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Abstract. A Coxeter system (W,S) is called affine-free if its
Coxeter diagram contains no affine subdiagram of rank ≥ 3. Let
(W,S) be a Coxeter system of finite rank (i.e. |S| is finite). The
main result is that W is affine-free if and only if W has finitely
many conjugacy classes of reflection triangles. This implies that
the action of W on its Coxeter cubing (defined by Niblo-Reeves
[11]) is cocompact if and only if (W,S) is affine-free. This result
was conjectured in loc. cit. As a corollary, we obtain that affine-
free Coxeter groups are biautomatic.

1 Introduction

1.1 The main result

Let (W,S) be a Coxeter system of finite rank (i.e. |S| is finite) and let t1, t2, t3 ∈ SW be
3 reflections. We say that T := {t1, t2, t3} is a reflection triangle if the order of titj is
finite for all 1 ≤ i < j ≤ 3 and if T is not contained in a rank 2 parabolic subgroup of
W . It is known that given a triangle T , there exists a triangle T ′ such that 〈T 〉 = 〈T ′〉
and (〈T 〉, T ′) is a Coxeter system. Moreover, the Coxeter diagram of (〈T 〉, T ′) is uniquely
determined by T and we denote it by M(T ). We say that T is affine (resp. spherical,
hyperbolic) if M(T ) is affine (resp. spherical, hyperbolic).

Here is our main result.
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Theorem 1.1. Suppose (W,S) does not contain an affine reflection triangle. Then there
are only finitely many conjugacy classes of reflection triangles.

It is well-known that in an arbitrary Coxeter system of finite rank, there are finitely
many conjugacy classes of spherical reflection triangles. On the other hand, it is obvious
that Coxeter groups of type Ã2, C̃2 and G̃2 possess infinitely many conjugacy classes
of affine reflection triangles. Based on recent work of the first author, there is strong
evidence that in an arbitrary Coxeter system of finite rank, there are only finitely many
conjugacy classes of non-affine reflection triangles.

1.2 Affine reflection triangles

Using results from Daan Krammer’s thesis [8] and some additional arguments (see Section
3 below), one obtains the following result.

Theorem 1.2. (D. Krammer) Given an affine reflection triangle T , then there exists
an irreducible affine parabolic subgroup W0 of rank ≥ 3 such that 〈T 〉 is conjugate to a
subgroup of W0.

Using Doedhar [6], one can verify that a (standard) parabolic subgroup is not conjugate
to a proper subgroup. Combining this observation with Theorem 1.2, one can improve
our main result to the following.

Theorem 1.3. Let (W,S) be a Coxeter system of finite rank. The following statements
are equivalent:

(i) there are only finitely many conjugacy classes of reflection triangles;
(ii) the Coxeter diagram of (W,S) has no irreducible affine subdiagram of rank ≥ 3.

1.3 Biautomaticity

It is proved in [3] that every Coxeter group of finite rank is automatic. The question of de-
termining whether or not Coxeter groups satisfy the stronger condition of biautomaticity
remains however open.

As before, let (W,S) be a Coxeter system of finite rank. In [11] it is proved that W
acts properly discontinuously on a locally finite, finite-dimensional CAT(0) cube complex.
This cube complex is called the Coxeter cubing associated with (W,S); we denote it
by X (W,S). As noticed in loc. cit., it follows from a result of [10] that W is biautomatic
whenever the action of W on X (W,S) is cocompact. Furthermore, the cocompactness of
this action has the following characterization, due to B. Williams (see Theorem 6 in [11]
and Theorem 5.16 in [14]).

Proposition 1.4. The action of the Coxeter group W on the Coxeter cubing X (W,S)
is cocompact if and only if (W,S) has only finitely many conjugacy classes of reflection
triangles.

Remark. The previous statement differs slightly from the original statement of that result
(see Theorem 6 in [11] and Theorem 5.16 in [14]). Indeed, in the latter references, it is
spoken about ‘triangle sugroups’ and the fact that these may be assumed to be generated
by reflections is only implicit. Nevertheless, this is a consequence of the proof of that
result, as it appears in [14].
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Therefore, Theorem 1.3 has the following consequences.

Corollary 1.5. The action of the Coxeter group W on the Coxeter cubing X (W,S) is
cocompact if and only if the Coxeter diagram of (W,S) contains no subdiagram of affine
type and rank ≥ 3.

Corollary 1.6. If the Coxeter diagram of (W,S) contains no subdiagram of affine type
and rank ≥ 3, then the Coxeter group W is biautomatic.

Remark. Corollary 1.5 and Corollary 1.6 had been proven independently by P. Bahls [1]
for certain special classes of Coxeter groups which are all covered by our theorem.

Acknowledgement. The authors are grateful to Daan Krammer who communicated
the arguments of Section 3 to them.

2 Preliminaries

In this section, we recall the basic properties of Coxeter groups that are needed in the
sequel. The main references are [2] and [12].

Let (W,S) be a Coxeter system. A reflection is an element of W that is conjugate
to an element of S.

Let Σ(W,S) be the chamber system associated with (W,S). We recall that Σ(W,S)
is a chamber system over S which is defined as follows : the chambers of Σ(W,S) are
the elements of W and for each s ∈ S two chambers v, w are s-adjacent if and only if
v−1w = s. Two chambers are adjacent if they are s-adjacent for some s ∈ S.

The group W acts on Σ(W,S) by left multiplication. This action is regular (i.e.
sharply transitive) and preserves the s-adjacency for each s ∈ S.

For every subset J ⊆ S, we put WJ := 〈J〉. The subset J ⊆ S is called spherical
whenever WJ is finite. Let c be a chamber of Σ(W,S). The J-residue (or the residue of
type J) containing c is the left coset cWJ , viewed as a set of chambers. The cardinality of
J is called the rank of that residue. Residues of rank 1 are called panels. An nontrivial
element t of W stabilizes a panel if and only if t is a reflection. A parabolic subgroup
of W is a subgroup of the form StabW (R) for some residue R. The type (resp. rank) of
the parabolic subgroup StabW (R) is the type (resp. rank) of R.

Lemma 2.1. Every finite subgroup of W is contained in a parabolic subgroup of spherical
type.

Proof. See [2].

A sequence of chambers Γ = (c0, c1, . . . , cn) such that ci−1 is adjacent to ci for 1 ≤ i ≤ n

is called a gallery of length n joining c0 to cn. We say that Γ is closed if x0 = xn.
Given 1 ≤ i < j ≤ n, then the subsequence (ci, ci+1, . . . , cj) of Γ is denoted by Γ|ci→cj .
The gallery (cn, cn−1, . . . , c1, c0) is denoted by Γ−1. The distance d(x, y) between two
chambers x and y is the minimal length of a gallery joining x to y. A gallery of length n
joining x to y is called minimal whenever n = d(x, y).

Given a chamber c and a residue R in Σ(W,S), then there exists a unique chamber
x of R such that d(c, x) = d(c, R) = min{d(c, y)|y ∈ R}. This chamber is called the
projection of c on R and is denoted by projR(c). Given any chamber y in R, then
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there exists a minimal gallery Γ joining c to y which goes through projR(c) and such that
Γ|projR(c)→y is completely contained in R.

Given residues R1, R2 of Σ(W,S), then the set projR1
(R2) := {projR1

(c)|c ∈ R2} is
itself a residue. We say that R1 and R2 are parallel if projR1

(R2) = R1 and projR2
(R1) =

R2.
The following lemma gives two characterizations of the parallelism of residues of spher-

ical type.

Lemma 2.2. Let J,K be subsets of S and let RJ , RK be residues of type J,K respectively.
Then the following statements are equivalent:

(i) RJ and RK are parallel;
(ii) a reflection stabilizes RJ if and only if it stabilizes RK.

Furthermore, if J or K is spherical, then (i) and (ii) above are also equivalent to the
following:
(iii) there exist two sequences RJ = R0, R1, . . . , Rn = RK and T1, . . . , Tn of residues of

spherical type such that for each 1 ≤ i ≤ n the rank of Ti is equal to 1+rank(RJ),
the residues Ri−1, Ri are distinct, parallel and contained in Ti and moreover, we
have projTi

(RJ) = Ri−1 and projTi
(RK) = Ri.

Proof. This follows from Proposition 2.7 in [4].

Let s ∈ S and let π = {x, y} be an s-panel of Σ(W,S), namely a residue of type {s}.
The set φ(x, y) = {z|d(z, x) < d(z, y)} is called a root of Σ(W,S). The set φ(y, x) is
also a root, complementary to φ(x, y), and the unique reflection that stabilizes the panel
π interchanges φ(x, y) and φ(y, x). We denote this reflection by rφ(x,y) or rφ(y,x) and we
write φ(y, x) = −φ(x, y).

Let ψ be a root. We denote by ∂ψ (resp. ∂2ψ) the set of all panels (resp. spherical
residues of rank 2) stabilized by rψ. We also set C(∂ψ) :=

⋃
σ∈∂ψ ψ and C(∂2ψ) :=⋃

σ∈∂2ψ ψ. The set ∂ψ is called the wall associated to ψ. Let Γ = (x0, x1, . . . , xn) be a
gallery. We say that Γ crosses the wall ∂ψ if there exists 1 ≤ i ≤ n such that {xi−1, xi}
is a panel that belongs to ∂ψ. It is a fact that a gallery is minimal if and only if it crosses
every wall at most once.

Lemma 2.3. Let ψ be a root and let x, y ∈ ψ∩C(∂ψ). Then there exists a minimal gallery
Γ = (x = x0, x1, . . . , xl = y) joining x to y such that xi ∈ C(∂2ψ) for each 1 ≤ i ≤ l.

Proof. Let πx, πy ∈ ∂ψ be panels such that x ∈ πx and y ∈ πy. Then πx and πy satisfy
Condition (ii) of Lemma 2.2. Therefore, there exist two sequences πx = π0 6= π1 6=
· · · 6= πn = πy and σ1, . . . , σn such that for each 1 ≤ i ≤ n we have πi ∈ ∂ψ, σi ∈ ∂2ψ,
projσi

(πx) = πi−1 and projσi
(πy) = πi.

For each 1 ≤ i ≤ n let Γi be the unique minimal gallery joining projσi
(x) to projσi

(y).
Let Γ be the gallery obtained by concatenating the Γi’s (namely Γ = Γ1 ∼ · · · ∼ Γn).
Then Γ is a gallery joining x to y and such that every chamber of Γ belongs to C(∂2ψ).

We claim that Γ is minimal. We prove this claim by induction on n; the result being
obvious when n = 1.

Suppose that n > 1 and that Γ is not minimal. Then there exists a root φ containing
πx such that Γ crosses the wall ∂φ twice. By induction, we know that Γ|x→projσn

(x) and
Γ|projσ1

(y)→y are both minimal. By the construction of Γ, this implies that Γ crosses ∂φ

exactly twice : once between x and projσ1
(y) and once between projσn

(y) and y. We
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deduce that πy is contained in the same side of ∂φ as πx, namely πy ⊆ φ. This implies
that projσ1

(πy) = πx. But we have seen above that projσ1
(πy) = π1 6= πx and this is a

contradiction. Therefore, Γ is minimal.

Let Ψ be a set of roots. We set R(Ψ) := {rψ|ψ ∈ Ψ} and W (Ψ) := 〈R(Ψ)〉. The
set Ψ is called geometric if

⋂
ψ∈Ψ ψ is nonempty and if for all φ, ψ ∈ Ψ, the set φ ∩ ψ

is a fundamental domain for the action of W ({φ, ψ}) on Σ(W,S). Here, a set D is
called a fundamental domain for the action of a group G on a set E containing D if⋃
g∈G gD = E and if D ∩ gD 6= ∅ ⇒ g = 1 for every g ∈ G.
The following result, due to Tits, is very useful.

Lemma 2.4. Let Ψ be a geometric set of roots. Then D :=
⋂

Ψ is a fundamental domain
for the action of W (Ψ) on Σ(W,S), and (W (Ψ), R(Ψ)) is a Coxeter system. The chambers
of Σ(W (Ψ), R(Ψ)) may be identified with sets of chambers of Σ(W,S), and more precisely
with sets of the form wD with w ∈ W (Ψ). Furthermore, two chambers C and C ′ of
Σ(W (Ψ), R(Ψ)) are adjacent in Σ(W (Ψ), R(Ψ)) if and only if C and C ′, viewed as sets
of chambers of Σ(W,S), contain adjacent chambers of Σ(W,S).

Proof. This is essentially a consequence of Lemma 1 in [13]. See also Lemma 3.2 and
Proposition 3.3 in [9].

Restated in other words, the last statement of Lemma 2.4 says that the Cayley graph
of the Coxeter system W ((Ψ), R(Ψ)) may be seen as a ‘quotient’ of the Cayley graph of
(W,S).

3 Affine subgroups

In this section, we record an unpublished result due to Daan Krammer (see Theorem 3.3).
A Coxeter system (W,S) of finite rank is called admissible if each component of

its Coxeter diagram is either spherical or affine of rank ≥ 3. A subset I ⊆ S is called
admissible if the Coxeter system (WI , I) is admissible. If (W,S) is admissible but not of
spherical type, then W is virtually a free abelian group of rank at least 2, i.e. W possesses
a subgroup of finite index isomorphic to Zn, where n ≥ 2.

Lemma 3.1. Let (W,S) be an admissible Coxeter system. Then no quotient group of W
is virtually infinite cyclic.

Proof. If W is finite, the result is trivial. Otherwise, some component of S is affine of
rank ≥ 3. Let S1, S2, . . . , Sk be the irreducible components of S. For each index i such
that WSi

is affine, let Zi be the translation subgroup of WSi
. Then WSi

(and, hence, W )
acts on Zi by conjugation. Furthermore, the irreducibility of the geometric representation
of finite irreducible Coxeter group (see [2]) implies that Zi is an irreducible WSi

-module.
In particular, Zi is an irreducible W -module. Therefore, given any normal subgroup N

of W , we have either N ∩ Zi = {1} or N ∩ Zi is free abelian of rank n. The conclusion
follows because each Zi is a free abelian group of rank ≥ 2.

Let (W,S) be a Coxeter group of finite rank and H be a subset of W . Let S(H) be
the set of all residues stabilized by 〈H〉. Let n(H) be the minimum of the set of ranks
of elements of S(H). If R1 and R2 both belong to S(H), then so do projR1

(R2) and
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projR2
(R1) ∈ S(H). We deduce that if R1, R2 ∈ S(H) are both of rank n(H), then R1

and R2 are parallel. In particular, Lemma 2.2 gives StabW (R1) = StabW (R2). We set
Pc(H) := StabW (R1) = StabW (R2). The group Pc(H) is called the parabolic closure
of H in W . It is the smallest parabolic subgroup of W containing H.

Proposition 3.2. Let (W,S) be an irreducible, non-spherical and non-affine Coxeter
system of finite rank. Let H be a subgroup of W with Pc(H) = W such that H is virtually
Zn. Then n = 1.

Proof. Let H1 be a subgroup of finite index of H which is isomorphic to Zn. If n = 0
then H is finite and Lemma 2.1 implies that Pc(H) is spherical, in contradiction with our
hypotheses. Thus H is infinite and n > 0.

The group NH(H1) has finite index in H, which implies that H1 has finitely many H-
conjugates. Therefore, the group H0 :=

⋂
h∈H hH1h

−1 has finite index in H. Moreover, it
is clear by definition that H0 is normal in H and that H0 is isomorphic to Zn. Since H
normalizes H0, it follows that H normalizes Pc(H0). This gives

W = Pc(H) ≤ Pc(NW (Pc(H0)))

which implies that Pc(H0) = W by Lemma 6.8.1 of [8] (notice that Pc(H0) is not spherical
since H0 is infinite). Now Theorem 6.8.2 in [8] provides the desired conclusion.

Theorem 1.2 above is a consequence of the following result.

Theorem 3.3. (D. Krammer) Let (W,S) and (W̃ , S̃) be Coxeter systems of finite rank,
such that (W̃ , S̃) is admissible and W̃ is a subgroup of W . Then W̃ is contained in an
admissible parabolic subgroup of W .

Proof. Replacing W̃ be one of its conjugates if necessary, we may assume that Pc(W̃ ) =
WI for some I ⊆ S. We have to prove that I is admissible.

Let I1, I2, . . . , Ik be the irreducible components of I. Thus W̃ ≤ WI = WI1 ×· · ·×WIk .
For each 1 ≤ i ≤ k, let W̃i be the projection of W̃ on WIi . Since Pc(W̃ ) = WI , we have
Pc(W̃i) = WIi for each 1 ≤ i ≤ k.

We have to show that each Ii is either spherical or affine of cardinality at least 3.
Let i be such that W̃i is finite. Then Pc(W̃i) is finite by Lemma 2.1, which implies

that Ii is spherical in view of Pc(W̃i) = WIi .
Let i be such that W̃i is infinite. Then W̃i, as a quotient of W̃ , is virtually a free

abelian group of rank m, and Lemma 3.1 gives m ≥ 2. In particular, WIi is not infinite
dihedral, which means that Ii is not of type Ã1. Therefore, Proposition 3.2 implies that
Ii is affine of cardinality at least 3.

4 Coxeter decompositions of hyperbolic triangles

This section is intended to recall the classification of the Coxeter decompositions of hy-
perbolic triangles. Our reference is [7].

Let P be a compact geodesic polygon of the hyperbolic plane H2. We recall that a
Coxeter decomposition of P is a non-trivial decomposition of P into finitely many Coxeter
polygons Fi, such that any two polygons F1 and F2 having a common side are symmetric
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(1) (2) (3) (4) (5) (6)

(2, k, l) (2, 3, k) (2, 4, k) (2, 3, k) (2, 3, k) (2, 3, k)
k≥l>2 k>6 k>4 k>6 k>6 k>6

l=3⇒k>6

l=4⇒k>4

(7) (8) (9)

(2, 3, 7) (2, 3, 8) (2, 3, 9)

Figure 1: The Coxeter decompositions of hyperbolic triangles.

with respect to this common side. The polygons Fi are called the fundamental polygons
of the Coxeter decomposition. It follows from the definition that they are all isometric.

If P is a triangle, then the fundamental polygons of any Coxeter decomposition of
P are triangles (Lemma 1 in [7]). We say that a given Coxeter decomposition of P has
type (k, l,m) if the angles of the fundamental triangles of that decomposition are π

k
, π
l

and π
m

. Let 0, 1 and 2 be the vertices of P . For each 0 ≤ i ≤ 2 let µi be the number of
fundamental triangles having a vertex that coincides with i. We say that (µ0, µ1, µ2) are
the multiplicities of the given Coxeter decomposition of P .

In Figure 1, some Coxeter decompositions of hyperbolic triangles are represented. The
triple (k, l,m) under each picture gives the type of the fundamental triangle of the Coxeter
decomposition that this picture represents.

Theorem 4.1. Figure 1 exhausts the list of all possible Coxeter decompositions of hyper-
bolic triangles.

Proof. See Sections 2 and 5 in [7].

5 Combinatorial triangles in Σ(W,S)

Definitions

Let (W,S) be a Coxeter system and let Σ(W,S) be the associated chamber system.
A combinatorial triangle (or simply a triangle) of Σ(W,S) is a set T of three roots

which satisfy the following conditions:
(CT1) for all α, α′ ∈ T , the order of rαrα′ is finite;
(CT2) the group W (T ) is not contained in any parabolic subgroup of rank 2;
(CT3) the set

⋂
α∈T α is nonempty.
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Let T1 and T2 be combinatorial triangles. We say that T1 is a subtriangle of T2 if⋂
T1 ⊆

⋂
T2 and if there exists a triangle T0 such that W (T1) ∪W (T2) ⊆ W (T0).

Let T = {α0, α1, α2} be a combinatorial triangle and for each 0 ≤ i ≤ 2, let λi be
the order of rαi−1

rαi+1
, where the indices are taken modulo 3. We say that T is of type

(λ0, λ1, λ2). In the case where T is geometric, we know from Lemma 2.4 that (W (T ), R(T ))
is a Coxeter system of rank 3, and the λi’s are then the Coxeter numbers that appear on
the Coxeter diagram of (W (T ), R(T )).

A combinatorial triangle T is called spherical if W (T ) is finite. It is called affine if
it is of type (3, 3, 3), (2, 4, 4) or (2, 3, 6), or if it is non-geometric and of type (3, 6, 6). If
T is geometric then T is affine if and only if the Coxeter diagram of (W (T ), T ) is affine.
A combinatorial triangle T is called hyperbolic if it is neither spherical nor affine.

Notice that that we have now two different kinds of hyperbolic triangles : the hy-
perbolic triangles as in Section 4 and the combinatorial hyperbolic triangles as in the
preceding paragraph. In order to avoid any confusion between these two kinds, we some-
times refer to the former triangles as genuine hyperbolic triangles.

Let T = {α0, α1, α2} be a combinatorial triangle. For each 0 ≤ i ≤ 2, let σi be a
spherical residue which belongs to ∂2αi−1 ∩ ∂

2αi+1 (subscripted indices are taken modulo
3) and which is contained in αi. The set {σ0, σ1, σ2} is called a set of vertices of T .
Notice that the fact that σi ∈ ∂2αi−1 ∩ ∂2αi+1 automatically implies that σi ⊆ αi or
σi ⊆ −αi because σi 6∈ ∂2αi in view of (CT2).

Let T = {α0, α1, α2} be a combinatorial triangle and let {σ0, σ1, σ2} be a set of vertices
of T . For each 0 ≤ i 6= j ≤ 2 let xi,j be the unique chamber of projσi

(σj) that belongs
to αk where 0 ≤ k ≤ 2 and i 6= k 6= j. By Lemma 2.3, for each 0 ≤ i ≤ 2 there exists
a minimal gallery Γi joining xi−1,i+1 to xi+1,i−1 such that every chamber of Γi belongs to
C(∂2αi) (indices are taken modulo 3). Let also Γ̃i be the unique minimal gallery joining
xi,i+1 to xi,i−1. Finally, let Γ be the gallery obtained by concatenating the Γi’s and the
Γ̃i’s. Hence

Γ = Γ0 ∼ Γ̃1 ∼ Γ2 ∼ Γ̃0 ∼ Γ1 ∼ Γ̃2.

Notice that Γ is closed by construction. We say that the gallery Γ skirts around the
triangle T and that the set of vertices {σ0, σ1, σ2} supports Γ. The perimeter of T is
the minimum of the set of lengths of all galleries that skirt around T .

For 0 ≤ i ≤ 2, we define ]σi−1, σi+1[Γ to be the set of all σ ∈ ∂2αi
that are crossed by Γ, i.e. such that Γ crosses a panel contained in σ. We
also set [σi−1, σi+1]Γ :=]σi−1, σi+1[Γ∪{σi−1, σi+1}, [σi−1, σi+1[Γ:=]σi−1, σi+1[Γ∪{σi−1} and
]σi−1, σi+1]Γ :=]σi−1, σi+1[Γ∪{σi+1}. We record that two distinct elements of [σi−1, σi+1]Γ
are never parallel.

Lemma 5.1. Let T = {α0, α1, α2} be a combinatorial triangle, let {σ0, σ1, σ2} be a set of
vertices and let Γ be a gallery supported by {σ0, σ1, σ2} and which skirts around T . Then
for all 0 ≤ i 6= j ≤ 2 we have the following.
(1) For all σ ∈]σi, σj]Γ, rαi

is the only reflection that stabilizes both σi and σ.
(2) If σ ∈]σi, σj[Γ then σ ⊆ αi ∩ αj;
(3) Let k be such that {0, 1, 2} = {i, j, k}, let σ ∈]σi, σj[Γ and let τ ∈]σi, σk[Γ. Assume

that r is a reflection that stabilizes both σ and τ . Then σi is contained in one of
the roots associated with r and every element of [σj, σk]Γ is contained in the other.

Proof. (1) If there existed a reflection r 6= rαi
which stabilizes both σi and σ, then σi
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and σ would be parallel. This contradicts the fact that σ ∈]σi, σj]Γ, which proves
(1).

(2) By (1), we know that neither rαi
nor rαj

stabilizes σ.

Suppose that σ ⊆ −αi. Since σi ⊆ αi, it follows that Γ crosses the wall ∂αi. So,
there exists σ′ ∈]σi, σ[Γ∩∂

2αi ⊂]σi, σj[Γ∩∂
2αi. We have just seen that rαi

does not
stabilize any element of ]σi, σj[Γ. This contradiction shows that σ ⊆ αi and by
symmetry, it follows that σ ⊆ αj.

(3) Let ψ be the root containing projσ(σi) and such that rψ = r. Clearly, we have σi ⊆ ψ.
Moreover, σj ⊆ −ψ and σk ⊆ −ψ because projσ(σj) ⊆ −ψ and projσ(σk) ⊆ −ψ.

Let σ′ ∈]σj, σk[Γ and assume that σ′ ∈ ∂2ψ. Since σj and σk are both contained in
−ψ, it follows that there exists a τ ′ ∈]σj, σk[Γ∩∂

2ψ with τ ′ 6= σ′. Therefore, σ′ and
τ ′ are distinct and both are stabilized by rψ and rαi

. Furthermore, by (2) we have
rψ 6= rαi

from which it follows that σ and τ ′ are parallel. This is impossible.

Thus rψ does not stabilize any element of [σj, σk]Γ. We have seen above that σj and
σk are both contained in −ψ. We deduce by an argument as in the proof of (2)
above that every element of [σj, σk]Γ is contained in −ψ.

Coxeter decompositions of combinatorial triangles

Let T = {α0, α1, α2} be a combinatorial triangle. For each 0 ≤ i ≤ 2, let φi be a root
such that {αi, φi} is a geometric pair and that rαi+1

∈ 〈rαi
, rφi

〉 (indices are taken modulo
3). Then we have αi∩φi ⊆ αi∩αi+1 and we say that φi is a decomposing root of T . A
decomposing root φi is called standard if 〈rαi

, rαi+1
〉 = 〈rαi

, rφi
〉. For each 0 ≤ i ≤ 2, we

put ψ0
i := −αi, ψ

1
i := φi and ψni := rψn−1

i
(−ψn−2

i ) for n ≥ 2. Let µi be the smallest integer
n such that ψni = αi+1. The number µi is called the multiplicity of the decomposing
root φi. In that situation, we say that the decomposing roots φ0, φ1 and φ2 induce a
Coxeter decomposition of T with multiplicities (µ0, µ1, µ2). Notice that every triangle
has standard decomposing roots. Notice that a triangle T is geometric if and only if it
admits a Coxeter decomposition with multiplicities (1, 1, 1).

The following lemma is a combinatorial analogue of Lemma 1 in [7].

Lemma 5.2. Let T = {α0, α1, α2} be a combinatorial triangle and let φ0, φ1, φ2 be de-
composing roots. Then there exists a geometric triangle T̃ such that W (T̃ ) = 〈W (T ) ∪
{rφ0

, rφ1
, rφ2

}〉.

Proof. Let p be the perimeter of T . Let Γ be a closed gallery of length p that skirts
around T and let {σ0, σ1, σ2} be a set of vertices that supports Γ.

The proof is by induction on p.
Assume that p = 0. Then σ0, σ1 and σ2 have a chamber in common, which implies

that T is geometric and that each decomposing root of T is standard. The result follows
by choosing T̃ = T .

Assume that p > 0. Then Γ is a nontrivial closed gallery and is a fortiori not min-
imal. If {φ0, φ1, φ2} coincides with T , then the result follows again by choosing T̃ = T .
Otherwise, we may assume without loss of generality that the decomposing root φ0 does

9



not belong to T . Therefore, Γ crosses the wall ∂φ0 twice. By Lemma 5.1(1), it follows
that there exists a residue σ ∈]σ1, σ2[Γ which is stabilized by rφ0

. Using Lemma 5.1(2)
and (3), we deduce that T1 = {α0, φ0, α2} is a combinatorial triangle. By construction,
we have W (T1) = 〈W (T ) ∪ {rφ0

}〉. Moreover, it follows from the definition of Γ that the
perimeter of T is strictly smaller than p. Now, we apply the induction hypothesis to T1

endowed with a set of standard decomposing roots. This yields a geometric triangle T̃1

such that W (T̃1) = W (T1) = 〈W (T ) ∪ {rφ0
}〉. If rφ1

and rφ2
belong to W (T̃1), then we

define T̃ := T̃1 and we are done.
Suppose that rφ1

6∈ W (T1). Then T̃1 possesses a W (T̃1)-conjugate T2 = {β0, β1, β2}
such that 〈rβ0

, rβ2
〉 = 〈rα0

, rα2
〉 and that φ1 is a non-standard decomposing root of T2.

Since T̃1 and T2 have the same perimeter < p, the induction hypothesis yields a geometric
triangle T̃2 such that W (T̃2) = 〈W (T2) ∪ {rφ1

}〉 = 〈W (T ) ∪ {rφ0
, rφ1

}〉. If rφ2
∈ W (T̃2),

then we set T̃ := T̃2 and we are done. Otherwise, we apply to T̃2 the argument we have
just applied to T̃1. This yields a geometric triangle T̃ such thatW (T̃ ) = 〈W (T̃2)∪{rφ2

}〉 =
〈W (T ) ∪ {rφ0

, rφ1
, rφ2

}〉.

In the situation of Lemma 5.2, we say that T̃ is a fundamental triangle of the given
decomposition of T . We define the type of that decomposition to be the type of T̃ (or
the type of the Coxeter system (W (T̃ ), R(T̃ ))).

The following result justifies the similarities between the terminology introduced in
the preceding section and in the current one.

Lemma 5.3. Let T be a combinatorial triangle. Then every Coxeter decomposition of
T of hyperbolic type corresponds canonically to a Coxeter decomposition of a genuine
hyperbolic triangle (and thus to one of the decompositions represented in Figure 1). These
two decompositions have the same type and the same multiplicities.

Proof. Assume that T has a Coxeter decomposition of hyperbolic type with fundamental
triangle T̃ . Let (k, l,m) be the type of T̃ . Since T̃ has hyperbolic type, the Coxeter
group W (T̃ ) can be realized as the group generated by the reflection through the edge
of a compact geodesic triangle of H2 whose angles are π

k
, π
l

and π
m

. Now, the result is a
consequence of Lemma 2.4.

Corollary 5.4. Let T be a combinatorial triangle. Then the following statements are
equivalent.

(i) T is of spherical (resp. affine, hyperbolic) type.
(ii) every Coxeter decomposition of T is of spherical (resp. affine, hyperbolic) type.
(iii) T admits a Coxeter decomposition of spherical (resp. affine, hyperbolic) type.

Proof. In the spherical case, the equivalence between (i), (ii) and (iii) is an immediate
consequence of the definitions and of Lemma 5.2. If T is affine, then T has no decom-
position of hyperbolic type in view of Lemma 5.3. This proves that (i) implies (ii) in
the affine case. The implication (ii) ⇒ (iii) is immediate, because any triangle admits a
Coxeter decomposition in view of from Lemma 5.2. A case by case consideration of the
Coxeter complexes of affine type shows that if T admits a Coxeter decomposition of affine
type, then T has to be affine. This proves that (iii) implies (i) in the affine case. Now,
the desired equivalences in the hyperbolic case follow at once.
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A preparatory lemma

The following lemma collects a series of technicalities that are needed in the proof of
Theorem 1.1.

Lemma 5.5. Let T = {α0, α1, α2} be a combinatorial triangle, {σ0, σ1, σ2} be a set of
vertices of T and Γ be a gallery supported by {σ0, σ1, σ2} and which skirts around T . Let

σ ∈]σ1, σ2[Γ and let nσ := |σ|
2
. Then we have the following.

(1) there exists an integer 1 ≤ fσ ≤ nσ − 1 and a geometric pair of roots {φσ, ψσ} of σ
such that rφσ

rψσ
has order nσ and that, up to interchanging α1 and α2 if necessary,

one of the following situations occurs:
(i) fσ = nσ − 1, Tσ := {α0, α1, φσ} is a combinatorial triangle and rφσ

(−ψσ) is
a decomposing root of Tσ of multiplicity fσ; moreover, there exists a residue
τ ∈ [σ0, σ2[Γ such that {σ2, σ, τ} is a set of vertices of Tσ;

(ii) fσ < nσ−1, Tσ := {α0, α1, φσ} (resp. T ′
σ := {α0, α2, ψσ}) is a combinatorial

triangle and rφσ
(−ψσ) (resp. rψσ

(−φσ)) is a decomposing root of Tσ (resp.
T ′
σ) of multiplicity fσ (resp. nσ − fσ − 1); moreover, there exists a residue
τ ∈ [σ0, σ2[Γ (resp. τ ′ ∈]σ0, σ1[Γ) such that {σ2, σ, τ} (resp. {σ1, σ, τ}) is a
set of vertices of Tσ (resp. T ′

σ).

(2) Assume that T is non-spherical and that Tσ and T ′
σ (if it exists) are both hyperbolic.

Assume also that no reflection of σ stabilizes σ0. If nσ > 3 then the product rα0
rα2

is of order at least 3 except if nσ = 7 and T has type (2, 7, 7).

(3) Assume that T is non-spherical and geometric and that Tσ and T ′
σ (if fσ < nσ − 1)

are both hyperbolic and that rα1
rα2

has order 2. Assume also that no reflection of
σ stabilizes σ0. Assume finally that there exists a root φ′

σ such that rφ′σ stabilizes
σ, that α0 ∩ φ′

σ ⊆ α ∩ φσ and that rα1
rφ′σ has order 2. Then one of the following

situations occur:
(a) nσ = 7 and the pair {α0, φ

′
σ} is not geometric;

(b) nσ = 4, fσ = 1 and o(rα0
rα2

) ≥ 5;
(c) nσ = 3, fσ = 2 and o(rα0

rα2
) ≥ 4 unless {α0, α2,−φσ} is an affine triangle;

(d) nσ = 3 and fσ = 1.

Proof. (1) Let φ1, φ2 . . . φnσ
be roots such that {rφ1

, . . . , rφnσ
} is the set of all reflections

that stabilize σ. We may choose the φi’s in such a way that φnσ
= α0 and that

φ1 ∩ (−φi) ⊆ φ1 ∩ (−φj) for all 1 ≤ i ≤ j ≤ nσ (see Figure 2). By the definition of
Γ and by Lemma 5.1(3), it follows that Γ crosses every wall ∂φ1, . . . , ∂φnσ−1 exactly
twice. Up to interchanging α1 and α2 if necessary, we may assume that there exists
a residue τ ∈ [σ0, σ2[Γ∩∂

2φ1. We define

fσ := max{i|1 ≤ i ≤ nσ − 1, there exists τ ∈ [σ0, σ2[Γ∩∂
2φi}.

We also set φσ := φfσ
and ψσ := −φfσ+1. By the definition of fσ, we have 1 ≤

fσ ≤ n − 1 and if fσ < n − 1 then there exists a residue τ ′ ∈]σ0, σ1[Γ∩∂
2ψσ. Let

Tσ := {α0, α1, φσ} and if fσ < nσ − 1 then let T ′
σ := {α0, α2, ψσ}. Then Tσ and T ′

σ

satisfy (CT1). The fact that they also satisfy (CT2) and (CT3) is a consequence of
Lemma 5.1. Now, all assertions of Part (1) follow at once.
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α0

α2

α1

φσ = φfσ

ψσ = −φfσ+1

φnσ−1
σ1

σ0

σ2

σ

φ1

τ

τ ′

Figure 2: Proof of Lemma 5.5(1)

(2) Suppose by contradiction that o(rα0
rα2

) = 2. Since Tσ is hyperbolic and has a
decomposing root of multiplicity fσ, it follows from Lemma 5.3 that fσ ≤ 4 and
that if nσ ≤ 6 then fσ ≤ 2. Moreover, if fσ = nσ − 1 (i.e. if we are in Situation (i)
of Part (1)) then Lemma 5.3 implies that nσ = 3, contradicting the hypothesis that
nσ > 3. Thus fσ < nσ − 1 and T ′

σ is defined.

Hence T ′
σ is hyperbolic (by hypothesis) and has a decomposing root of multiplicity

nσ − fσ − 1 (by Part (1)). Since rα0
rα2

has order 2, the combinatorial triangle
T ′
σ corresponds to a genuine hyperbolic triangle that possesses an angle π

2
. By

Lemma 5.3, this implies that nσ − fσ − 1 ≤ 2 and that nσ − fσ − 1 = 1 if nσ ≤ 6.

Combining the conclusions of the preceding two paragraphs, we obtain (nσ, fσ) ∈
{(7, 4), (4, 2)}.

By Part (1) and the hypothesis that rφσ
does not stabilize σ0, we know that there

exists a residue τ ∈]σ0, σ2[ that is stabilized rφσ
and that the set {σ2, σ, τ} is a set

of vertices of Tσ.

Assume that (nσ, fσ) = (7, 4). Then the Coxeter decomposition of Tσ induced by
rφσ

(−ψσ) corresponds to the decomposition ♯5 in Figure 1 (see Lemma 5.3). This
implies that rα0

rα1
and rα1

rφσ
have both order 7 and that {α0, α1} is a geometric

pair. Now, we apply Part (1) to the triangle T and the residue τ ∈]σ0, σ2[Γ. Since
o(rα1

rφσ
) = 7, we have nτ ≥ 7. We may assume that Tτ = {α0, α1, φτ}. Further-

more, Tσ is a subtriangle of Tτ . In view of Corollary 5.4 and the fact that Tσ is
hyperbolic, it follows that Tτ is hyperbolic. Using again the fact Tσ is a subtriangle
of Tτ combined with Lemma 5.3, we obtain fτ ≤ 2. Hence, we have fτ < nτ − 1
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and we are in Situation (ii) of (1) for τ . The triangle T ′
τ has a decomposing root of

multiplicity nτ − fτ − 1 and nτ − fτ − 1 ≥ 4 because nτ ≥ 7 and fτ ≤ 2.

Assume that nτ − fτ − 1 ≥ 5. All multiplicities of a Coxeter decomposition of a
hyperbolic (resp. affine) triangle are lesser than or equal to 4. Thus T ′

τ is spherical.
The type of the Coxeter decomposition of T ′

τ induced by rψτ
(−φτ ) is (nτ , k, l) for

some integers k, l. Since nτ ≥ 7, Corollary 5.4 gives k = l = 2. We deduce that the
order of rα1

rα2
= 2 which implies that T has type (2, 2, 7). This implies that T has

spherical type, in contradiction with one of the hypotheses.

Thus nτ − fτ − 1 = 4, fτ = 2 and nτ = 7. The Coxeter decomposition of T ′
τ induced

by the decomposing root rψτ
(−φτ ) corresponds to the decomposition ♯5 in Figure 1.

This finally implies that rα1
rα2

has order 7, and thus that T has type (2, 7, 7). This
proves the result in the case nσ = 7.

It remains to treat the case (nσ, fσ) = (4, 2). Let x be the order of rα0
rα1

and y be the
order of rα2

rψσ
. The Coxeter decomposition of Tσ induced by the decomposing root

rφσ
(−ψσ) corresponds to the decomposition ♯1 in Figure 1. Since Tσ is hyperbolic,

we deduce that x ≥ 5, that x also equals the order of rα1
rφσ

and that Tσ is geometric
of type (2, x, x). Now, using the solution of the word problem for Coxeter groups,
an easy computation in the Coxeter system (W (Tσ), R(Tσ)), shows that the order
of rψσ

rα1
is infinite.

On the other hand, the triangle T ′
σ has type (2, 4, y) and we have y ≥ 5 because

T ′
σ is hyperbolic. Furthermore, we know by Part (1) that there exists a residue
τ ′ ∈]σ0, σ1[ such that {σ1, σ, τ

′} is a set of vertices of T ′
σ. Now, we apply Part (1) to

the triangle T and the residue τ ′. We may assume that Tτ ′ = {α0, α1, φτ ′}. Since
y ≥ 5 we have nτ ′ ≥ 5. Moreover, since T ′

σ is hyperbolic and is a subtriangle of Tτ ′ ,
it follows from Corollary 5.4 that Tτ ′ is hyperbolic. Therefore, Lemma 5.3 implies
that fτ ′ ≤ 2 in view of the fact that rα0

rα1
has order 2.

If fτ ′ = 2 then the Coxeter decomposition of Tτ ′ induced by rφτ ′
(−ψτ ′) corresponds

to decomposition ♯2 in Figure 1. Since T ′
σ is a subtriangle of Tτ ′ , this implies that

T ′
σ is of type (2, 3, y) or (2, y, 2y) where y ≥ 5. But we have seen above that T ′

σ has
type (2, 4, y). This is a contradiction. Hence, fτ ′ = 1.

Therefore, the triangle T ′
τ ′ is defined and has a decomposing root of multiplicity

nτ ′ − fτ ′ − 1 = nτ ′ − 2. As nτ ′ ≥ 5, we deduce that T ′
τ ′ is spherical. Since rα1

and
rφσ

= rφτ ′
both belong to W (T ′

τ ′), it follows that rα1
rψσ

has finite order. This is
impossible because we have seen above that the order of rα1

rψσ
is infinite.

This finishes the proof of (2).

(3) Since the order of rα1
rα2

equals 2, it follows that T̄ = {α0, α2, rα1
(α2)} is a combi-

natorial triangle and that {σ1, σ2, rα1
(σ1)} is a set of vertices for T̄ . Let x2,0 (resp.

x0,2) be the only chamber of projσ2
(σ0) (resp. projσ0

(σ2)) that belongs to α1. Let Γ̄
be the gallery obtained by concatenating Γ|x2,0→x0,2

with rα1
((Γ|x0,2→x2,0

)−1). Then
Γ̄ is a gallery supported by {σ1, σ2, rα1

(σ1) which skirts around T̄ .

Since the order of rα1
rφ′σ equals 2, it follows that rα1

(σ) ∈]rα1
(α1), σ2[Γ̄ and that

{α0, rα1
(α0), φ

′
σ} is a triangle with decomposing root α1 (see Figure 3).

Now, we apply Part (1) to the triangle T̄ and the residue σ. This yields a number 1 ≤
f̄σ ≤ nσ−1, a geometric pair of roots {φ̄σ, ψ̄σ} and a triangle T̄σ = {α0, rα1

(α0), φ̄σ}
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α2

α0 α1

σ rα1
(σ) φ′

σ

rα1
(α0)

Figure 3: Proof of Lemma 5.5(3).

(and a triangle T̄ ′
σ = {α0, ψ̄σ, α2} if f̄σ < nσ − 1). Since Γ|x0,2→x2,0

crosses ∂φ̄σ, it
follows that f̄σ ≤ fσ.

If T ′
σ exists, namely if fσ < nσ − 1, then f̄σ < nσ − 1 and T̄ ′

σ exists as well. In that
case, T ′

σ is a subtriangle of T̄ ′
σ and, hence, the fact that T ′

σ is hyperbolic implies that
T̄ ′
σ is hyperbolic as well in view of Corollary 5.4. Therefore, we obtain nσ−f̄σ−1 ≤ 4.

On the other hand, since {α0, α1, φ
′
σ} is a subtriangle of both Tσ and T̄σ, it follows

from Corollary 5.4 and from the fact that Tσ is hyperbolic, that T̄σ is hyperbolic.
Therefore, by Lemma 5.3, either f̄σ = 1 and the Coxeter decomposition of T̄σ
induced by the decomposing roots α1 and rφ̄σ

(−ψ̄σ) corresponds to decomposition
♯1 of Figure 1 or the Coxeter decomposition of T̄σ induced by the decomposing roots
α1 and rφ̄σ

(−ψ̄σ) corresponds to decomposition ♯6 of Figure 1, f̄σ = 2 and nσ ≥ 7.

In the second case, we obtain nσ = 7 because nσ − f̄σ − 1 ≤ 4. Moreover, φ̄σ = φ′
σ

and therefore {α0, φ
′
σ} is not a geometric pair. Thus we are in Situation (a).

Now we may assume that nσ ≤ 6 and f̄σ = 1. We deduce that φ̄σ = φ′
σ.

If nσ = 5 or nσ = 6 then T̄ ′
σ exists and has a decomposing root of multiplicity 3

or 4. Since T̄ ′
σ is hyperbolic, Lemma 5.3 yields a contradiction. Therefore, we have

nσ ≤ 4.

Assume that nσ = 4. Then fσ = 1 or fσ = 2. If fσ = 1 then the Coxeter decom-
position of T ′

σ induced by rψσ
(−φσ) corresponds to decomposition ♯1 of Figure 1.

Since T ′
σ is hyperbolic, we deduce that the order of rα0

rα2
is at least 5. Thus we are

in Situation (b).

Now assume that (nσ, fσ) = (4, 2) (see Figure 4). Then φσ = −ψ̄σ because f̄σ = 1.
Let x (resp. y, y′) be the order of rα0

rα1
(resp. rα0

rα2
, rφσ

rα2
). Since Tσ is hyper-
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α2

α0 α1

σ φ′
σ

ψσ

φσ

ψτ

φτ

τ

Figure 4: Proof of Lemma 5.5(3)– the case (nσ, fσ) = (4, 2).

bolic, its Coxeter decomposition induced by the decomposing root φ′
σ corresponds

to decomposition ♯1 if Figure 1. Hence Tσ has type (2, x, x), we have x ≥ 5 and x is
also the order of rα1

rφσ
. Since T̄ ′

σ is hyperbolic, its Coxeter decomposition induced
by the decomposing root rψ̄σ

(−φ̄σ) corresponds to decomposition ♯1 of Figure 1. It
follows that y = y′ ≥ 5.

Let τ ∈]σ0, σ2[Γ be such that {σ0, σ, τ} is a set of vertices of Tσ (see Part (1) and note
that τ 6= σ0 in view of the hypothesis that rφσ

does not stabilize σ0). Now we apply
Part (1) to the triangle T and the residue τ . We may assume that Tτ = {α0, α1, φτ}.
Since Tσ is hyperbolic and is a subtriangle of Tτ , it follows that Tτ is hyperbolic by
Corollary 5.4. Using Lemma 5.3, we obtain fτ ≤ 2.

On the other hand, the set {−φσ,−α1, α2} is a geometric hyperbolic triangle of type
(2, x, y) and we have x, y ≥ 5. Applying Lemma 5.3 to the triangle {−φσ, α2, ψτ}
(which contains T ′

τ and {−φσ,−α1, α2} as subtriangles) and its decomposing root
−α1, we deduce that nτ − fτ − 1 = 1.

Combining the conclusions of the preceding two paragraphs, we obtain nτ ≤ 4 which
contradicts the fact that the order of rα1

rφσ
equals x ≥ 5. This proves that the case

nσ = 4 and fσ = 2 is impossible.

It remains to consider the case (nσ, fσ) = (3, 2). We have to prove that Situation (c)
occurs. In other words, we have to prove that if o(rα0

rα2
) ≤ 3 then {α0, α2,−φσ} is

an affine triangle.

Notice that ψ̄σ = −φσ, and thus {α0, α2,−φσ} = T̄ ′
σ. We define x, y, y′ and τ as in

the case (nσ, fσ) = (4, 2) above. We assume that y ≤ 3. Since Tσ is hyperbolic, its

15



Coxeter decomposition induced by the decomposing root φ′
σ corresponds to decom-

position ♯1 if Figure 1. Hence the triangle {α0, α1, φ
′
σ} has type (2, 3, x), we have

x ≥ 7 and x is also the order of rα1
rφσ

.

Notice that y > 2 because T is non-spherical and because the order of rα0
rα1

equals
2. Thus we have y = 3.

Suppose by contradiction that T̄ ′
σ is not affine. Then y′ ≥ 4.

Now, as above, we apply Part (1) to the triangle T and the residue τ . We may
assume that Tτ = {α0, α1, φτ}. Since Tσ is hyperbolic and is a subtriangle of Tτ , it
follows that Tτ is hyperbolic by Corollary 5.4. Using Lemma 5.3, we obtain fτ ≤ 4.

On the other hand, the set {−φσ,−α1, α2} is a geometric hyperbolic triangle of type
(2, x, y′) and we have x ≥ 7 and y′ ≥ 4 (see Figure 4). Applying Lemma 5.3 to the
triangle {−φσ, α2, ψτ} (which contains T ′

τ and {−φσ,−α1, α2} as subtriangles) and
its decomposing root −α1, we deduce that nτ − fτ − 1 = 1.

Combining the conclusions of the preceding two paragraphs, we obtain nτ ≤ 6 which
contradicts the fact that the order of rα1

rφσ
equals x ≥ 7. This shows that T̄ ′

σ is
affine.

The proof is complete.

6 Proof of Theorem 1.1

Assume by contradiction that there are infinitely many conjugacy classes of reflection
triangles.

We divide the proof into several steps.

Step 1: there are infinitely many conjugacy classes of relfection triangles of type M,
where M is some fixed rank 3 Coxeter diagram of compact hyperbolic type.
This follows directly from Lemma 2.1 and the pigeonhole principle.

Step 2: there exist two geometric triangles T and U of type M such that
⋂
U (

⋂
T .

For each reflection triangle {a, b, c} such that (〈a, b, c〉, {a, b, c}) is a Coxeter system of
type M, there exists a geometric combinatorial triangle T such that R(T ) = {a, b, c}.
This follows from Step 1 and the main theorem of [5].

Hence, we know that Σ(W,S) contains an infinite family {Ti}i∈I of geometric triangles
of type M such that Ti is not W -conjugate to Tj whenever i 6= j.

For each i ∈ I we write Ti = {αi, βi, γi} in such a way that the order of rαi
rβi

is
constant when i varies in I. Using Lemma 2.1 and the finiteness of S again, we deduce
from the pigeonhole principle that there exist a fixed geometric pair of roots {α, β} and
an infinite subset I ′ ⊆ I such that for every i ∈ I ′, the roots αi and βi are simultaneously
conjugate to α and β respectively. Replacing I by I ′ and some of the Ti’s by one of their
conjugate if necessary, we may thus assume that Ti = {α, β, γi} for each i ∈ I.

The fact that the Ti’s are pairwise non-conjugate implies that the γi’s are pairwise
distinct. Thus, {rγi

}i∈I is an infinite family of reflections of W . By Lemma 3 in [11]
(see also Proposition 1.4 in [3]) there exist indices i, j ∈ I such that the order of rγi

rγj

is infinite. Up to interchanging i and j, we may assume that the root γi is properly
contained is the root γj.
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We set γ := γi, γT := γj, U := Ti = {α, β, γ} and T := Tj = {α, β, γT}. Since γ ( γT
we have

⋂
φ∈U φ (

⋂
φ∈T φ.

Step 3: there exists no geometric triangle T̃ such that W (T ) ∪W (U) ⊆ W (T̃ ).
Assume on the contrary that such a geometric triangle T̃ does exist. Since T and U are
both hyperbolic, so is T̃ by Corollary 5.4.

Therefore, by Lemma 2.4, the combinatorial triangles T and U corresponds to genuine
hyperbolic triangles T and U respectively.

Since the combinatorial triangles T and U are both geometric of type M, the genuine
hyperbolic triangles T and U have the same angles and, hence, they have the same area.
On the other hand, Step 2 implies that U ( T , a contradiction.

Step 4.
Let {π, σ, ρ} (resp. {π, σT , ρT}) be a set of vertices of U (resp. T ), where π is stabilized
by 〈rα, rβ〉, and σ (resp. σT ) is stabilized by 〈rα, rγ〉 (resp. 〈rα, rγT

〉). Let Γ be a gallery
supported by {π, σT , ρT} which skrts around T .

We have π ⊆ γ and since the order of rγrγT
is infinite (see Step 2), we deduce that σT

and ρT are contained in −γ. It follows that σ ∈]π, σT [Γ and ρ ∈]π, ρT [Γ.

Step 5: there exists no reflection that stabilizes both σ and ρT (resp. ρ and σT ).
Assume there exists a root φ such that rφ stabilizes both σ and ρT . By Lemma 5.1(2)
we have rφ 6= rβ, which implies that π 6∈ ∂2φ by Lemma 5.1(1). Therefore, replacing φ
by −φ if necessary, we may assume that π ⊆ φ. Then Tφ := {α, β, φ} is a combinatorial
triangle.

Let ψ1 (resp. ψ2) be a root such that {φ, ψ1} (resp. {φ, ψ2}) is a geometric pair
and that 〈rφrψ1

〉 = StabW (σ) (resp. 〈rφrψ2
〉 = StabW (ρT )). Then W (T ) ∪ W (U) ⊆

〈W (Tφ)∪{ψ1, ψ2}〉. But ψ1 and ψ2 are decomposing roots of Tφ, which implies by Lemma
5.2 that there exists a geometric triangle T̃ such that W (T ) ∪ W (U) ⊆ W (T̃ ). This
contradicts Step 3.

The other assertion follows by symmetry.

Final step.
Now, we apply Lemma 5.5(1) to the triangle T and the residue σ. We may assume
that Tσ = {α, β, φσ}. Since U is hyperbolic and is a subtriangle of Tσ, it follows from
Corollary 5.4 that Tσ is hyperbolic.

If fσ = nσ − 1, then Lemma 5.3 applied to Tσ implies that fσ = 2. Therefore, we
obtain nσ = fσ + 1 = 3 in this case.

If fσ < nσ − 1, then T ′
σ is hyperbolic as well. Indeed, if T̃ ′ is a fundamental triangle

of the Coxeter decomposition of T ′
σ induced by the decomposing root rψσ

(−φσ), then rγT

and rγ both belong to W (T̃ ′). Since rγrγT
has infinite order (see Step 2) and since there

is no affine triangle in Σ(W,S), it follows that T̃ ′ is hyperbolic, and so is T ′
σ in view of

Corollary 5.4. Now, Lemma 5.3 applied to Tσ and to T ′
σ implies that fσ ≤ 4 and that

nσ − fσ − 1 ≤ 4.
In all cases, we have nσ − 5 ≤ fσ ≤ 4 and, hence, nσ ≤ 9. The rest of the proof

consists in a case by case discussion based on the value of nσ which will eventually provide
a contradiction.

Let x (resp. y, z, yT , zT ) be the order of rαrβ (resp. rβrγ , rαrγ, rβrγT
, rαrγT

). Thus
(x, y, z) (resp. (x, yT , zT )) is the type of U (resp. T ). Since T and U are of the same type,
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we deduce that

(y, z) = (yT , zT ) or (y, z) = (zT , yT ).

In the sequel, we will refer to the preceding fact as Fact 1.
Another relevant fact that will be useful in our discussion, is that

a combinatorial triangle of type (k, l,m) that is hyperbolic and geometric corresponds to
a genuine hyperbolic triangle whose angles are π

k
, π
l
, π
m

.

In the sequel, we will refer to the preceding fact as Fact 2.
We are now ready to start the discussion.

Case 1: nσ = 9.

Then fσ = 4. We apply Lemma 5.3 to Tσ. This implies that x = 9. Moreover, since
U is geometric and is a subtriangle of Tσ, it follows from Fact 2 that y = z = 3. By Fact
1, we deduce that yT = zT = 3.

On the other hand, Lemma 5.3 applied to T ′
σ implies that zT = 9. This is a contra-

diction.

Case 2: nσ = 8.
Then fσ = 3 or fσ = 4. We apply Lemma 5.3 to Tσ, which implies that (x, y, z) ∈
{(3, 2, 8), (3, 3, 4), (8, 2, 4), (8, 8, 2)} and that there exists a root φ′

σ such that rφ′σ stabilizes
σ, that α∩φ′

σ ⊆ φσ and that the order of rφ′σrφσ
equals 2. If (x, y, z) = (3, 3, 4), then fσ = 3

and Lemma 5.3 applied to T ′
σ shows that zT = 8, contradicting Fact 1. In the other cases,

the fact that U is geometric together with Fact 2 implies that (y, z) ∈ {(2, 4), (8, 2)}. By
Fact 1 together with Lemma 5.5(2), it follows that (yT , zT ) ∈ {(2, 4), (2, 8)}. Therefore,
we may apply Lemma 5.5(3), which provides a contradiction.

Case 3: nσ = 7.
Then fσ = 2, 3 or 4.

By Fact 2 and the fact that U is geometric, it follows that fσ = 4 is impossible.
If fσ = 3, the same argument shows that x = 3, y = 2 and z = 7. On the other hand,

Lemma 5.3 applied to T ′
σ implies that zT = 3 or zT = 7. By Fact 1, we obtain yT = 2

and zT = 7. Thus T has type (2, 3, 7). But we may now apply Lemma 5.5(3) by taking
φ′
σ = γ, which yields a contradiction.

If fσ = 2 then by Fact 2, we obtain (x, y, z) ∈ {(x0, 2, 7), (2, 3, 7)} where x0 ≥ 7.
Furthermore, Lemma 5.3 applied to T ′

σ implies that zT = 7 and o(rγT
rψσ

) = 7.
If y = 2 then yT = 2 by Fact 1. Thus we may apply Lemma 5.5(3) with φ′

σ = γ. This
provides a contradiction because U is geometric and, hence, so is {α, φ′

σ}.
Therefore, we have y = yT = 3. By Lemma 5.5(1), there exists a residue τ ′ ∈

]σT , ρT [Γ∩∂
2ψσ. Now, we apply Lemma 5.5(1) to T and the residue τ ′. We have nτ ′ ≥ 7

because o(rγT
rψσ

) = 7. We may assume that Tτ ′ = {α, γT , φτ ′}. Since T ′
σ is a subtriangle

of Tτ ′ , it follows from Lemma 5.3 that fτ ′ ≤ 2. Therefore, nτ−fτ−1 ≥ 4. Therefore, either
the triangle T ′

τ is spherical, in which case yT = 2 because nτ ′ ≥ 7 or T ′
τ is hyperbolic,

in which case nτ − fτ − 1 = 4 and yT = 7 by Lemma 5.3. In both cases, we have a
contradiction with yT = 3.

Case 4: nσ = 6.
Then fσ = 1, 2, 3 or 4.
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If fσ = 1 or 2 (resp. fσ = 3 or 4) then T ′
σ (resp. Tσ) cannot be hyperbolic by Lemma

5.3. This is a contradiction.

Case 5: nσ = 5.
Then fσ = 1, 2 or 3.

If fσ = 1 (resp. fσ = 3) then T ′
σ (resp. Tσ) cannot be hyperbolic by Lemma 5.3. Thus

fσ = 2.
By Fact 2 and the fact that U is geometric, it follows that y = 2 and z = 5. By Fact

1 together with Lemma 5.5(2), it follows that yT = 2 and zT = 5. But we may now apply
Lemma 5.5(3) by taking φ′

σ = γ, which yields a contradiction.

Case 6: nσ = 4.
Then fσ = 1 or 2. (Notice that the case fσ = 3 is impossible by the second paragraph of
the final step above.)

If fσ = 2 then we have x ≥ 5 since Tσ is hyperbolic. Moreover, since U is a subtriangle
of Tσ, we obtain (y, z) ∈ {(2, 4), (x, 2)}. By Lemma 5.5(2) and Fact 1, we deduce that
(yT , zT ) ∈ {(2, 4), (2, x)}. In all cases, we may apply Lemma 5.5(3) by taking φ′

σ =
rφσ

(ψσ), and this yields a contradiction.
If fσ = 1 then z = 4 and γ = φσ. Lemma 5.3 applied to T ′

σ implies that zT ≥ 5.
It follows from Fact 1 that y = zT ≥ 5. This implies that nρ ≥ 5. Therefore, if we
interchange the roles of α and β and, hence, interchange σ and ρ, we are back in one of
the preceding cases. This yields a contradiction.

Case 7: nσ = 3.
Then fσ = 1 or 2.

Assume that fσ = 2. By Fact 2 and the fact that U is geometric and hyperbolic, it
follows that y = 2, z = 3 and x ≥ 7. Moreover, we have also o(rβrφσ

) = x ≥ 7. By Fact 1,
we deduce that (yT , zT ) ∈ {(2, 3), (3, 2)}. Lemma 5.5(3) applied to T with φ′

σ = γ implies
that the case (yT , zT ) = (2, 3) is impossible. Hence, we have (yT , zT ) = (3, 2).

By Lemma 5.5(1), there exists a residue τ ∈]π, ρT [Γ∩∂
2φσ (the fact that τ 6= ρT

follows from Step 5). Now, we apply Lemma 5.5(1) to the residue τ and the trian-
gle T̄ := {α, β, rγT

(β)}. Since o(rβrφσ
) ≥ 7 we have nτ ≥ 7. We may assume that

T̄τ = {α, β, φτ}. Since Tσ is a subtriangle of T̄τ , it follows from Corollary 5.4 that T̄τ is
hyperbolic. Therefore, Lemma 5.3 implies that f̄τ ≤ 4.

We deduce that f̄τ < nτ − 1 and, hence, the triangle T̄ ′
τ is defined. Since T̄ ′

τ is of type
(3, nτ , k) for some integer k and since nτ ≥ 7, we deduce that T̄ ′

τ is hyperbolic. Now,
Lemma 5.3 applied to the Coxeter decomposition of T̄ ′

τ induced by the decomposing roots
rψ̄τ

(−φ̄τ ) and γT implies that nτ − f̄τ − 1 = 1.
Combining the conclusions of the preceding two paragraphs, we obtain nτ ≤ 6, a

contradiction. This proves that the case fσ = 2 does not occur.
Assume that fσ = 1. Then z = 3. If y ≥ 4 then nρ ≥ 4, and by interchanging the

roles of α and β we are back in one of the preceding cases. Thus we may assume that
y = 2 or y = 3.

Let y′ be the order of rγT
rψσ

. If zT = 2 then rγrγT
= rαrψσ

rαrγT
= rαrψσ

rγT
rα. It

follows that rγrγT
has order y′, which contradicts that fact that rγrγT

has infinite order
(see Step 2). Thus zT 6= 2.

By Fact 1, we deduce from the conclusions of the preceding two paragraphs that
zT = 3. Since T ′

σ is hyperbolic, it follows that y′ ≥ 4.
By Lemma 5.5(1), there exists a residue τ ′ ∈]σT , ρT [Γ∩∂

2ψσ. Now, we apply
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σ

τ ′
γτ

γ = φσ

β

ψσα

Figure 5: Proof of Theorem 1.1– the case (nσ, fσ, y) = (3, 1, 2).

Lemma 5.5(1) to T and the residue τ ′. We have nτ ′ ≥ 4 because y′ ≥ 4. We may
assume that Tτ ′ = {α, γT , φτ ′}. Since T ′

σ is a subtriangle of Tτ ′ , it follows from Lemma
5.3 that fτ ′ ≤ 3 and that fτ ′ = 1 if nτ ′ ≤ 6. In particular fτ ′ < nτ ′ − 1 and the triangle
T ′
τ ′ is defined.

There are two cases: either (y, yT ) = (2, 2) or (y, yT ) = (3, 3).
Assume first that (y, yT ) = (2, 2) (see Figure 5). Then x ≥ 7 because U is hyperbolic.

We remark that the order of rψσ
rβ equals x ≥ 7 because y = 2 and ψσ = rγ(−α). Thus

T̂ := {β,−γT ,−ψσ} is a triangle of type (2, x, y′) where x ≥ 7 and y′ ≥ 4. It follows that
T̂ is hyperbolic. Since there exists a geometric triangle that is a subtriangle of both T̂

and T ′
τ ′ , we deduce from Corollary 5.4 that T ′

τ ′ is hyperbolic.
Now, Lemma 5.3 together with the fact that yT = 2 implies that nτ ′ − fτ ′ − 1 ≤ 2 and

that nτ ′ − fτ ′ − 1 = 1 if nτ ′ ≤ 6. We deduce from fτ ′ ≤ 3 that nτ ′ ≤ 6. We have seen that
this implies fτ ′ = 1 and nτ ′ − fτ ′ − 1 = 1. We deduce that nτ ′ = 3, which contradicts the
fact that nτ ′ ≥ 4. Thus the case (y, yT ) = (2, 2) is impossible.

Now, assume that (y, yT ) = (3, 3). An easy computation using the solution of the
word problem for Coxeter groups in the geometric hyperbolic triangle U shows that the
order of rβrψσ

is infinite. This implies that T ′
τ ′ is not spherical. Thus T ′

τ ′ is hyperbolic
since there are no affine triangles in Σ(W,S). Therefore, Lemma 5.3 together with the
fact that yT = 3 implies that nτ ′ − fτ ′ − 1 ≤ 3 and that nτ ′ − fτ ′ − 1 = 1 if nτ ′ ≤ 6. We
have seen above that fτ ′ ≤ 3 and that fτ ′ = 1 if nτ ′ ≤ 6. It follows that (nτ ′ , fτ ′) = (7, 3)
and that o(rαrφτ ′

) = 7.
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σ

τ ′

τ ′′

τ ′′′

γτ

φσ

ψσα β

φτ ′

ψτ ′′

ψτ ′′′

Figure 6: Proof of Theorem 1.1– the case (nσ, fσ, y) = (3, 1, 3).

By Lemma 5.5(1) applied to T and τ ′, there exists a residue τ ′′ ∈ [π, σT [Γ∩∂
2φτ ′ .

Moreover, if τ ′′ = π then β = φτ ′ because x ≥ 7 and o(rαrφτ ′
) = 7. This contradicts

Lemma 5.1(2). Thus τ ′′ ∈]π, σT [Γ (see Figure 6).
Now, we apply Lemma 5.5(1) to T and the residue τ ′′. Since o(rαrφτ ′

) = 7, it follows
that nτ ′′ ≥ 7. We may assume that Tτ ′′ = {α, γT , φτ ′′}. Since Tτ ′ is a subtriangle of Tτ ′′ ,
we deduce from Corollary 5.4 that Tτ ′′ is hyperbolic. Therefore, it follows from Lemma 5.3
that fτ ′′ ≤ 2. Thus the triangle T ′

τ ′′ is defined. It is of type (nτ ′′ , x, k) for some integer k,
and we have nτ ′′ , x ≥ 7. Thus T ′

τ ′′ is hyperbolic. By Lemma 5.3, we have nτ ′′−fτ ′′−1 ≤ 4.
We deduce that (nτ ′′ , fτ ′′) = (7, 2) and that rβrψτ ′′

has order 7. Furthermore, by Lemma
5.5(1), there exists a residue τ ′′′ ∈]π, ρT [Γ∩∂

2ψτ ′′ .
Now, we redo the discussion of the preceding paragraph with the residue τ ′′′. We apply

Lemma 5.5(1) to T and the residue τ ′′′. Since o(rβrψτ ′′
) = 7, it follows that nτ ′′′ ≥ 7. We

may assume that Tτ ′′′ = {α, β, φτ ′′′}. Since T ′
τ ′′ is a subtriangle of Tτ ′′′ , we deduce from

Corollary 5.4 that Tτ ′′′ is hyperbolic. Therefore, it follows from Lemma 5.3 that fτ ′′′ ≤ 2.
Thus the triangle T ′

τ ′′′ is defined. It is of type (nτ ′′′ , yT , k
′) for some integer k′, and we have

nτ ′′′ ≥ 7 and yT = 3. Thus T ′
τ ′′′ is hyperbolic. By Lemma 5.3, we have nτ ′′′ − fτ ′′′ − 1 ≤ 3

because yT = 3. Combining the latter inequality with fτ ′′′ ≤ 2, we obtain nτ ′′′ ≤ 6, a
contradiction.

Thus the case (y, yT ) = (3, 3) is impossible as well.

Case 8: nσ = 2.
Since U is not spherical, we deduce that y ≥ 3. This implies that nρ ≥ 3. By interchanging
the roles of α and β, we are back to one of the preceding cases.

21



References

[1] P. Bahls. Some new biautomatic Coxeter groups. Preprint, 2004.
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