Abstract: |
The talks will center around the article Stabilizers of Ergodic Actions of Lattices and Commensurators
by D. Creutz and J. Peterson, available here.
We will also cover background material like Margulis' Normal
Subgroup Theorem, and the work of Stuck-Zimmer on essential freeness of
ergodic actions of lattices in higher rank simple Lie groups.
|
|
|
Framework: |
This activity belongs to the IAP project DYGEST.
|
Organisers: |
Pierre-Emmanuel Caprace and Stefaan Vaes |
[CrPe] | D. Creutz and J. Peterson, Stabilizers of Ergodic Actions of Lattices and Commensurators, preprint (2012). |
[M] | G. Margulis, Discrete subgroups of semi-simple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 17, Berlin (1991). |
[NeZi] | A. Nevo and R. Zimmer, A generalization of the intermediate factors theorem, J. Anal. Math. 86 (2002), 93-104. |
[StZi] | G. Stuck and R. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. 139 (1994), no. 3, 723-747. |
[Zi] | R. Zimmer, Ergodic theory and semisimple group, Monographs in Mathematics, 81, Birkhauser Verlag, Basel (1984). |
13:30 | Pierre-Emmanuel Caprace (UCL): Introduction. |
|
|
14:50 | Stefaan Vaes (KUL): Overview on the proof for SL(n, Z) and SL(n, Z[1/p]). |
13:30 | Mihai Berbec (KUL): The space of closed subgroups, and Invariant Random Subgroups. |
|
|
14:50 | David Kyed (KUL): Amenable actions and property (T). |
13:30 | Mathieu Carette (UCL): Relatively contractive maps, part I. |
|
|
14:30 | Gasper Zadnik (UCL): Relatively contractive maps, part II. |
|
|
15:45 | An Speelman (KUL): Ergodic actions of non-discrete groups. |
13:30 | Arnaud Brothier (KUL): Ergodic actions of discrete subgroups and commensurated pairs. |
|
|
14:50 | Corina Ciobotaru (UCL): End of the proof. |