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ABSTRACT. A Coxeter system (W, S) is called affine-free if its
Coxeter diagram contains no affine subdiagram of rank > 3. Let
(W, S) be a Coxeter system of finite rank (i.e. |S| is finite). The
main result is that W is affine-free if and only if W has finitely
many conjugacy classes of reflection triangles. This implies that
the action of W on its Coxeter cubing (defined by Niblo-Reeves
[11]) is cocompact if and only if (W, S) is affine-free. This result
was conjectured in loc. cit. As a corollary, we obtain that affine-
free Coxeter groups are biautomatic.

1 Introduction

1.1 The main result

Let (W, S) be a Coxeter system of finite rank (i.e. |S| is finite) and let ¢;,t5,t3 € SV be
3 reflections. We say that T' := {t1,t2,t3} is a reflection triangle if the order of ¢;t; is
finite for all 1 <7 < j < 3 and if T is not contained in a rank 2 parabolic subgroup of
W. It is known that given a triangle 7', there exists a triangle 7" such that (T') = (T")
and ((T'),T") is a Coxeter system. Moreover, the Coxeter diagram of ((7"),7") is uniquely
determined by 7" and we denote it by M(T). We say that T is affine (resp. spherical,
hyperbolic) if M(T) is affine (resp. spherical, hyperbolic).
Here is our main result.

*F.N.R.S. research fellow

AMS subject classification codes (2000) : 20F28, 20F55.
Keywords: Coxeter group, biautomatic.



Theorem 1.1. Suppose (W, S) does not contain an affine reflection triangle. Then there
are only finitely many conjugacy classes of reflection triangles.

It is well-known that in an arbitrary Coxeter system of finite rank, there are finitely
many conjugacy classes of spherical reflection triangles. On the other hand, it is obvious
that Coxeter groups of type A, Cy and G possess infinitely many conjugacy classes
of affine reflection triangles. Based on recent work of the first author, there is strong
evidence that in an arbitrary Coxeter system of finite rank, there are only finitely many
conjugacy classes of non-affine reflection triangles.

1.2 Affine reflection triangles

Using results from Daan Krammer’s thesis [8] and some additional arguments (see Section
3 below), one obtains the following result.

Theorem 1.2. (D. Krammer) Given an affine reflection triangle T', then there ezists
an irreducible affine parabolic subgroup Wy of rank > 3 such that (T) is conjugate to a
subgroup of W.

Using Doedhar [6], one can verify that a (standard) parabolic subgroup is not conjugate
to a proper subgroup. Combining this observation with Theorem 1.2, one can improve
our main result to the following.

Theorem 1.3. Let (W, S) be a Coxeter system of finite rank. The following statements
are equivalent:

(i) there are only finitely many conjugacy classes of reflection triangles;

(i1) the Cozeter diagram of (W, S) has no irreducible affine subdiagram of rank > 3.

1.3 Biautomaticity

It is proved in [3] that every Coxeter group of finite rank is automatic. The question of de-
termining whether or not Coxeter groups satisfy the stronger condition of biautomaticity
remains however open.

As before, let (W, S) be a Coxeter system of finite rank. In [11] it is proved that W
acts properly discontinuously on a locally finite, finite-dimensional CAT(0) cube complex.
This cube complex is called the Coxeter cubing associated with (W, .S); we denote it
by X(W,S). As noticed in loc. cit., it follows from a result of [10] that W is biautomatic
whenever the action of W on X'(W, S) is cocompact. Furthermore, the cocompactness of
this action has the following characterization, due to B. Williams (see Theorem 6 in [11]
and Theorem 5.16 in [14]).

Proposition 1.4. The action of the Coxeter group W on the Cozeter cubing X (W,S)
is cocompact if and only if (W,S) has only finitely many conjugacy classes of reflection
triangles.

Remark. The previous statement differs slightly from the original statement of that result
(see Theorem 6 in [11] and Theorem 5.16 in [14]). Indeed, in the latter references, it is
spoken about ‘triangle sugroups’ and the fact that these may be assumed to be generated
by reflections is only implicit. Nevertheless, this is a consequence of the proof of that
result, as it appears in [14].



Therefore, Theorem 1.3 has the following consequences.

Corollary 1.5. The action of the Coxeter group W on the Cozxeter cubing X (W, S) is
cocompact if and only if the Coxeter diagram of (W, S) contains no subdiagram of affine
type and rank > 3.

Corollary 1.6. If the Coxeter diagram of (W,S) contains no subdiagram of affine type
and rank > 3, then the Cozeter group W s biautomatic.

Remark. Corollary 1.5 and Corollary 1.6 had been proven independently by P. Bahls [1]
for certain special classes of Coxeter groups which are all covered by our theorem.

ACKNOWLEDGEMENT. The authors are grateful to Daan Krammer who communicated
the arguments of Section 3 to them.

2 Preliminaries

In this section, we recall the basic properties of Coxeter groups that are needed in the
sequel. The main references are [2] and [12].

Let (W, S) be a Coxeter system. A reflection is an element of W that is conjugate
to an element of S.

Let (W, S) be the chamber system associated with (W, S). We recall that (W, S)
is a chamber system over S which is defined as follows : the chambers of X(W,S) are
the elements of W and for each s € S two chambers v, w are s-adjacent if and only if
v~'w = 5. Two chambers are adjacent if they are s-adjacent for some s € S.

The group W acts on X(W,S) by left multiplication. This action is regular (i.e.
sharply transitive) and preserves the s-adjacency for each s € S.

For every subset J C S, we put W := (J). The subset J C S is called spherical
whenever W is finite. Let ¢ be a chamber of (W, S). The J-residue (or the residue of
type J) containing c is the left coset cWV;, viewed as a set of chambers. The cardinality of
J is called the rank of that residue. Residues of rank 1 are called panels. An nontrivial
element t of W stabilizes a panel if and only if ¢ is a reflection. A parabolic subgroup
of W is a subgroup of the form Staby (R) for some residue R. The type (resp. rank) of
the parabolic subgroup Staby, (R) is the type (resp. rank) of R.

Lemma 2.1. Every finite subgroup of W is contained in a parabolic subgroup of spherical
type.

Proof. See [2]. -

A sequence of chambers I = (cg, ¢1, . . ., ¢,) such that ¢;_; is adjacent to ¢; for 1 <i <n
is called a gallery of length n joining cy to ¢,. We say that I is closed if zy = z,,.
Given 1 <i < j < n, then the subsequence (c;,cit1,...,¢;) of I' is denoted by T'|., ;.
The gallery (¢, Cn_1,...,¢1,¢o) is denoted by I'"'. The distance d(z,y) between two
chambers x and y is the minimal length of a gallery joining x to y. A gallery of length n
joining x to y is called minimal whenever n = d(x,y).

Given a chamber ¢ and a residue R in X(W,S), then there exists a unique chamber
z of R such that d(c,z) = d(c, R) = min{d(c,y)|ly € R}. This chamber is called the
projection of ¢ on R and is denoted by projz(c). Given any chamber y in R, then

3



there exists a minimal gallery I" joining ¢ to y which goes through projz(c) and such that
| proj n(c)—y is completely contained in R.

Given residues Ry, Ry of X(W,S), then the set projg, (R2) := {projg, (c)|c € Ry} is
itself a residue. We say that R; and R, are parallel if projp (R2) = Ry and projg, (R;) =
Rs.

The following lemma gives two characterizations of the parallelism of residues of spher-
ical type.

Lemma 2.2. Let J, K be subsets of S and let Ry, Rk be residues of type J, K respectively.
Then the following statements are equivalent:

(i) Ry and Ry are parallel;

(i1) a reflection stabilizes Ry if and only if it stabilizes Ry .

Furthermore, if J or K is spherical, then (i) and (i1) above are also equivalent to the
following:

(111) there exist two sequences Ry = Ro, Ry, ..., R, = Ri and Ty, ..., T, of residues of
spherical type such that for each 1 < i < n the rank of T; is equal to 1+rank(Ry),
the residues R;_1, R; are distinct, parallel and contained in T; and moreover, we
have projr.(R;) = R;—1 and projr,(Rx) = R;.

Proof. This follows from Proposition 2.7 in [4]. O

Let s € S and let m = {x,y} be an s-panel of (W, S), namely a residue of type {s}.
The set ¢(x,y) = {z|d(z,z) < d(z,y)} is called a root of X(W,S). The set ¢(y,x) is
also a root, complementary to ¢(z,y), and the unique reflection that stabilizes the panel
7 interchanges ¢(x,y) and ¢(y,x). We denote this reflection by rye.,) or 74y and we
write ¢(y7 I) = _¢(x7 y)

Let ¢ be a root. We denote by v (resp. 0%*t) the set of all panels (resp. spherical
residues of rank 2) stabilized by ry. We also set C(0¢) = U,ep, ¥ and C(0%¢) :=
Useozy - The set 99 is called the wall associated to ¢. Let I' = (zg,21,...,7,) be a
gallery. We say that I" crosses the wall 0v if there exists 1 < i < n such that {z; 1, 2;}
is a panel that belongs to 9. It is a fact that a gallery is minimal if and only if it crosses
every wall at most once.

Lemma 2.3. Let ¢ be a root and let x,y € 1vNC(0Y). Then there exists a minimal gallery
= (z=uwmg,21,...,7 =y) joining x to y such that x; € C(0*) for each 1 <i <.

Proof. Let m,,m, € 0y be panels such that x € 7, and y € m,. Then 7, and 7, satisfy
Condition (ii) of Lemma 2.2. Therefore, there exist two sequences m, = my # m #
o+ # m, = m, and oy, ...,0, such that for each 1 < i < n we have m; € I, o; € 9%,
proj,, (r,) = m_1 and proj,, (m,) = 7.

For each 1 < i < n let I'; be the unique minimal gallery joining proj, (z) to proj,. ().
Let ' be the gallery obtained by concatenating the I';’s (namely I' = T'y ~ -+ ~ T',).
Then T is a gallery joining = to y and such that every chamber of T belongs to C(9?1)).

We claim that I' is minimal. We prove this claim by induction on n; the result being
obvious when n = 1.

Suppose that n > 1 and that ' is not minimal. Then there exists a root ¢ containing
7, such that I' crosses the wall 0¢ twice. By induction, we know that F]xqprojgn(x) and
F’projgl (y)—y are both minimal. By the construction of I', this implies that I' crosses d¢
exactly twice : once between x and proj,, (y) and once between proj, (y) and y. We
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deduce that 7, is contained in the same side of d¢ as m,, namely 7, C ¢. This implies
that proj, (m,) = m,. But we have seen above that proj, (7,) = m # 7, and this is a
contradiction. Therefore, I" is minimal. ]

Let W be a set of roots. We set R(V) := {ry|yy € ¥} and W (V) := (R(¥)). The
set U is called geometric if ﬂweqj ¥ is nonempty and if for all ¢,v € U, the set ¢ N
is a fundamental domain for the action of W({¢,¢}) on X(W,S). Here, a set D is
called a fundamental domain for the action of a group G on a set E containing D if
Ugec 9D = E and if DN gD # ) = g =1 for every g € G.

The following result, due to Tits, is very useful.

Lemma 2.4. Let ¥ be a geometric set of roots. Then D := (\V is a fundamental domain
for the action of W(V) on X(W,S), and (W (), R(V)) is a Coxeter system. The chambers
of S(W (W), R(V)) may be identified with sets of chambers of X(W,.S), and more precisely
with sets of the form wD with w € W(W). Furthermore, two chambers C' and C' of
S(W(¥), R(Y)) are adjacent in S(W(V), R(V)) if and only if C and C’, viewed as sets
of chambers of S(W,S), contain adjacent chambers of L(W,S).

Proof. This is essentially a consequence of Lemma 1 in [13]. See also Lemma 3.2 and
Proposition 3.3 in [9]. O

Restated in other words, the last statement of Lemma 2.4 says that the Cayley graph
of the Coxeter system W ((V), R(¥)) may be seen as a ‘quotient’ of the Cayley graph of
(W, 5).

3 Affine subgroups

In this section, we record an unpublished result due to Daan Krammer (see Theorem 3.3).

A Coxeter system (W, S) of finite rank is called admissible if each component of
its Coxeter diagram is either spherical or affine of rank > 3. A subset I C S is called
admissible if the Coxeter system (W, I) is admissible. If (I, S) is admissible but not of
spherical type, then W is virtually a free abelian group of rank at least 2, i.e. W possesses
a subgroup of finite index isomorphic to Z", where n > 2.

Lemma 3.1. Let (W, S) be an admissible Coxeter system. Then no quotient group of W
1s virtually infinite cyclic.

Proof. If W is finite, the result is trivial. Otherwise, some component of S is affine of
rank > 3. Let Si,59,...,5; be the irreducible components of S. For each index i such
that Wy, is affine, let Z; be the translation subgroup of Wg,. Then Wy, (and, hence, W)
acts on Z; by conjugation. Furthermore, the irreducibility of the geometric representation
of finite irreducible Coxeter group (see [2]) implies that Z; is an irreducible Wg -module.
In particular, Z; is an irreducible WW-module. Therefore, given any normal subgroup N
of W, we have either NN Z; = {1} or N N Z; is free abelian of rank n. The conclusion
follows because each Z; is a free abelian group of rank > 2. ]

Let (W, S) be a Coxeter group of finite rank and H be a subset of W. Let S(H) be
the set of all residues stabilized by (H). Let n(H) be the minimum of the set of ranks
of elements of S(H). If R; and R, both belong to S(H), then so do projg, (Ry) and
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projg,(R1) € S(H). We deduce that if Ry, Ry € S(H) are both of rank n(H), then R,
and Ry are parallel. In particular, Lemma 2.2 gives Staby (R;) = Staby (R2). We set
Pc(H) := Staby (R;) = Staby (Rz2). The group Pc(H) is called the parabolic closure
of H in W. It is the smallest parabolic subgroup of W containing H.

Proposition 3.2. Let (W,S) be an irreducible, non-spherical and non-affine Cozxeter
system of finite rank. Let H be a subgroup of W with Pc(H) = W such that H is virtually
Z". Thenn =1.

Proof. Let H; be a subgroup of finite index of H which is isomorphic to Z". If n = 0
then H is finite and Lemma 2.1 implies that Pc(H) is spherical, in contradiction with our
hypotheses. Thus H is infinite and n > 0.

The group Ny (H;) has finite index in H, which implies that H; has finitely many H-
conjugates. Therefore, the group Hy := (o hHh~! has finite index in H. Moreover, it
is clear by definition that Hj is normal in H and that Hj is isomorphic to Z". Since H
normalizes Hy, it follows that H normalizes Pc(Hy). This gives

W = Pc(H) < Pe(Nw (Pc(Hy)))

which implies that Pc(Hy) = W by Lemma 6.8.1 of [8] (notice that Pc(Hy) is not spherical
since Hj is infinite). Now Theorem 6.8.2 in [8] provides the desired conclusion. =

Theorem 1.2 above is a consequence of the following result.

Theorem 3.3. (D. Krammer) Let (W, S) and (W, S) be Cozeter systems of finite rank,
such that (W S) is admissible and W is a subgroup of W. Then W is contained in an
admissible parabolic subgroup of W .

Proof. Replacing W be one of its conjugates if necessary, we may assume that PC(W) =
Wi for some I C S. We have to prove that I is admissible.

Let I1, I», . .., I, be the irreducible components of I. Thus W < W; = Wi x---xWry,.
For each 1 < i < k, let W; be the projection of W on Wy,. Since Pe(W) = W, we have
PC(WZ-) = Wy, for each 1 <1i < k.

We have to show that each I; is either spherical or affine of cardinality at least 3.

Let ¢ be such that W; is finite. Then PC(V~Vi) is finite by Lemma 2.1, which implies
that I; is spherical in view of Pc(W;) = Wi,.

Let i be such that W, is infinite. Then VT/Z, as a quotient of W is virtually a free
abelian group of rank m, and Lemma 3.1 gives m > 2. In particular, W, is not infinite
dihedral, which means that I; is not of type A,. Therefore, Proposition 3.2 implies that
I; is affine of cardinality at least 3. ]

4 Coxeter decompositions of hyperbolic triangles

This section is intended to recall the classification of the Coxeter decompositions of hy-
perbolic triangles. Our reference is [7].

Let P be a compact geodesic polygon of the hyperbolic plane H?. We recall that a
Coxeter decomposition of P is a non-trivial decomposition of P into finitely many Coxeter
polygons Fj, such that any two polygons F; and F, having a common side are symmetric
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Figure 1: The Coxeter decompositions of hyperbolic triangles.

with respect to this common side. The polygons F; are called the fundamental polygons
of the Coxeter decomposition. It follows from the definition that they are all isometric.

If P is a triangle, then the fundamental polygons of any Coxeter decomposition of
P are triangles (Lemma 1 in [7]). We say that a given Coxeter decomposition of P has
type (k,l,m) if the angles of the fundamental triangles of that decomposition are 7, 7
and -. Let 0, 1 and 2 be the vertices of P. For each 0 < ¢ < 2 let p; be the number of
fundamental triangles having a vertex that coincides with i. We say that (uq, 1, p12) are
the multiplicities of the given Coxeter decomposition of P.

In Figure 1, some Coxeter decompositions of hyperbolic triangles are represented. The
triple (k, [, m) under each picture gives the type of the fundamental triangle of the Coxeter

decomposition that this picture represents.

Theorem 4.1. Figure 1 exhausts the list of all possible Coxeter decompositions of hyper-
bolic triangles.

Proof. See Sections 2 and 5 in [7]. -

5 Combinatorial triangles in (W, 5)

Definitions

Let (W, S) be a Coxeter system and let (W, S) be the associated chamber system.
A combinatorial triangle (or simply a triangle) of X(W, S) is a set T of three roots
which satisfy the following conditions:
(CT1) for all a,a’ € T, the order of r,r, is finite;
(CT2) the group W(T) is not contained in any parabolic subgroup of rank 2;
(CT3) the set (), « is nonempty.



Let T} and T, be combinatorial triangles. We say that T} is a subtriangle of T5 if
(11 € (13 and if there exists a triangle Ty such that W (T1) U W (Ty) C W(Ty).

Let T' = {ap, a1, as} be a combinatorial triangle and for each 0 < i < 2 let \; be
the order of r,, ,7q,,,, where the indices are taken modulo 3. We say that 7" is of type
(Ao, A1, A2). In the case where T is geometric, we know from Lemma 2.4 that (W(T'), R(T"))
is a Coxeter system of rank 3, and the \;’s are then the Coxeter numbers that appear on
the Coxeter diagram of (W (T'), R(T)).

A combinatorial triangle T is called spherical if W (T) is finite. It is called affine if
it is of type (3,3,3), (2,4,4) or (2,3,6), or if it is non-geometric and of type (3,6,6). If
T is geometric then 7' is affine if and only if the Coxeter diagram of (W (T"),T) is affine.
A combinatorial triangle T is called hyperbolic if it is neither spherical nor affine.

Notice that that we have now two different kinds of hyperbolic triangles : the hy-
perbolic triangles as in Section 4 and the combinatorial hyperbolic triangles as in the
preceding paragraph. In order to avoid any confusion between these two kinds, we some-
times refer to the former triangles as genuine hyperbolic triangles.

Let T = {ap, 1,0} be a combinatorial triangle. For each 0 < i < 2, let o; be a
spherical residue which belongs to 9?c;_; N &?a; 41 (subscripted indices are taken modulo
3) and which is contained in «;. The set {og, 01,05} is called a set of vertices of 7'
Notice that the fact that o; € 0%a;_1 N 0%, automatically implies that o; C «; or
0; C —aq; because 0; € 0%« in view of (CT2).

Let T' = {a, a1, a2} be a combinatorial triangle and let {0y, 01,02} be a set of vertices
of T. For each 0 < i # j < 2 let ;; be the unique chamber of proj, (o;) that belongs
to ag where 0 < k < 2 and i # k # j. By Lemma 2.3, for each 0 < i < 2 there exists
a minimal gallery I'; joining z;_1 ;41 to x;41,-1 such that every chamber of I'; belongs to
C(d%a;) (indices are taken modulo 3). Let also I'; be the unique minimal gallery joining
Z;i+1 to z;;—1. Finally, let I' be the gallery obtained by concatenating the I';’s and the
f‘i’s. Hence

I=Tg~T) ~Ty~Ty~T ~ Ty

Notice that I' is closed by construction. We say that the gallery I' skirts around the
triangle 7" and that the set of vertices {0g, 01,02} supports I'. The perimeter of T is
the minimum of the set of lengths of all galleries that skirt around 7.

For 0 < i < 2, we define |o;_1,0;,1[r to be the set of all ¢ € 0%
that are crossed by I', i.e. such that I' crosses a panel contained in o. We
also set [0i_1,0i11]r =]0i—1, i1 [rU{0i—1, 0it1}s [0im1, Oiga[ri=]0i1, 041 [PU{0i—1} and
loi—1, 0i41]r :=|oi_1, i1 [rU{oi11}. We record that two distinct elements of [0;_1, 04411
are never parallel.

Lemma 5.1. Let T' = {«g, a1, as} be a combinatorial triangle, let {og, 01,02} be a set of
vertices and let T be a gallery supported by {09, 01,02} and which skirts around T. Then
for all 0 < i # j <2 we have the following.
(1) For all o €]o;,0j]r, 7o, s the only reflection that stabilizes both o; and o.
(2) If o €|o;,05r then 0 C oy Nay;
(3) Letk be such that {0,1,2} = {i,j,k}, let o €|o;,05r and let T €]o;, o%[r. Assume
that r is a reflection that stabilizes both o and 7. Then o; is contained in one of
the roots associated with r and every element of [0}, ox|r is contained in the other.

Proof. (1) If there existed a reflection r # r,, which stabilizes both ¢; and o, then o;



and ¢ would be parallel. This contradicts the fact that o €|o;, o], which proves

(1).
(2) By (1), we know that neither r,, nor r,; stabilizes o.

Suppose that o C —q;. Since o; C «;, it follows that I' crosses the wall da;. So,
there exists o’ €]o;, o[rNI*; Cloy, 0;[rNO*;. We have just seen that r,, does not
stabilize any element of oy, o;[r. This contradiction shows that ¢ C «; and by
symmetry, it follows that o C «;.

(3) Let ¢ be the root containing proj, (o;) and such that r,, = r. Clearly, we have o; C 9.
Moreover, o; C — and o, € —1 because proj,(o;) € — and proj,(ox) C —.

Let o’ €]o;, ok[r and assume that o’ € 9*. Since o; and oy, are both contained in
—1), it follows that there exists a 7" €], o [rNI*Y with 7/ # o’. Therefore, o’ and
7" are distinct and both are stabilized by 7, and r,,. Furthermore, by (2) we have
Ty 7 T, from which it follows that o and 7" are parallel. This is impossible.

Thus r,, does not stabilize any element of [¢;, ox]r. We have seen above that o; and
oy are both contained in —i. We deduce by an argument as in the proof of (2)
above that every element of [0}, oy]r is contained in —1.

I

Coxeter decompositions of combinatorial triangles

Let T' = {ap, a1, 2} be a combinatorial triangle. For each 0 < i < 2, let ¢; be a root
such that {o;, ¢;} is a geometric pair and that r,,,, € (r4,,74,) (indices are taken modulo
3). Then we have a; N¢; C a; N1 and we say that ¢; is a decomposing root of 7. A
decomposing root ¢; is called standard if (rq,,7a,,,) = (Ta;, 7,). For each 0 <17 <2, we
put ¥ := —q;, P! := ¢; and Y7 1= rw?q(—zﬁf”) for n > 2. Let u; be the smallest integer
n such that ¥ = a;4;. The number p; is called the multiplicity of the decomposing
root ¢;. In that situation, we say that the decomposing roots ¢q, ;1 and ¢, induce a
Coxeter decomposition of 7" with multiplicities (o, i1, o). Notice that every triangle
has standard decomposing roots. Notice that a triangle T is geometric if and only if it
admits a Coxeter decomposition with multiplicities (1,1, 1).

The following lemma is a combinatorial analogue of Lemma 1 in [7].

Lemma 5.2. Let T' = {ap,a1,az} be a combinatorial triangle and let ¢g, ¢1, ¢2 be de-
composing roots. Then there exists a geometric triangle T such that W(T) = (W(T) U

{T¢0’ T1s T¢2}>'

Proof. Let p be the perimeter of 7. Let I' be a closed gallery of length p that skirts
around T and let {0g, 01,02} be a set of vertices that supports T.

The proof is by induction on p.

Assume that p = 0. Then o(, oy and o9 have a chamber in common, which implies
that T is geometric and that each decomposing root of T is standard. The result follows
by choosing T = T.

Assume that p > 0. Then I' is a nontrivial closed gallery and is a fortiori not min-
imal. If {¢g, ¢1, P2} coincides with T, then the result follows again by choosing T=T.
Otherwise, we may assume without loss of generality that the decomposing root ¢y does



not belong to T'. Therefore, I' crosses the wall d¢g twice. By Lemma 5.1(1), it follows
that there exists a residue o €]oy, o3[ which is stabilized by 74,. Using Lemma 5.1(2)
and (3), we deduce that T} = {ap, ¢, a2} is a combinatorial triangle. By construction,
we have W(Ty) = (W(T') U {r4}). Moreover, it follows from the definition of I' that the
perimeter of T is strictly smaller than p. Now, we apply the induction hypothesis to T}
endowed with a set of standard decomposing roots. This yields a geometric triangle T}
such that W (T1) = W(T1) = (W(T) U {re,}). If 74, and 74, belong to W(T}), then we
define T := Tl and we are done.

Suppose that ry, & W(T1). Then T, possesses a W (T})-conjugate Ty = {fo, b1, 2}
such that (rg,,76,) = (TagsTay) and that ¢; is a non-standard decomposing root of T5.
Since Ty and Ty have the same perimeter < p, the induction hypothesis yields a geometric
triangle Ty such that W(Ty) = (W(Ty) U {rg,}) = (W(T) U {rgy, 76, }). If 74, € W(T3),
then we set T := Ty and we are done. Otherwise, we apply to T, the argument we have
just applied to Ty. This yields a geometric triangle 7' such that W (T) = (W (Ty)U{ry,}) =
<W(T> U {T¢0= T T¢2}>' -

In the situation of Lemma 5.2, we say that T is a fundamental triangle of the given
decomposition of T. We define the type of that decomposition to be the type of T (or
the type of the Coxeter system (W (T'), R(T))).

The following result justifies the similarities between the terminology introduced in
the preceding section and in the current one.

Lemma 5.3. Let T be a combinatorial triangle. Then every Cozeter decomposition of
T of hyperbolic type corresponds canonically to a Cozeter decomposition of a genuine
hyperbolic triangle (and thus to one of the decompositions represented in Figure 1). These
two decompositions have the same type and the same multiplicities.

Proof. Assume that T has a Coxeter decomposition of hyperbolic type with fundamental
triangle T. Let (k,l,m) be the type of T. Since T has hyperbolic type, the Coxeter
group W(T) can be realized as the group generated by the reflection through the edge
of a compact geodesic triangle of H? whose angles are 7, 7 and =. Now, the result is a
consequence of Lemma 2.4. ]

Corollary 5.4. Let T be a combinatorial triangle. Then the following statements are
equivalent.
(i) T is of spherical (resp. affine, hyperbolic) type.
(ii) every Coxeter decomposition of T is of spherical (resp. affine, hyperbolic) type.
(i) T admits a Coxeter decomposition of spherical (resp. affine, hyperbolic) type.

Proof. In the spherical case, the equivalence between (i), (ii) and (iii) is an immediate
consequence of the definitions and of Lemma 5.2. If T' is affine, then 7" has no decom-
position of hyperbolic type in view of Lemma 5.3. This proves that (i) implies (ii) in
the affine case. The implication (ii) = (iii) is immediate, because any triangle admits a
Coxeter decomposition in view of from Lemma 5.2. A case by case consideration of the
Coxeter complexes of affine type shows that if 7" admits a Coxeter decomposition of affine
type, then T has to be affine. This proves that (iii) implies (i) in the affine case. Now,
the desired equivalences in the hyperbolic case follow at once. I
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A preparatory lemma

The following lemma collects a series of technicalities that are needed in the proof of
Theorem 1.1.

Lemma 5.5. Let T' = {ag, a1, a0} be a combinatorial triangle, {oo, 01,09} be a set of
vertices of T and I be a gallery supported by {og, 01,09} and which skirts around T'. Let
_ ol

o €loy, o9[r and let ny := 5 - Then we have the following.

(1) there exists an integer 1 < f, < n, — 1 and a geometric pair of roots {¢,,V,} of o
such that vy, ry, has order n, and that, up to interchanging oy and oy if necessary,
one of the following situations occurs:

(1) fr=n,—1,T, :={ag, a1, ¢} is a combinatorial triangle and ry (—1,) is
a decomposing root of T,, of multiplicity f,; moreover, there exists a residue
T € |00, 021 such that {o9,0,T} is a set of vertices of Ty ;

(1)) fr <ny—1, T, :={ay,a1,d,} (resp. To. := {ag, s, s }) is a combinatorial
triangle and ry, (—y) (resp. Ty, (—¢s)) is a decomposing root of T, (resp.
T!) of multiplicity f, (resp. ny — fy — 1); moreover, there exists a residue
T € |0, 02[r (resp. T €]og, o1[r) such that {09, 0,7} (resp. {o1,0,7}) is a
set of vertices of T, (resp. T..).

(2) Assume that T is non-spherical and that T, and T". (if it exists) are both hyperbolic.
Assume also that no reflection of o stabilizes 0y. If n, > 3 then the product rq,7q,
is of order at least 3 except if n, =7 and T has type (2,7,7).

(3) Assume that T is non-spherical and geometric and that T, and T., (if fo < n, —1)

are both hyperbolic and that ro,74, has order 2. Assume also that no reflection of
o stabilizes 0. Assume finally that there exists a root ¢, such that ry stabilizes
o, that ag N ¢, € a N ¢, and that ro 74, has order 2. Then one of the following
situations occur:

a) ny =7 and the pair {ag, ¢, } is not geometric;

(b) ne=4, fo =1 and o(ra,ra,) > 5;

(¢c) ny=3, fo =2 and o(ra,ra,) > 4 unless {ap, az, =P, } is an affine triangle;

(d) n,=3and f, = 1.

Proof. (1) Let ¢, s ... ¢n, be roots such that {rg,,... 74, }is the set of all reflections
that stabilize . We may choose the ¢;’s in such a way that ¢,, = oy and that
H1 N (—¢i) TP N(—¢;) forall 1 <i < j <n, (see Figure 2). By the definition of
' and by Lemma 5.1(3), it follows that I" crosses every wall ¢y, ..., d¢,, 1 exactly
twice. Up to interchanging a; and ay if necessary, we may assume that there exists
a residue 7 € [0g, 02[rNI?P1. We define

fr :=max{i|l <i < n, — 1, there exists 7 € [0g, 02[rNI*P; }.

We also set ¢, := ¢y, and ¥, := —¢¢ 1. By the definition of f,, we have 1 <
fr <n—1andif f, < n—1 then there exists a residue 7/ €|, o1 [rNO*1),. Let
T, = {ag, a1, ¢, } and if f, < n, — 1 then let 77 := {ag, a2,1s}. Then T, and T,
satisfy (CT1). The fact that they also satisfy (CT2) and (CT3) is a consequence of
Lemma 5.1. Now, all assertions of Part (1) follow at once.
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Figure 2: Proof of Lemma 5.5(1)

(2) Suppose by contradiction that o(r,,ra,) = 2. Since T, is hyperbolic and has a
decomposing root of multiplicity f,, it follows from Lemma 5.3 that f, < 4 and
that if n, < 6 then f, < 2. Moreover, if f, =n, — 1 (i.e. if we are in Situation (i)
of Part (1)) then Lemma 5.3 implies that n, = 3, contradicting the hypothesis that
ne > 3. Thus f, <n, —1 and 7, is defined.

Hence T is hyperbolic (by hypothesis) and has a decomposing root of multiplicity
ne — fo — 1 (by Part (1)). Since 74,74, has order 2, the combinatorial triangle

T corresponds to a genuine hyperbolic triangle that possesses an angle 5. By

Lemma 5.3, this implies that n, — f, —1 < 2 and that n, — f, — 1 =1 if n, <6.

Combining the conclusions of the preceding two paragraphs, we obtain (n,, f,) €
{(7,4), (4,2)}.

By Part (1) and the hypothesis that ry, does not stabilize oy, we know that there
exists a residue 7 €|oy, 09| that is stabilized ry, and that the set {02, 0,7} is a set
of vertices of Tj.

Assume that (n,, f,) = (7,4). Then the Coxeter decomposition of T, induced by
74, (—1,) corresponds to the decomposition 5 in Figure 1 (see Lemma 5.3). This
implies that 74,7, and 74,74, have both order 7 and that {ag,a;} is a geometric
pair. Now, we apply Part (1) to the triangle T and the residue 7 €]og, oo[r. Since
0(ra,7¢,) = 7, we have n, > 7. We may assume that T, = {ag, a1, ¢, }. Further-
more, T, is a subtriangle of 7T,. In view of Corollary 5.4 and the fact that T} is
hyperbolic, it follows that T’ is hyperbolic. Using again the fact T, is a subtriangle
of T combined with Lemma 5.3, we obtain f, < 2. Hence, we have f, < n, — 1

12



and we are in Situation (ii) of (1) for 7. The triangle 77 has a decomposing root of
multiplicity n, — f, — 1 and n, — f, — 1 > 4 because n, > 7 and f, < 2.

Assume that n, — f, — 1 > 5. All multiplicities of a Coxeter decomposition of a
hyperbolic (resp. affine) triangle are lesser than or equal to 4. Thus 77 is spherical.
The type of the Coxeter decomposition of 77 induced by ry, (—¢,) is (n,, k,1) for
some integers k,[. Since n,. > 7, Corollary 5.4 gives k = [ = 2. We deduce that the
order of 74,74, = 2 which implies that 7" has type (2,2,7). This implies that T has
spherical type, in contradiction with one of the hypotheses.

Thus n, — f, =1 =4, f; =2 and n, = 7. The Coxeter decomposition of 7" induced
by the decomposing root 7y _(—¢;) corresponds to the decomposition £5 in Figure 1.
This finally implies that r,,74,, has order 7, and thus that 7" has type (2,7,7). This
proves the result in the case n, = 7.

It remains to treat the case (n,, f») = (4,2). Let x be the order of r,,7,, and y be the
order of 74,7y, . The Coxeter decomposition of 7}, induced by the decomposing root
74, (—1,) corresponds to the decomposition f1 in Figure 1. Since T, is hyperbolic,
we deduce that x > 5, that x also equals the order of 1,74, and that T, is geometric
of type (2,z,z). Now, using the solution of the word problem for Coxeter groups,
an easy computation in the Coxeter system (W (T,), R(7,)), shows that the order
of 1y, 74, is infinite.

On the other hand, the triangle 77 has type (2,4,y) and we have y > 5 because
T! is hyperbolic. Furthermore, we know by Part (1) that there exists a residue
7' €log, 01] such that {0y, 0, 7'} is a set of vertices of 7. Now, we apply Part (1) to
the triangle 7" and the residue 7. We may assume that T, = {«g, a1, ¢,/ }. Since
y > 5 we have n.» > 5. Moreover, since T, is hyperbolic and is a subtriangle of T’/,
it follows from Corollary 5.4 that T, is hyperbolic. Therefore, Lemma 5.3 implies
that f» <2 in view of the fact that r,,r,, has order 2.

If f;» = 2 then the Coxeter decomposition of T induced by rg_, (=) corresponds
to decomposition §2 in Figure 1. Since 7 is a subtriangle of 7/, this implies that
T! is of type (2,3,y) or (2,y,2y) where y > 5. But we have seen above that 7). has
type (2,4,y). This is a contradiction. Hence, f = 1.

Therefore, the triangle 77, is defined and has a decomposing root of multiplicity
Ny — frr—1=mn. —2. As ny > 5, we deduce that 77, is spherical. Since r,, and
T4, = T, both belong to W(T.), it follows that 74,7y, has finite order. This is
impossible because we have seen above that the order of r,, 7y, is infinite.

This finishes the proof of (2).

Since the order of 74,74, equals 2, it follows that T = {ag, i, 7o, (a2)} is a combi-
natorial triangle and that {1, 72,74, (01)} is a set of vertices for T. Let xq (resp.
T0,2) be the only chamber of proj,, (o) (resp. proj,, (o2)) that belongs to a;. Let T
be the gallery obtained by concatenating I'|,, o—zg, With 7o, ((I[zes—es0)""). Then

' is a gallery supported by {0y, 09,74, (01) which skirts around 7.

Since the order of r,,ry equals 2, it follows that r4,(0) €]ra, (1), 02[r and that
{ap, 70, (ap), @, } is a triangle with decomposing root a; (see Figure 3).

Now, we apply Part (1) to the triangle T_ancl the residue . This yields a number 1 <
fo < ny—1, a geometric pair of roots {¢,, 1V, } and a triangle T, = {v, ra, (), o }
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Figure 3: Proof of Lemma 5.5(3).

(and a triangle T, = {ag, Vg, a2} if fo < ny —1). Since Ty ,—ay, Crosses 0o, it
follows that f, < f,.

If T exists, namely if f, < n, — 1, then fo <ny—1and T" exists as well. In that
case, T, is a subtriangle of T and, hence, the fact that T} is hyperbolic implies that
T! is hyperbolic as well in view of Corollary 5.4. Therefore, we obtain n,— f,—1 < 4.

On the other hand, since {ag, a1, ¢} is a subtriangle of both T, and T, it follows
from Corollary 5.4 and from the fact that 7, is hyperbolic, that 7}, is hyperbolic.
Therefore, by Lemma 5.3, either f, = 1 and the Coxeter decomposition of T,
induced by the decomposing roots oy and rdgg(—@a) corresponds to decomposition

i1 of Figure 1 or the Coxeter decomposition of 7, induced by the decomposing roots
ay and r5_(—s) corresponds to decomposition 46 of Figure 1, f, =2 and n, > 7.

In the second case, we obtain n, = 7 because n, — f, — 1 < 4. Moreover, ¢, = oL
and therefore {ag, ¢} is not a geometric pair. Thus we are in Situation (a).

Now we may assume that n, < 6 and f, = 1. We deduce that ¢, = ¢’.

If n, =5 or ny = 6 then T! exists and has a decomposing root of multiplicity 3
or 4. Since T is hyperbolic, Lemma 5.3 yields a contradiction. Therefore, we have
Ny < 4.

Assume that n, = 4. Then f, =1 or f, = 2. If f, = 1 then the Coxeter decom-
position of 7 induced by 7y, (—¢,) corresponds to decomposition f1 of Figure 1.
Since T is hyperbolic, we deduce that the order of r,,7q, is at least 5. Thus we are
in Situation (b).

Now assume that (n,, f,) = (4,2) (see Figure 4). Then ¢, = —1), because f, = 1.
Let = (resp. y, ¥') be the order of 7474, (X€SP. TagTas, Té,Tas). Since Ty is hyper-
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Figure 4: Proof of Lemma 5.5(3)— the case (n,, f,) = (4,2).

bolic, its Coxeter decomposition induced by the decomposing root ¢! corresponds
to decomposition f1 if Figure 1. Hence T}, has type (2, z,x), we have x > 5 and x is
also the order of r,, 74, . Since T is hyperbolic, its Coxeter decomposition induced
by the decomposing root r;, (—@,) corresponds to decomposition #1 of Figure 1. It
follows that y =y > 5.

Let 7 €]oy, o2[r be such that {0y, o, 7} is a set of vertices of T, (see Part (1) and note
that 7 # o0¢ in view of the hypothesis that r4 does not stabilize 0y). Now we apply
Part (1) to the triangle 7" and the residue 7. We may assume that 7, = {«g, a1, ¢, }.
Since T, is hyperbolic and is a subtriangle of T, it follows that T is hyperbolic by
Corollary 5.4. Using Lemma 5.3, we obtain f, < 2.

On the other hand, the set {—¢,, —a, as} is a geometric hyperbolic triangle of type
(2,z,y) and we have x,y > 5. Applying Lemma 5.3 to the triangle {—¢,, as, ¥, }
(which contains 77 and {—¢,, —a1,as} as subtriangles) and its decomposing root
—aq, we deduce that n, — f, — 1 = 1.

Combining the conclusions of the preceding two paragraphs, we obtain n, < 4 which
contradicts the fact that the order of r,, 74, equals > 5. This proves that the case
n, = 4 and f, = 2 is impossible.

It remains to consider the case (n,, f,) = (3,2). We have to prove that Situation (c)
occurs. In other words, we have to prove that if o(rq,ra,) < 3 then {ag, as, —¢,} is
an affine triangle.

Notice that ¢y = —¢,, and thus {ag, @, —¢,} = T'.. We define z, y, ¢ and 7 as in
the case (n,, fr) = (4,2) above. We assume that y < 3. Since T}, is hyperbolic, its
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Coxeter decomposition induced by the decomposing root ¢/ corresponds to decom-
position #1 if Figure 1. Hence the triangle {ag, aq, ¢} has type (2,3, z), we have
x > 7 and z is also the order of rq, 7y, .

Notice that y > 2 because 1" is non-spherical and because the order of 7,,7,, equals
2. Thus we have y = 3.

Suppose by contradiction that T is not affine. Then y' > 4.

Now, as above, we apply Part (1) to the triangle 7" and the residue 7. We may
assume that T, = {ag, a1, ¢, }. Since T, is hyperbolic and is a subtriangle of T, it
follows that T is hyperbolic by Corollary 5.4. Using Lemma 5.3, we obtain f, < 4.

On the other hand, the set {—¢,, —ay, as} is a geometric hyperbolic triangle of type
(2,2,y") and we have x > 7 and y' > 4 (see Figure 4). Applying Lemma 5.3 to the
triangle {—¢,, as, 1} (which contains 7! and {—¢,, —aq, as} as subtriangles) and
its decomposing root —ay, we deduce that n, — f, — 1 = 1.

Combining the conclusions of the preceding two paragraphs, we obtain n, < 6 which
contradicts the fact that the order of r,, 74, equals x > 7. This shows that 7 is
affine.

The proof is complete.

6 Proof of Theorem 1.1

Assume by contradiction that there are infinitely many conjugacy classes of reflection
triangles.
We divide the proof into several steps.

Step 1: there are infinitely many conjugacy classes of relfection triangles of type M,
where M is some fized rank 3 Cozeter diagram of compact hyperbolic type.
This follows directly from Lemma 2.1 and the pigeonhole principle.

Step 2: there exist two geometric triangles T and U of type M such that YU C (T
For each reflection triangle {a,b,c} such that ({a,b,c),{a,b,c}) is a Coxeter system of
type M, there exists a geometric combinatorial triangle 7" such that R(T") = {a,b,c}.
This follows from Step 1 and the main theorem of [5].

Hence, we know that ¥(W,.S) contains an infinite family {7 };c; of geometric triangles
of type M such that T; is not W-conjugate to T; whenever 7 # j.

For each i € I we write T; = {ay, 0;,7v:} in such a way that the order of r,,rs, is
constant when ¢ varies in /. Using Lemma 2.1 and the finiteness of S again, we deduce
from the pigeonhole principle that there exist a fixed geometric pair of roots {«, 5} and
an infinite subset I’ C I such that for every ¢ € I’, the roots «; and 3; are simultaneously
conjugate to a and (3 respectively. Replacing I by I’ and some of the T;’s by one of their
conjugate if necessary, we may thus assume that T; = {«, 3,v;} for each i € I.

The fact that the T;’s are pairwise non-conjugate implies that the 7,;’s are pairwise
distinct. Thus, {7, }ies is an infinite family of reflections of W. By Lemma 3 in [11]
(see also Proposition 1.4 in [3]) there exist indices 4,j € I such that the order of r.,r,,
is infinite. Up to interchanging ¢ and j, we may assume that the root ~; is properly
contained is the root ;.
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We set Y=Y YT = Yy U:= ,I‘Z = {aaﬁa’y} and T' := 7_7] = {avﬂalyT}~ Since Y g T
we have (Ve @ C Nyer ¢-

Step 3: there exists no geometric triangle T' such that W(T)UW (U) € W(T).
Assume on the contrary that such a geometric triangle 7' does exist. Since T and U are
both hyperbolic, so is T by Corollary 5.4.

Therefore, by Lemma 2.4, the combinatorial triangles T" and U corresponds to genuine
hyperbolic triangles 7 and U respectively.

Since the combinatorial triangles 7" and U are both geometric of type M, the genuine
hyperbolic triangles 7 and U have the same angles and, hence, they have the same area.
On the other hand, Step 2 implies that & C 7, a contradiction.

Step 4.
Let {m,0,p} (resp. {m,or,pr}) be a set of vertices of U (resp. T'), where 7 is stabilized
by (ra,7g), and o (resp. or) is stabilized by (ra,r,) (resp. (rq,r,,)). Let I' be a gallery
supported by {m, o7, pr} which skrts around T.

We have m C « and since the order of r.r.,. is infinite (see Step 2), we deduce that o
and pr are contained in —y. It follows that o €], or[r and p €|, prlr.

Step 5: there ezists no reflection that stabilizes both o and pr (resp. p and o).
Assume there exists a root ¢ such that r, stabilizes both ¢ and pr. By Lemma 5.1(2)
we have ryg # rg, which implies that 7 & 9?¢ by Lemma 5.1(1). Therefore, replacing ¢
by —¢ if necessary, we may assume that 7 C ¢. Then T}, := {a, 5, ¢} is a combinatorial
triangle.

Let 1, (resp. 12) be a root such that {¢, ¢} (resp. {¢,19»}) is a geometric pair
and that (rygry,) = Stabw (o) (resp. (ryry,) = Stabw(pr)). Then W(T) U W(U) C
(W(Ty)U{t)1,12}). But ¢y and 1), are decomposing roots of T}, which implies by Lemma
5.2 that there exists a geometric triangle 7" such that W (T) U W (U) € W(T). This
contradicts Step 3.

The other assertion follows by symmetry.

Final step.

Now, we apply Lemma 5.5(1) to the triangle 7" and the residue o. We may assume
that T, = {«, 3, ¢, }. Since U is hyperbolic and is a subtriangle of T, it follows from
Corollary 5.4 that T, is hyperbolic.

If f, = n, — 1, then Lemma 5.3 applied to T, implies that f, = 2. Therefore, we
obtain n, = f, + 1 = 3 in this case.

If f, <n, —1, then T is hyperbolic as well. Indeed, if T’ is a fundamental triangle
of the Coxeter decomposition of 7 induced by the decomposing root 7y, (—¢,), then 7.,
and 7, both belong to W (T"). Since .., has infinite order (see Step 2) and since there
is no affine triangle in $(W, S), it follows that 7" is hyperbolic, and so is T! in view of
Corollary 5.4. Now, Lemma 5.3 applied to T, and to 7. implies that f, < 4 and that
ne, — fr —1 < 4.

In all cases, we have n, — 5 < f, < 4 and, hence, n, < 9. The rest of the proof
consists in a case by case discussion based on the value of n, which will eventually provide
a contradiction.

Let = (resp. y, 2, yr, 2r) be the order of rorg (resp. rary, rovy, 787y, Tal~,). Thus
(x,y, z) (resp. (x,yr, zr)) is the type of U (resp. T'). Since T and U are of the same type,
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we deduce that

(y>Z> = (yTa ZT) or (ya 2) = (ZT7yT)'

In the sequel, we will refer to the preceding fact as Fact 1.
Another relevant fact that will be useful in our discussion, is that

a combinatorial triangle of type (k,l,m) that is hyperbolic and geometric corresponds to

; - ; T s us
a genuine hyperbolic triangle whose angles are T, T, =

In the sequel, we will refer to the preceding fact as Fact 2.
We are now ready to start the discussion.

CASE 1: n, =0.

Then f, = 4. We apply Lemma 5.3 to 7,. This implies that x = 9. Moreover, since
U is geometric and is a subtriangle of T}, it follows from Fact 2 that y = z = 3. By Fact
1, we deduce that yr = 20 = 3.

On the other hand, Lemma 5.3 applied to 7). implies that zr = 9. This is a contra-
diction.

CASE 2: n, = 8.

Then f, = 3 or f, = 4. We apply Lemma 5.3 to T,, which implies that (z,y,2) €
{(3,2,8),(3,3,4),(8,2,4),(8,8,2)} and that there exists a root ¢/, such that ry stabilizes
o, that aNg), C ¢, and that the order of ry 74, equals 2. If (z,y, 2) = (3,3,4), then f, = 3
and Lemma 5.3 applied to T shows that zy = 8, contradicting Fact 1. In the other cases,
the fact that U is geometric together with Fact 2 implies that (y, z) € {(2,4), (8,2)}. By
Fact 1 together with Lemma 5.5(2), it follows that (yr,27) € {(2,4),(2,8)}. Therefore,
we may apply Lemma 5.5(3), which provides a contradiction.

CASE 3: n, =T1.
Then f, =2,3 or 4.

By Fact 2 and the fact that U is geometric, it follows that f, = 4 is impossible.

If f, = 3, the same argument shows that x = 3, y = 2 and z = 7. On the other hand,
Lemma 5.3 applied to 7. implies that zpy = 3 or zr = 7. By Fact 1, we obtain yr = 2
and zp = 7. Thus T has type (2,3,7). But we may now apply Lemma 5.5(3) by taking
¢, =, which yields a contradiction.

If f, = 2 then by Fact 2, we obtain (z,y,2) € {(x,2,7),(2,3,7)} where g > 7.
Furthermore, Lemma 5.3 applied to 7. implies that zp = 7 and o(r,,.ry, ) = 7.

If y = 2 then yr = 2 by Fact 1. Thus we may apply Lemma 5.5(3) with ¢/ = . This
provides a contradiction because U is geometric and, hence, so is {o, ¢] }.

Therefore, we have y = yr = 3. By Lemma 5.5(1), there exists a residue 7/ €
lor, pr[rNd%y,. Now, we apply Lemma 5.5(1) to T and the residue 7/. We have n. > 7
because o(r.,7y,) = 7. We may assume that T,» = {«,yr, ¢, }. Since T, is a subtriangle
of T}, it follows from Lemma 5.3 that f.» < 2. Therefore, n,— f;—1 > 4. Therefore, either
the triangle 77 is spherical, in which case yr = 2 because n,» > 7 or 1! is hyperbolic,
in which case n, — f, —1 = 4 and yr = 7 by Lemma 5.3. In both cases, we have a
contradiction with yr = 3.

CASE 4: n, = 6.
Then f, =1,2,3 or 4.
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If fp =1o0r 2 (resp. fo =3 or4) then 77 (resp. T,) cannot be hyperbolic by Lemma
5.3. This is a contradiction.

CASE 5: n, = 5.
Then f, =1,2 or 3.

If f, =1 (resp. f, = 3) then T/ (resp. T,,) cannot be hyperbolic by Lemma 5.3. Thus
fa’ =2.

By Fact 2 and the fact that U is geometric, it follows that y = 2 and z = 5. By Fact
1 together with Lemma 5.5(2), it follows that yr = 2 and 27 = 5. But we may now apply
Lemma 5.5(3) by taking ¢! = v, which yields a contradiction.

CASE 6: n, = 4.
Then f, =1 or 2. (Notice that the case f, = 3 is impossible by the second paragraph of
the final step above.)

If f, = 2 then we have x > 5 since T, is hyperbolic. Moreover, since U is a subtriangle
of T,, we obtain (y,z2) € {(2,4), (z,2)}. By Lemma 5.5(2) and Fact 1, we deduce that
(yr,zr) € {(2,4),(2,2)}. In all cases, we may apply Lemma 5.5(3) by taking ¢/ =
T4, (1), and this yields a contradiction.

If f, =1 then z =4 and v = ¢,. Lemma 5.3 applied to 7. implies that zp > 5.
It follows from Fact 1 that y = 2y > 5. This implies that n, > 5. Therefore, if we
interchange the roles of  and (8 and, hence, interchange o and p, we are back in one of
the preceding cases. This yields a contradiction.

CASE 7: n, = 3.
Then f, =1 or 2.

Assume that f, = 2. By Fact 2 and the fact that U is geometric and hyperbolic, it
follows that y = 2, z = 3 and © > 7. Moreover, we have also o(rgrs, ) = > 7. By Fact 1,
we deduce that (yr, z7) € {(2,3),(3,2)}. Lemma 5.5(3) applied to T with ¢/, = implies
that the case (yr, zr) = (2,3) is impossible. Hence, we have (yr, zr) = (3, 2).

By Lemma 5.5(1), there exists a residue 7 €|, pr[rNd%¢, (the fact that 7 # pr
follows from Step 5). Now, we apply Lemma 5.5(1) to the residue 7 and the trian-
gle T := {a,3,7,,.(3)}. Since o(rgry,) > 7 we have n, > 7. We may assume that
T, = {a, B, ¢, }. Since T, is a subtriangle of T., it follows from Corollary 5.4 that T, is
hyperbolic. Therefore, Lemma 5.3 implies that f, < 4.

We deduce that f, < n, — 1 and, hence, the triangle 7" is defined. Since T” is of type
(3,n., k) for some integer k and since n, > 7, we deduce that T’ is hyperbolic. Now,
Lemma 5.3 applied to the Coxeter decomposition of 7" induced by the decomposing roots
r5.(—¢;) and 47 implies that n, — f, — 1= 1.

Combining the conclusions of the preceding two paragraphs, we obtain n, < 6, a
contradiction. This proves that the case f, = 2 does not occur.

Assume that f, = 1. Then z = 3. If y > 4 then n, > 4, and by interchanging the
roles of @ and § we are back in one of the preceding cases. Thus we may assume that
y=2ory=3.

Let y' be the order of r,,ry, . If zp = 2 then ryr,, = rory, Talyy = Talyp,Typra. 1t
follows that 7,7, has order ', which contradicts that fact that r.,r,, has infinite order
(see Step 2). Thus zp # 2.

By Fact 1, we deduce from the conclusions of the preceding two paragraphs that
zp = 3. Since T, is hyperbolic, it follows that y' > 4.

By Lemma 5.5(1), there exists a residue 7 €|or, pr[rNd*),. Now, we apply
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Figure 5: Proof of Theorem 1.1- the case (n,, fo,y) = (3, 1,2).

Lemma 5.5(1) to T" and the residue 7. We have n,, > 4 because y' > 4. We may
assume that T = {«a, v, ¢ }. Since T. is a subtriangle of T}, it follows from Lemma
5.3 that f» < 3 and that f» = 1 if n» < 6. In particular f» < n,» — 1 and the triangle
T!, is defined.

There are two cases: either (y,yr) = (2,2) or (y,yr) = (3,3).

Assume first that (y,yr) = (2,2) (see Figure 5). Then x > 7 because U is hyperbolic.
We remark that the order of ry 73 equals x > 7 because y = 2 and ¢, = r,(—a). Thus
T := {8, —vr, —1,} is a triangle of type (2, x,y’) where x > 7 and 3y’ > 4. Tt follows that
T is hyperbolic. Since there exists a geometric triangle that is a subtriangle of both T
and 77, we deduce from Corollary 5.4 that 77, is hyperbolic.

Now, Lemma 5.3 together with the fact that y; = 2 implies that n,» — f» —1 < 2 and
that n — f» —1 =11if n < 6. We deduce from f,» < 3 that n,» < 6. We have seen that
this implies f,» =1 and n» — f» — 1 = 1. We deduce that n,» = 3, which contradicts the
fact that n,, > 4. Thus the case (y,yr) = (2,2) is impossible.

Now, assume that (y,yr) = (3,3). An easy computation using the solution of the
word problem for Coxeter groups in the geometric hyperbolic triangle U shows that the
order of rgry, is infinite. This implies that 77, is not spherical. Thus 77, is hyperbolic
since there are no affine triangles in (W, S). Therefore, Lemma 5.3 together with the
fact that yr = 3 implies that n., — f., — 1 < 3 and that n,» — f, — 1 =1if n < 6. We
have seen above that f,» < 3 and that f» =1 if n,» <6. It follows that (n,, f.) = (7,3)
and that o(rqrg ) = 7.
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Figure 6: Proof of Theorem 1.1- the case (n,, fo,y) = (3,1, 3).

By Lemma 5.5(1) applied to T and 7/, there exists a residue 7 € [m,op[rND?¢,.
Moreover, if 7" = 7 then 8 = ¢, because x > 7 and o(rary ) = 7. This contradicts
Lemma 5.1(2). Thus 7" €|m, or[r (see Figure 6).

Now, we apply Lemma 5.5(1) to 7" and the residue 7. Since o(rqry ) = 7, it follows
that n,» > 7. We may assume that T,.» = {a,yr, ¢,~}. Since T, is a subtriangle of T,
we deduce from Corollary 5.4 that T~ is hyperbolic. Therefore, it follows from Lemma 5.3
that f.» < 2. Thus the triangle 77, is defined. It is of type (n,~,x, k) for some integer k,
and we have n.»,x > 7. Thus T, is hyperbolic. By Lemma 5.3, we have n.» — f,» —1 < 4.
We deduce that (n.», frr) = (7,2) and that rgry_, has order 7. Furthermore, by Lemma
5.5(1), there exists a residue 7 €], pr[rNd*1.n.

Now, we redo the discussion of the preceding paragraph with the residue 7. We apply
Lemma 5.5(1) to T" and the residue 7. Since o(rgry_,) = 7, it follows that n.» > 7. We
may assume that T.» = {«, 3, ¢,»}. Since T, is a subtriangle of T,», we deduce from
Corollary 5.4 that T, is hyperbolic. Therefore, it follows from Lemma 5.3 that f.» < 2.
Thus the triangle 77, is defined. It is of type (n.», yr, k") for some integer k', and we have
nyn > T and ypr = 3. Thus 17, is hyperbolic. By Lemma 5.3, we have n,» — fyn —1 <3
because yr = 3. Combining the latter inequality with f.» < 2, we obtain n,» < 6, a
contradiction.

Thus the case (y,yr) = (3, 3) is impossible as well.

CASE 8: n, = 2.
Since U is not spherical, we deduce that y > 3. This implies that n, > 3. By interchanging
the roles of a and 3, we are back to one of the preceding cases. ]

7
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