such result of convergence
can be established.

However, when the rating matrix is periodic, all the simulations we made always
show convergent orbits for the trajectories (rt); see, for example, Figure 4.1. Without
going into technical details, we mention that it is still possible to prove the convergence
for the specific case of 2-periodic sequences of rating matrices where the number of
votes remains the same for every rater. That result comes from the existence of
a polynomial of degree 4 as energy function similar to the one introduced before.
Unfortunately, that function does not exist anymore when we increase the periodicity
(p > 2) or when the number of votes differs from one step to another (see [17] for
further details).
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Fig. 4.1. Trajectory of reputations (the circles) given by system (4.13), (4.14) with a periodic
rating matrix (p = 5) and the evolving parameter kt defined in (3.7).

5. Simulations. We illustrate the general affine IF method in system (4.7), (4.8)
with the updates on the parameter k given in (3.7). Two sets of data are used for
this purpose:

1. the votes of 43 countries during the final of EuroVision 2008;
2. the votes of 943 movie lovers at the MovieLens web site.

We will see how and whom our method penalizes through the iterations. In the
first set of data, we compare the difference in the ranking used by EuroVision and the
ranking obtained by our method. The second set of data is used in order to verify the
desired property mentioned in the introduction: raters whose opinions often differ
from those of other raters are given less weight. For this purpose, we added fictional
raters that diverge from the original raters.

5.1. EuroVision. During the final of EuroVision in 2008, 43 countries evaluated
25 songs. Each song represents a country, and no country among the 43 may vote for
itself. Each country distributes its votes that are taken from {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12},
and only the vote zero can be given several times, while the others must be given ex-
actly once.

We can expect that votes are driven by linguistic and cultural proximities between
countries. However, vote alliances may appear between nearby countries by, for ex-
ample, exchanging the maximal votes (as, e.g., discussed in [1]). Such raters should
be penalized when they are, in addition, not in agreement with the other votes.

For this example we focus on the final ranking rather than on the reputations
themselves. Clearly, the changes in the rankings due to different weights for the votes
are sensitive and complex, but this final ranking is the main output of the competition
and therefore its perturbation is crucial. We then compare in Figure 5.1 the ranking
obtained by taking the average of the votes used by the jury of EuroVision and the
ranking given by the affine IF method.

Results. Let us recall that the parameter k plays a role of discrimination between
marginal and reasonable raters. For instance, small k’s do not change the order in the
original ranking, but increasing values of k make greater jumps appear in the ranking
list. The parameter k is updated after every iteration step according to (3.7). After
one iteration step, we have k1 = 0.06, then k2 = 0.05, and eventually it converges to
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Fig. 5.1. Difference of the rankings between the affine IF method and the average of the votes:
for example, the second and third positions switch, and two countries (grey nodes) drop by four and
six positions when we use the affine IF method.

0.05. We briefly highlight two phenomena shown in Figure 5.1: the switch between
the second and the third countries, and the loss of six positions for the 15th in the
original ranking.

The switch occurs between Ukraine and Greece, which already had a small dif-
ference in the original ranking: averages of 5.5 and 5.2. These two countries received
opposite votes from many raters. For instance, three times we find that one of those
countries received 0 while the other received the maximum 12. This leads to sig-
nificant changes when the votes of the raters are weighted. The switch shows that
raters favorable to Greece were more objective according to our definition of the belief
divergence.

Denmark dropped by six positions when we applied our method. Looking at the
votes, the weights of supporters for this country are below the average. In particular,
we point out that Denmark and Iceland gave 12 to each other. Then both received
small weights for their votes; consequently the 12 they exchanged were assigned less
weight in the second ranking (Iceland was 14th and dropped by four positions).

5.2. MovieLens. Our experiment concerns a data set2 of 100,000 evaluations
given by 943 raters on 1682 movies that range from 1 to 5. The data have been
cleaned so that each rater rates at least 20 movies.

In order to test the robustness of our method, two types of behavior are analyzed
in what follows: first, raters who give random evaluations, and second, spammers who
try to improve the reputation of their preferred items.

Malicious raters. We added to the original data set 237 raters evaluating ran-
domly a random set of items, or spammers always giving 1 except for their preferred
movie, which they rated 5. In this manner, 20% of the raters are malicious. Let r∗

and r̃∗ be, respectively, the reputation vector before and after the addition of the
malicious raters. In this configuration, we expect that the malicious raters will re-
ceive smaller weights than the original raters and therefore the vectors of reputations
should not be too different.

2The MovieLens data set used in this paper was supplied by the GroupLens Research Project.
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Fig. 5.2. X-axis: the weights of the raters. Y-axis: the density after one iteration (top), after
two iterations (left), and after convergence (right). In black: the spammers. In white: the original
raters. In grey: overlap of both raters.

We measure that difference by the distance ‖r∗ − r̃∗‖1 = 182. This is naturally
smaller than the same distance for the average method in which random raters receive
as much weight as the others: ‖r∗ − r̃∗‖1 = 259. For the case of spammers, we have a
distance of 267 when using our method and a distance of 638 for the average method.
These results are clearly a consequence of the weights given to the raters. Figure 5.2
shows the evolution of the weights during the iterations for the case of spammers. We
remark that one iteration of the algorithm already separates spammers and original
raters, but it is indeed useful to wait until convergence to have a better separation.
Moreover, we see that a minority of raters in the original data have weights that are
not better than those of random raters. Such raters diverge as much as random raters
according to our method, and therefore they are penalized in a similar fashion. More
figures can be found in [17, 18]. The parameter k is updated after every iteration step
according to (3.7). After one iteration step, we have k1 = 0.03, then k2 = 0.13, and
eventually it converges to 0.12.

6. Conclusion and further research.

6.1. Summary of the results. The general definition of IF systems provides
a new framework for analyzing and evaluating voting systems. We emphasized the
need for a differentiation of trusts between the raters unlike what is usually done on
the Web. The originality of the approach lies in the continuous validation scale for
the votes. Next, we assumed that the set of raters is characterized by various possible
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behaviors including raters who are clumsy or partly dishonest. However, the outliers,
being in obvious disagreement with the other votes, remain detectable by the system
as shown in the simulations in the cases of alliances, random votes, and spammers.

Our paper focuses on a natural subclass of IF systems called quadratic IF systems,
and we show the existence of an energy function that allows us to link a steepest
descent to each step of the iteration. It then follows that the system minimizes the
belief divergence according to some norm defined from the choice of the discriminant
function. We also analyze several discriminant functions; some (the inverse and EM
functions) were already introduced in the literature, while others (the exponential and
affine functions) are new.

The main effort in this paper concerns the analysis of quadratic IF systems with
the choice of the affine discriminant function. This choice is motivated by a statistical
interpretation of the distribution of the votes and by the explicit condition on the
parameter k that guarantees the uniqueness of the solution. This unique solution
has the interesting property of maximizing the Euclidean norm of the weights of the
raters. However, the convergent solution found via the IF method represents the
“truth” better or is not known, and, therefore, the comparison with other methods
is certainly one of the perspectives for this topic. Finally, the analysis of the system,
and, more precisely, its convergence, becomes tractable. We also give experimental
results on real data sets that illustrate the relevance of our approach.

6.2. Perspectives. The quadratic IF systems already give a large choice of
different systems via the discriminant function. The three candidates we discussed
can be extended to other possibilities motivated by some statistical assumptions on
the votes, or by the minimization of some energy function (that would also maximize
some function on the weights). Moreover, by accepting complex dynamics for evolving
votes, we can include multiple solutions in the system. As already mentioned, such
equilibria may be interpreted as coherent opinions among groups of people, and such
methods can be compared with clustering methods. In addition, it remains useful to
keep a parameter in the discriminant functions (k in our examples) that allows us to
adjust the level of separation.

Our validation tests can be expanded to other data sets, in particular, we think, to
dynamical data sets that have been hardly investigated for voting systems. Moreover,
behaviors other than those we presented are possible. We give naive profiles to the
fictitious raters we added in the second simulation; however, we know that intermedi-
ate behaviors are much harder to detect. Despite everything, malicious people could
use the system to vote correctly on several items and then cheat on a few items. Such
a strategy can be discouraged when votes are not free (for example, the votes in eBay
are made after a transaction) or by tracking these kinds of traders. In addition to
experiments on other data sets with other profiles of raters, the comparison between
different IF systems provides another area to pursue. In our case, we give a limited
example with three raters and two ice skaters to compare three discriminant functions.
Then, for larger data sets, we limit ourselves to the affine function, the only one that
gives a unique solution, and we compare it with the average when some perturbations
occur. If we disregard the property of uniqueness for the solution, we can compare our
method with others, but then we need to discuss the choice of different initial points
that lead to different solutions for these systems. On the other hand, what we want to
compare is not trivial since the goal of IF systems is not a simple separation between
good and bad raters but rather a continuous validation scale. For that reason, the
tractability of affine IF systems makes it attractive.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1834 CRISTOBALD DE KERCHOVE AND PAUL VAN DOOREN

Acknowledgment. We thank the GroupLens Research Project for supplying
the MovieLens data set.

REFERENCES

[1] V. Ginsburgh and A. Noury, Cultural Voting: The EuroVision Song Contest, mimeo, 2004;
available online from http://ideas.repec.org/p/cor/louvco/2005006.html#download.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank Citation Ranking: Bring-
ing Order to the Web, Technical report, Stanford InfoLab, 1999; available online from
http://ilpubs.stanford.edu:8090/422/.

[3] L. Mui, M. Mohtashemi, and A. Halberstadt, A computational model of trust and rep-
utation, in Proceedings of the 35th Annual Hawaii International Conference on System
Sciences, 2002, pp. 2431–2439.

[4] S. Kamvar, M. Schlosser, and H. Garcia-molina, The Eigentrust algorithm for reputation
management in P2P networks, in Proceedings of the 12th International Conference on
World Wide Web, ACM, New York, 2003, pp. 640–651.

[5] M. Richardson, R. Agrawal, and P. Domingos, Trust management for the semantic web,
in The SemanticWeb—ISWC 2003, Lecture Notes in Comput. Sci. 2870, Springer, Berlin,
Heidelberg, 2003, pp. 351–368.

[6] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, Propagation of trust and distrust, in
Proceedings of the 13th International Conference on World Wide Web, ACM, New York,
2004, pp. 403-412.

[7] J. O’Donovan and B. Smyth, Trust in recommender systems, in Proceedings of the 10th
International Conference on Intelligent User Interfaces, ACM, New York, 2005, pp. 167–
174.

[8] G. Theodorakopoulos and J. Baras, On trust models and trust evaluation metrics for ad
hoc networks, IEEE J. Sel. Areas Commun., 24 (2006), pp. 318–328.

[9] S. Zhang, Y. Ouyang, J. Ford, and F. Makedon, Analysis of a low-dimensional linear
model under recommendation attacks, in Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, 2006, pp.
517–524.

[10] E. Kotsovinos, P. Zerfos, N. M. Piratla, N. Cameron, and S. Agarwal, Jiminy: A
scalable incentive-based architecture for improving rating quality, in Trust Management,
Lecture Notes in Comput. Sci. 3986, Springer, Berlin, Heidelberg, 2006, pp. 221–235.
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