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Schedule

Monday Friday Monday Friday

February 29 March 4 March 14 March 18

Louvain-la-Neuve Leuven Louvain-la-Neuve Leuven

Room Cycl 09 Room B.02.18 Room E.349 Room B.02.18

Map to building CYCL Map to building B Map to building CYCL Map to building B

14h00-15h00: Talk 1.a 14h00-15h00: Talk 2.a 14h00-15h00: Talk 3.a 14h00-15h00: Talk 4.a

15h30-16h30: Talk 1.b 15h30-16h30: Talk 2.b 15h30-16h30: Talk 3.b 15h30-16h30: Talk 4.b

Talk 1.a : The statement of Gromov’s PGT and the original
proof

Speaker: Phillip Wesolek

Reference: [5]

• General structure of the proof.

• Role of Hilbert’s fifth problem in original argument.

Talk 1.b : The algebraic part

Speaker: Nicolas Radu

• PGT for soluble groups (following Wolf [12]).

• For PGT, it is enough to show that PG implies virtually indicable (following Tits [11])
— a group is indicable if it has an infinite cyclic quotient.

Talk 2.a : The Tits alternative

Speaker: Philip Dowerk
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• Overview of the result and its proof ([10] and [6]).

• A finitely generated amenable group with a f.d. linear representation of infinite image is
virtually indicable.

Talk 2.b : Reduced cohomology

Speaker: Yuki Arano

• Definitions (Chapter 3 in [1]).

• A compactly generated locally compact group without property (T) has non-vanishing
H1 (Appendix in [7] or [8] or §3.2 in [1]).

• Harmonic 1-cocycles (§2 in [7] and [2]).

Talks 3.a : Shalom’s property HFD

Speaker: Peter Verraedt

• Weakly mixing representations.

• Overview of [9].

• A finitely generated amenable group with HFD is virtually indicable (Theorem 4.3.1 in
[9]).

Talks 3.b : Ozawa’s proof

Speaker: Tobe Deprez

• §3 and proof of Main Theorem in [7].

Talk 4.a : Random walks

Speaker: Anna Krogager

• Overview of [4].

Talk 4.b : Controlled Følner sequences

Speaker: Adrien Le Boudec

• Overview of [3].

• Proposition in §4 of [7].
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