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Abstract  

The concept of dividend in transferable utility games was introduced by Harsanyi [1959]. It 

offers a unifying framework for studying various valuation concepts, from the Shapley value 

(symmetric as well as weighted) to the different notions of values introduced by Weber 

[1988]. Using the decomposition of the characteristic function used by Shapley [1953] to 

prove uniqueness of his value, the idea of Harsanyi was to associate to each coalition a 

dividend to be distributed among its members to define an allocation. Many authors have 

contributed to that question. Here, we offer a synthesis of their work, with a particular 

attention to restrictions on dividend distributions, starting with the seminal contributions of 

Vasil'ev [1978], Hammer, Peled and Sorensen [1977] and Derks, Haller and Peters [2000], 

until the recent paper of van den Brink, van der Laan and Vasil'ev [2014].  

 

 

Keywords: Harsanyi dividends, Weber set, weighted Shapley values, core 

JEL Classification: C71 

 

 

 

 

_______________________ 

* CORE, University of Louvain (Louvain-la-Neuve, Belgium) and BETA, University of Lorraine (Nancy, 

France). Email: pierre.dehez@uclouvain.be 



 2 

 

 

 

Table of content 

1. Introduction 

2. Transferable utility games  

 2.1  Characteristic functions  

 2.2  Superadditivity and monotonicity  

 2.3  Harsanyi dividends  

 2.4  Positive games   

 2.5  Marginal contributions  

 2.6  Convex games  

3. Values and solutions  

 3.1  Basic requirements  

 3.2  Stable allocations: the core  

 3.3  Probabilistic and quasi-values 

 3.4  Random order values: the Weber set 

 3.5  Dividend distributions: the Harsanyi set 

 3.6  Weighted values: the Shapley set 

 3.7  Relations between solutions 

 3.8  An illustration: liability games  

4. Characterizing solutions 

 4.1  Characterization by axioms 

 4.2  Characterization by restrictions on dividend distributions 

 4.3  Implications of monotonic dividend distributions 

 4.4  Graph structures and restrictions on dividend distributions  

5. Concluding remarks 

Appendix  

References  

 



 3 

1.  Introduction 

We begin with a chronological enumeration of the concepts that will be formally defined and 

interrelated in the present paper.  

The notion of game with transferable utility, defined by a set of players and a characteristic 

function, was introduced by von Neumann and Morgenstern in 1944. The characteristic 

function associates to each subset (coalition) of players a real number measuring what that  

coalition can do at best in terms of some commodity-money.  

The concept of value of a transferable utility game was introduced by Shapley in 1953. His 

initial idea was to define what a player may reasonably expect from playing a game. 

However, by requiring players' evaluations to be consistent in order to achieve efficiency (an 

exact distribution of the social output) and symmetry (equal treatment of equals), the Shapley 

value is more of a normative tool.  

The concept of dividend was introduced by Harsanyi in 1959. His idea is to associate to each 

coalition a dividend (positive or negative) that can be distributed among its members to define 

an allocation of the social surplus. The dividends are identified with the coefficients of the 

decomposition of the characteristic function used by Shapley to prove uniqueness of his 

value. The set of allocations that results from all possible distributions of the dividends is an 

object that has been studied in the 70's independently by Vasil'ev in papers published in 

Russian, and by Hammer, Peled and Sorensen in a paper published in a Belgian operations 

research journal. While the latter used the name "selectope", here we shall retain the term 

"Harsanyi set". Derks, Haller and Peters popularized that concept in a paper published in 

International Journal of Game Theory in 2000. At that time, they were not aware of the 

contributions of Vasil'ev. These became known with the publication in 2002 by Vasil'ev and 

van der Laan of a paper containing all the results known by that time. Since then, a number of 

papers have been published, in particular by Derks, van der Laan and Vasil'ev [2006, 2010].   

In 1971, Shapley has characterized geometrically the core of a convex game using the concept 

of marginal contribution vector that associates allocations to players' orderings: for a given  

ordering, each player receives his marginal contribution, following the ordering. He shows 

that the core of a convex game is the non-empty and bounded polyhedral convex set whose 

vertices are precisely these marginal contribution vectors.  

In 1988, Weber has introduced the notion of probabilistic values that allocates to each player 

his expected marginal contribution computed with respect to a probability distribution 

independent of the game's data. Quasi-values are probabilistic values obtained by considering 

probability distributions ensuring efficiency and the Shapley value is the unique efficient and 

symmetric quasi-value. Weber also defines the concept of random order value as the expected 

marginal contribution vector, computed with respect to a given probability distribution over 

players' orderings. He shows that random order values are quasi-value, the Shapley value 
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being the random order value corresponding to the uniform probability distribution. 

Moreover, he shows that the core is a subset of the set of random order values, equivalently 

defined as the convex hull of the marginal contribution vectors. This set is known as the 

Weber set and, following Shapley's characterization of the core, the two sets coincide on the 

class of convex games, and only for these games as shown by Ichiishi [1981].  

In his doctoral thesis, Shapley [1953a] did also consider the possibility for symmetric players 

to be treated differently. The asymmetric version of the value is obtained by introducing 

exogenous weights in order to cover asymmetries that are not included in the underlying 

game. The weighted Shapley value has been axiomatized later, in particular by Kalai and 

Samet [1987] without explicit reference to weights, by Hart and Mas-Colell [1989] using a 

generalized potential function and by Dehez [2011] in a cost sharing context along the lines 

suggested by Shapley [1981]. The value associated to positive weights is obtained as a 

weighted division of dividends. As a consequence, weighted values are Harsanyi payoffs. 

Alternatively, it can be defined as the expected marginal contribution vector corresponding to 

a probability distribution over players' orderings derived from weights. The Shapley set is the 

set of all weighted values obtained by considering all possible weight systems, including zero 

weights. Monderer, Samet and Shapley [1992] show the Shapley set contains the core, an 

inclusion "somewhat surprising in light of the difference in concept behind these solutions" to 

quote the authors. Weighted values being random order values, the Shapley set is contained in 

the Weber set and the three solution sets coincide when applied to  convex games.  

The Harsanyi set turns out to be the largest solution set. It includes the Weber set. Hammer et 

al. [1977] and Vasil'ev [1981] show that the Harsanyi set and the core coincide if and only if 

they apply to almost positive games – games whose dividends of multiplayer coalitions are 

non-negative. Consequently, positive games being convex, the four solution sets – core, 

Shapley, Weber and Harsanyi sets – coincide when applied to almost positive games.  

All these solutions have been characterized axiomatically. They can also be characterized 

starting with the Harsanyi set and imposing restrictions on dividend distributions. A natural 

restriction is monotonicity. It requires that the share of a player in the dividend of a coalition 

does not increase if the coalition is enlarged. Even if such restrictions reduce considerably the 

set of possible dividend distributions, it is not sufficient to generate a particular solution set. 

Billot and Thisse [2005] claim that the set of Harsanyi payoff vectors resulting from 

monotonic dividend distributions coincides with the core if (and only if) the game is convex. 

We show that this is actually true only for 3-player games! Assuming a monotonic dividend 

distribution, individual rationality obtains in 3-player superadditive games and in 4-player 

convex games. Beyond four players, we show that there is no hope. Under a stronger 

monotonicity condition, Vasil'ev [1988] shows that Harsanyi payoff vectors are random order 

values. Under the assumption that the distributions of dividends within coalitions are 
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compatible with Bayesian updating, Derks et al. [2000] show that the resulting Harsanyi 

subset coincides with the Shapley set.   

The paper is organized as follows. Section 2 introduces transferable utility games. Solution 

concepts are then defined and interrelated in Section 3, with a particular attention to weighted 

Shapley values and the case where some players are assigned a zero weight. In Section 4, we 

review the axiomatic characterizations of the Shapley, Weber and Harsanyi sets. We then look 

at the characterization of the Weber and Shapley sets by way of restrictions on dividend 

distributions. We finally consider the subsets of Harsanyi payoffs that result from graph 

structures on the set of players. The last section offers concluding remarks and an appendix 

gathers intermediary results.  

2. Transferable Utility Games  

2.1  Characteristic functions 

Cooperative games cover situations in which a group of individuals cooperate on a common 

project with the objective of maximizing the resulting collective gain. It is assumed that utility 

is transferable through some commodity-money, allowing for transfers (side-payments) 

between players. A cooperative game with transferable utility is defined by a player set N and 

a characteristic function v that associates to each coalition S  N a real number ( )v S  that 

represents its (potential) worth defined as the gain that it can realize without the participation 

of the others. In particular, ( )v i  is what player i could obtain alone and the value of the game 

( )v N  is the maximum amount that the "grand coalition" is able to generate. By convention, 

we set ( ) 0.v     

Notation: Set inclusion is denoted by   and strict inclusion by .  For sa given subset S, 

\S i  denotes the subset obtained by subtracting i from S. Upper-case letters are used to 

denote sets and the corresponding lower-case letters to denote their sizes: | |, | |, ...s S t T   

Coalitions {i,j,k,…} are sometimes written as ijk… For any given set T, we denote by 

 ( )T S T S    the collection of non-empty subsets of T and by 

 ( )i T S T i S    the collection of subsets of T containing player i. Given a vector 
nx  and a subset ,S N  it will be convenient to write ( ) , ( | )i S ii S

x S x x x i S


    and 

\( , )S N Sx x x  with the convention ( ) 0.x    Vectors are compared following the sequence 

,x y  x y  and .x y  In some instances, the summation sign   will be used without 

reference to a set when there is no ambiguity. For a given finite set A, we denote by ( )A  the 

set of all probability distributions on A.  

Two games ( , )N v  and ( , )N v  on a common player set are said to be strategically equivalent 

if there exists 0a   and 
nb  such that ( ) ( ) ( ).v S a v S b S    This defines an equivalence 

relation. In particular, a game ( , )N v  and its 0-normalization 0( , )N v  defined by  

 0 ( ) ( ) ( )
i S

v S v S v i


   
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are strategically equivalent. A game can be restricted to a subset of its player set. Formally, 

given a game ( , )N v  and a subset ,R N  the restriction to R is the game ( , )RR v  defined by 

( ) ( ) for all .Rv S v S S R   Given two games ( , ')N v  and ( , ")N v  on a common set of 

players, the game sum ( , )N v  is simply defined by ( ) ( ') ( ") for all .v S v S v S S N     

2.2  Superadditivity and monotonicity 

A game ( , )N v  is superadditive if getting together is beneficial, or at least harmless:  

 ( ) ( ) ( )v S v T v S T   for all and such that .S T S T   

A game ( , )N v  is monotonic if ( ) ( ).S T v S v T    It implies that the largest surplus is 

generated by the grand coalition. There is no direct relation between superadditivity and 

monotonicity except for the following lemma.1  

Lemma 1. Consider a game ( , )N v  such that ( ) 0v i   for all .i N  Superadditivity then 

implies that the characteristic function v is monotonic and positive valued.    

A game ( , )N v  is 0-monotonic if its 0-normalization 0( , )N v  is a monotonic game. As a 

consequence of Lemma 1, the 0-normalization of a superadditive game is a monotonic and 

positive-valued game and thereby, superadditive games are 0-monotonic. 

0-monotonicity implies that the inequalities ( ) ( )
i S

v i v S


  hold for all .S N  A coalition 

S is said to be essential if the inequality is strict.  If equality holds, S is said to be inessential. 

Obviously, for 0-monotonic games, if a coalition is inessential, so are all its subcoalitions. A 

game is said to be essential if the grand coalition is essential and a game whose coalitions are 

all inessential is an additive game.  

Superadditivity is a natural assumption that is satisfied in most economic and social 

situations. It ensures that allocating exactly the value of a game among the players if efficient: 

no partition of players can form and generate a total gain larger than the value of the game. 

This is not ensured by 0-monotonicity for games with more than 3 players.  

2.3  Harsanyi dividends  

We denote by ( )G N  the set of all set functions on the finite set N . It is a vector space that is 

formally equivalent to 
2 1.

n 
 Shapley [1953b] shows that the collection of unanimity games 

( , )TN u  defined for all ( )T N  by ( ) {0,1}Tu S   and ( ) 1 if and only ifTu S T S   forms 

a basis of the vector space ( ) :G N  for any given set function v on N, there exists a unique 

2 1n   dimensional vector ( , ) ( ( , ) | ( ))TN v N v T N    such that:  

 
( ) ( )

( ) ( , ) ( ) ( , ).T T T

T N T S

v S N v u S N v 
 

    (1) 

                                                 
1 Proofs of lemmas are in Appendix.  
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Following Harsanyi [1959, 1963], T  is interpreted as the dividend accruing to coalition T. 

By (1), ( )v N  is the sum of the dividends of all coalitions. Hence, an allocation of ( )v N  can 

be obtained by distributing the dividends of every coalition among its members.2  Dividends 

can be defined recursively, starting with 0,   as follows: 

 ( ) for allT S

S T

v T T N     (2) 

i.e. 

 

{ }

{ }

{ }

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ), ...

i

ij

ijk

v i

v ij v i v j

v ijk v ij v ik v jk v i v j v k









  

      

 

Alternatively, the collection of 'sT  is the unique solution of the linear system (1): 

 
( )

( , ) ( 1) ( ) ( , ).t s

T

S T

N v v S T N T 



      (3) 

Additivity of the dividends follows from (2):  

 ( , ' ") ( , ') ( , ") for all .T T TN v v N v N v T N       

Two games ( , ) and ( , )N v N v   are disjoint if no dividend are simultaneously different from 

zero: ( , ') ( , ") for all .T TN v N v T N    

Remark 1.  The dividends associated to the unanimity games ( , )SN u  are given by:  

 
( , ) 1 if ,

0 otherwise.

T SN u T S  


 

Remark 2.  The dividends associated to an additive game are all zero except for single 

players. The dividends of 0-monotonic games associated to inessential multi-player coalitions 

are equal to zero. Furthermore, the dividends associated to the 0-normalization 0( , )N v  of an 

arbitrary game ( , )N v  are unchanged except for singletons:  

 
{ } 0

0

( , ) 0 for all ,

( , ) ( , ) for all , 2.

i

T T

N v i N

N v N v T N t



 

 

  
 

2.4  Positive games 

Dividends can be negative or positive. A game is (totally) positive if its dividends are all non-

negative.3 The term almost positive is used for games whose dividends of multi-player 

coalitions are non-negative. Equivalently, a game is almost positive if its 0-normalization is 

                                                 
2 To keep notation simple, the dependence of dividends on the game will sometimes be omitted.  
3 Totally positive games were introduced and systematically studied by Vasil'ev [1975, 1981].  
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positive. Obviously, 2-player 0-monotonic games are almost positive and unanimity games 

are positive.   

Remark 3.  Positive games are monotonic. This can easily be seen from (1).  

2.5  Marginal contributions 

The marginal contribution of player i to coalition S is defined by ( ) ( \ ).v S v S i  It is the value 

added of player i to coalition S and it is obviously zero for all coalitions of which he is not a 

member. For 0-monotonic games, marginal contributions are bounded below by individual 

worth. Indeed, for all such that ,S N i S  we have:  

 ( ) ( ) ( \ ) ( ) ( ) ( \ ) ( ).
j S j S

j i

v S v j v S i v j v S v S i v i
 



         (4) 

Two players i and j are symmetric in a game ( , )N v  if they contribute equally to all coalitions 

to which they belong: ( ) ( \ ) ( ) ( \ ) for all such that , .v S v S i v S v S j S N i j S      A player 

i is null in a game ( , )N v  if he never contributes: ( ) ( \ ) 0 for all .v S v S i S N     

Player i is necessary for player j in a game ( , )N v  if the marginal contributions of j are zero in 

all coalition not containing i : ( ) ( \ ) for all .v S v S j S i   In particular, ( ) 0.v j   Using (2), 

van den Brink et al. [2014] prove the following Lemma. 

Lemma 2.  If player i is necessary for player j in a game ( , ),N v  then ( , ) 0T N v   for all 

\T N i  such that .j T  

Remark 4.  A player is null if and only if the dividends associated to coalitions containing 

that player are all equal to zero. This is an immediate consequence of (2). See also Lemma 2.  

Given a player set N, we denote by N  the set of all players' orderings. The marginal 

contribution vector ( , )N v  associated to the players' ordering 1( ,..., )n Ni i    is the 

vector of dimension n defined by:  

 
1 1 1

1 1 1

( , ) ( ) ( ) ( )

( , ) ( ,..., ) ( ,..., ) ( 2,..., )
k

i

i k k

N v v i v v i

N v v i i v i i k n







 

   

  
 

i.e. 

 ( , ) ( ) ( \ ) ( 1,..., ).i i

i N v v v i i n      (5) 

Here, 
i  denotes the set of players preceding i in ,  i included. There are n! marginal 

contribution vectors, not necessarily all distinct.  

Looking at strategically equivalent games, if ( ) ( ) ( )v S a v S b S    for some 0a   and 

,nb  the following identities prevail:  

 ( , ) ( , ) ( 1,..., )i i iN v a N v b i n       (6) 
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2.6  Convex games 

A game ( , )N v  is convex (or supermodular) if ( ) ( ) ( ) ( )v S v T v S T v S T      for all 

and .S T N  Obviously, convexity implies superadditivity and a game that is strategically 

equivalent to a convex game is itself convex. It is easily verified that unanimity games are 

convex. As a consequence, positive games are convex as positive linear combinations of 

convex games, and almost positive games are convex as well by strategic equivalence.  

Shapley [1971] shows that a game is convex if and only if players' marginal contributions do 

not decrease with coalition size:  

 ( ) ( \ ) ( ) ( \ ).i S T v S v S i v T v T i       

Hence convexity means increasing returns to size and marginal contributions are maximal at 

the grand coalition N. 

For any given player set N, the set of superadditive games, the set of monotonic games, the set 

of 0-monotonic games and the set of convex games are convex cones, denoted SG(N), MG(N), 

MG0(N) and CG(N) respectively. They are indeed closed under addition and positive scalar 

multiplication.4 The set of positive games is a convex cone as well. It is denoted by ( ).G N
 

Following Remark 3, we have the following sequences of inclusions: 

 0( ) ( ) ( ) ( ) and ( ) ( ).G N CG N SG N MG N G N MG N      

An arbitrary game ( , )N v  can be decomposed in a difference between two positive (and 

thereby convex) games. Indeed (1) can be written as 

 
( )

( ) ( , ) ( ) ( ) ( ) for allT T

T N

v S N v u S v S v S S N  



     

where 

 
: 0 : 0

( ) ( , ) ( ) and ( ) ( , ) ( ).
T T

T T T T

T T

v S N v u S v S N v u S
 

  

 

     (7) 

The dividends associated to these two games are given by: 

 
 

 

( , ) 0, ( , ) ,

( , ) 0, ( , ) .

T T

T T

N v Max N v

N v Min N v

 

 







 
 

Convex games form an interesting class of games because solution concepts tend to agree 

when applied to convex games.5 Moreover, many interesting economic situations can be 

modeled as convex games, like production games with increasing returns, bankruptcy games 

(Aumann and Maschler [1985]) and airport games (Littlechild and Owen [1973]). Positive 

games are convex and monotonic games with interesting properties and applications, like 

                                                 
4 A nonempty set X is a convex cone if and only if , and 0 .x y X x y X        

5 See Maschler et al. [1972].  
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river games (Ambec and Sprumont [2002]), queuing games (Maniquet [2003]) and liability 

games (Dehez and Ferey [2013]).   

3. Values and Solution Sets  

3.1  Basic properties 

Given a game ( , ),N v  the problem is to allocate ( )v N  between the n players. Given a player 

set N, a value is a mapping that associates a payoff vector ( , ) nN v   to any game ( , ).N v   

A solution set is a mapping   that associates a subset ( , )N v  of payoff vectors to any 

game ( , ).N v  Basic properties that a solution set should ideally possess are the following:  

 Non-emptiness: ( , )N v   for all game ( , ).N v  

 Efficiency: ( , ) ( ) ( ).x N v x N v N    

 Individual rationality: ( , ) ( ) for all .ix N v x v i i N     

 Covariance: ( , ) ( , )x N v ax b N a v b      for all 0 and .na b   

 Convexity: ( , )N v  is a convex set.  

Non-emptiness implies restrictions on the class of games on which the solution applies. As 

such, efficiency is an accounting identity. It does not necessarily imply full efficiency except 

for superadditive games. Indeed, there may exist a partition 1( ,..., )kS S  of the grand coalition 

such that ( ) ( ).hv S v N  Individually rationality is a minimal requirement to be imposed on 

allocations: no player will ever accept to take part in a collective project if his remuneration 

falls short of what he could secure by himself. A solution is covariant if, once it has been 

applied to a game, it can be extended to all strategically equivalent games. Convexity is a 

natural requirement in a world where utility is transferable. Corresponding properties apply to 

values. Ideally, a value should be covariant and define an efficient and individually rational 

allocation.  

3.2  Imputations  

Imputations are efficient and individually rational allocations. This defines the imputation set:  

 ( , ) { | ( ) ( ), ( ) ( ) for all }.nI N v x x N v N x i v i i N      

The class of games ( , )N v  satisfying the inequality ( ) ( )v i v N  is the largest class of 

games on which the imputation set is a well-defined solution. It includes 0-monotonic games. 

If the game is essential, ( , )I N v  it is a regular simplex of dimension n–1. If instead the game 

is inessential, ( , )I N v  is reduced to the singleton ( (1),..., ( )).v v n  The imputation set is the 

largest solution set satisfying the above requirements.    

Remark 5.  For 0-monotonic games, marginal contributions as defined by (5) are 

imputations. Indeed, for a given players' ordering, adding the n! vectors results in ( )v N  and, 
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according to (4), marginal contributions are bounded below by individual worth's. Efficiency 

and individual rationality then follow.  

3.3  Stable allocations: the core 

The core is the set of imputations that no coalition can improve upon: 

  ( , ) ( ) ( ), ( ) ( ) for all .nC N v x x N v N x S v S S N      (8) 

The core extends rationality from individuals to coalitions: given an allocation, a coalition 

that receives less than what it could secure for itself is in a position to object. In this sense, 

core allocations are "stable".6  

The core is a polytope i.e. a bounded polyhedral convex set. It is indeed bounded and results 

from the intersection of finitely many closed half spaces. It is a subset of the imputation set 

and it may be empty. The largest class of games on which the core is a well-defined solution 

is the class of balanced games.7 Superadditivity is neither necessary nor sufficient for a game 

to have a non-empty core. However, for games with a non-empty core, no partition of the 

grand coalition can do better. Core allocations are therefore are fully efficient.  

Remark 6.  It can be easily verified that, if i and j are symmetric players, allocation obtained 

by exchanging andi jx x  in a core allocation x are also core allocations. Hence, if non-empty, 

the core contains allocations that give to players i and j equal amounts. Furthermore, the core 

allocates zero to null players.  

Shapley [1971] shows that convex games are balanced and that the core of a convex game is 

the polytope whose vertices are the marginal contribution vectors as defined by (5). Ichiishi 

[1981] shows that this is actually a necessary and sufficient condition for convexity.  

3.4  Quasi-values and random order values: the Weber set 

The concept of value was introduced by Shapley as a measure of what a player may expect 

from playing a game and the Shapley value belongs to the family of probabilistic values 

introduced later by Weber [1988]. Consider a collection ( | , )Sq q S N S     of 2 1n   

non-negative vectors in 
n

 such that for all ,S N  0 for all .S

iq i S   The resulting object 

can be written as a (2 1)nn    matrix and we denote by NQ  the set of such matrices. For a 

given player i, Weber interpretes ( | , )S

iq S N S   as a probability distribution over 

coalitions that may be objective, as the result of some random mechanism, or subjective. The 

probabilistic value associated a probability matrix Nq Q  is then defined for each player as 

his expected marginal contribution:  

                                                 
6 The term "core" was introduced by Gillies [1953, 1959] in connection to von Neumann-Morgenstern stable 

sets. It was later introduced as an independent solution concept by Shapley. The core has been axiomatized by 

Peleg [1986] using a reduced game property. 
7 See Bondareva [1963] and Shapley [1967].  For a complete account, see Kannai [1992].  
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  
( )

( , , ) ( ) ( \ ) ( 1,..., ).S

i i

S N

PV N v q q v S v S i i n


    (9) 

A probabilistic value does not necessarily define an efficient payoff vector because 

probability distributions are unrelated. Quasi-values instead are efficient probabilistic value 

obtained from probability distributions matrices Nq Q  satisfying  

 
\

1 and for all ( ), .N S S i

i i i

i N i S i N S

q q q S N S N

  

       (10) 

Weber [1988] indeed proves that the probabilistic values defined in (9) satisfy efficiency 

under (10).8 By requiring consistency of the probability distributions, quasi-values can be 

given a normative content. Vasil'ev and van der Laan [2002, Lemma 4.2] prove that (10) is 

equivalent to the following condition: 

 
:

1 for all ( ).T

i

i S T S T

q S N
 

    (11) 

Let 
*

N NQ Q  be the subset of probability distributions matrices satisfying (10) or (11), a 

polytope whose vertices have been characterized in terms of players' permutations by Vasil'ev 

[2003, 2007].9 He proves that the n! vertices of 
*

NQ  are the matrices  ( )Nq    defined by:  

 
  1 if ,

0 otherwise,

S
i

i
q S  



 

where 
i  denotes the set of players preceding i in ,  i included.  

The probabilistic values associated to the vertices of 
*

NQ  are then the corresponding marginal 

contribution vectors:  

  
( )

( , , ) ( ) ( ) ( \ ) ( ) ( \ ) for all .S i i

i i N

S N

PV N v q q v S v S i v v i    


      (12) 

Random order values are average marginal contribution vectors computed with respect to 

some probability distribution on players' orderings.  

For a given game ( , ),N v  the random order value associated to the probability distribution 

( )Np   is given by:  

 ( , , ) ( ) ( , ) ( 1,..., ).
N

i iRV N v p p N v i n



 


   

The following proposition establishing the equivalence between quasi-values and random 

order values was proved by Weber [1988].  

Proposition 1.  A solution is a quasi-value if and only if it is a random-order value 

                                                 
8 See also Derks [2005].  
9 See also Vasil'ev and van der Laan [2002].  
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Proof.  Consider a game ( , ).N v  We have to show that the sets 
*{ ( , , ) }NPV N V q q Q  and 

{ ( , , ) ( )}NRV N V p p   coincide. Following (12), we know that 
* { }N NQ co q    

and ( , , ) ( , )PV N v q N v   Probabilistic values ( , , )PV N V q  being linear in q, we have 

successfully: 10  

 

 

 

*( , , ) ( , , ) ( )

( , , ) ( )

( , , ) ( , )

( , , ) ( ) .

{ }

{ }

{ } { }

N

N

N N

N

N N

N

PV N v q q Q PV N v q

PV N V q

co PV N v q co N v

RV N v p p











 

 

 

  





   

  

   

  




 

In particular,  ( , , ) ( ) ( \ )S

i iS N
RV N v p q v S v S i


   where the probability distributions ( )S

iq  

defined by 
:

( )
i

S

i

S

q p
 




   satisfy (10).   

The set of all quasi-values – or alternatively the set of all random order values – is known as 

the Weber set. Marginal contribution vectors being imputations, the Weber set is a well-

defined solution on the class of superadditive games.  

The Shapley value is a particular quasi-value. Weber [1988] proves that it is the unique 

symmetric quasi-value. It is defined by probabilities that depend only on coalitions' sizes:  

 
( 1)!( )!

!

S

i

s n s
q

n

 
  

i.e. 

  
1

( , ) ( 1)!( )! ( ) ( \ ) .
!

i

S N

SV N v s n s v S v S i
n 

     (13) 

These probabilities correspond to the following two-step random mechanism:11 first, a 

coalition size between 1 and n is picked up at random and then each player receives his 

marginal contribution to a coalition picked up at random among the coalitions of the 

predetermined size of which he is a member. All sizes have the same probability, namely 1/n, 

and the probability of picking up a coalition of size s containing a given player is given by 

( 1)!( )! / ( 1)!s n s n    As a random order value, the Shapley value corresponds to uniformly 

drawn random orders i.e. ( ) 1/ !p n   for all :     

 
1

( , ) ( , ) ( 1,..., ).
!

N

i iSV N v N v i n
n








    (14) 

                                                 
10 The convex hull of a set A, denoted co[A], is the smallest convex set containing A.  See Rockafellar [1970].  
11 A random allocation mechanism is "fair" if it treats ex ante all players equally.  
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The Shapley value is the average marginal contribution vector and can then be seen as 

resulting from another two-step random mechanism: first, players are ordered randomly and 

they then receive their marginal contribution, depending on their position in the order that has 

been picked up. To show that (13) and (14) are equivalent, consider the coalition 
i  defined 

as the subset of players preceding i in  and including player i. Then (13) can be written as:  

  
1

( , ) ( ) ( \ ) .
!

N

i i

iSV N v v v i
n 

 


   

For a coalition ,S N  there are ( 1)!( )!s n s   orderings such that .i S   Hence, we have:  

  
( )

1
( , ) ( 1)!( )! ( ) ( \ ) 1,..., .

!
i

i

S N

SV N v s n s v S v S i i n
n 

      

The Shapley value defined by (13) or (14) is a well-defined single-valued solution on the class 

of all games, hence including superadditive games. Covariance follows from (6) and 

superadditivity ensures that marginal contribution vectors are imputations. Hence, the Shapley 

value defines an imputation that is not necessarily stable, independently of the core being 

empty or not. However, as an average of marginal contribution vectors, it defines a core 

allocation when applied to a convex game. Furthermore, in view of the geometric 

characterization of the core of a convex game, the Shapley value occupies a central position 

within the core. It generally differs from the barycenter of the core introduced as a solution 

concept by Gonzáles-Díaz and Sánchez-Rodríguez [2007]. It also differs from the simple 

average of core's vertices except for the particular case of convex games with distinct 

marginal contribution vectors.12 

3.5  Dividend distributions: the Harsanyi set 

A distribution of the Harsanyi dividends can be summarized by a matrix   of dimension 

(2 1)nn    whose columns are the non-negative vectors ( , )T T N T     that satisfying  

 1 and 0 for all .T T

i i

i N

i T 


    

T  specifies how the dividend T  is allocated within coalition T. In particular, 
{ } 1i

i   for all 

i and 
N  can be any vector in the unit simplex .n  We denote by nM  the set of all 

distribution matrices in the case of n players. For a given game ( , ),N v  the Harsanyi payoff 

vector ( , , )h N v   derived from a distribution matrix nM   is given by the inner product 

( , , ) ( , ) :h N v N v     

 
( ) ( )\{ }

( , , ) ( , ) ( ) ( , ) ( 1,..., ).T T

i i T i T

T N T N i

h N v N v v i N v i n    
 

          (15) 

                                                 
12 This characterizes what Shapley [1971] calls strictly convex games, games with increasing marginal 

contributions.  
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It is an allocation:  

 
( ) ( )

( , , ) ( , ) ( , ) ( ).T T

i i T T i

i N i N T N T N i N

h N v N v N v v N    
    

        

We call ( , , )h N v  a Harsanyi value and the set of all H-payoff vectors obtained by 

considering all distributions of dividends defines the Harsanyi set: 13 

  ( , ) ( , , ) for some .n

nH N v x x h N v M      

Following Remark 2, the Harsanyi set of an inessential game reduces to a single allocation, 

namely  (1),..., ( ) .v v n  The Harsanyi set associated to the unanimity game ( , )NN u  is the unit 

simplex: ( , ) .N nH N u     

For a given subset T, the dividend T  is allocated between the members of T and, depending 

on its sign, players in T receive a positive or a negative amount. Hence, the Harsanyi set can 

alternatively be written as:  

 
( )

( , ) { | ( ) , ( \ ) 0, ( ) ( ) for all }.n

T i T

T N

H N v x x T x N T sign x sign i N 


       (16) 

It is obviously a non-empty and convex set. It is covariant. Indeed, if ( ) ( ) ( )v S a v S b S    

for some 0a   and ,nb  we have: 

{ } { }

{ }

{ }

( , ) ( ) ( ) ( , )

( , ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ( ) )

( , ), ...

i i i i

ij i j i j

ij

N v v i a v i b a N v b

N v v ij v i v j a v ij b b a v i b a v j b

a N v

 





       

               



 

i.e. the additive term affects only the coefficient associated to singletons. Therefore, we have:  

 
{ }

( ) ( )\{ }

( , , ) ( , ) ( , ) ( , )

( , , ) ( 1,..., ).

T T

i i T i i i T

T N T N i

i i

h N v N v a N v b a N v

a h N v b i n

     



 

      

  

 
 

H-payoff vectors are not necessarily imputations and it may even be that the Harsanyi set 

contains no imputation at all.14 However, for almost positive games, H-payoff vectors are 

imputations, an immediate consequence of (15). The following proposition is due to Derks et 

al. [2000].  

Proposition 2.  Marginal contribution vectors are Harsanyi payoff vectors. 

                                                 
13 The Harsanyi set was introduced as a solution concept by Vasile'v [1978, 1981] and by Hammers et al. [1977], 

independently. The later used the term selectope.   
14 Derks, van der Laan and Vasil'ev [2010] give the exemple of a game that fails to be superadditive, whose 

Harsanyi set has no intersection with the imputation set.  
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Proof.  Consider a game ( , ),N v  an arbitrary ordering N   and the distribution matrix 

nM   defined by 

 
1 if and ,

0 otherwise.

T i

i i T T   


 

where 
i  is the set of players preceding i in   and including i. For any given coalition T,  

gives a positive share only to the player in T  that has the highest rank in .  Consequently, 

1T

ii T



  for all T N  and .n   The corresponding H-payoff vector is then given by: 

 
( ) ( ) \

( , , ) ( ) ( \ ).
i i i

i

T i i

i i T T T T

T N T T T i

h N v v v i
  

       
   

          

Hence, ( , , )h N v   is the marginal contribution vector associated to the ordering .    

Hence, following Remark 5, the Harsanyi imputation set defined by: 

 ( , ) ( , ) ( , ).HI N v H N v I N v   

is a solution set that satisfies the five basic properties when applied to 0-monotonic games.15  

3.6  Weighted Shapley values  

The Shapley value relies on symmetry: equal amounts are allocated to symmetric players. 

Shapley [1953b] derives (13) from the following formula  

 
( )

1
( , ) ( , ) ( 1,..., )

i

i T

T N

SV N v N v i n
t




   (17) 

i.e. the Shapley value is the H-payoff vector associated to the uniform distribution of 

dividends within each coalition: 1/ for all and 0 for all .T T

i it i T i T      Dropping 

symmetry opens the possibility for symmetric players to be treated differently. Shapley 

[1953a] also introduces an asymmetric version of the value obtained by introducing 

exogenous weights in order to cover asymmetries that are not included in the underlying 

game. Weighted games are denoted by ( , , )N v w  where ( , )N v  is a transferable utility game 

and 1( ,..., ) \ 0n

nw w w    are individual weights.  

We denote by ( , , )SV N v w  the weighted Shapley value associated to the game ( , , ).N v w  It is 

the Harsanyi payoff vector associated to the dividends' distribution derived from w:  

 
( )

( , , ) ( , ).
( )

i

i
i T

T N

w
SV N v w N v

w T




   (18) 

                                                 
15 Notice that for 2-player games, the Harsanyi set coincides with the imputation set. Vasil'ev [1981] provides 

necessary and sufficient conditions for nonemptiness of the Harsanyi imputation set. See also Derks et al. [2010].  
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That definition is actually valid only if at most one of the wi's is equal to zero. To show this, 

consider an arbitrary player, say player 1. With positive weights, (18) can be decomposed as 

follows:  

1 1

1
1 {1}

( )\{1} ( )\{1} 1

\1

1
( , , ) ( , ) (1) ( , ).

( ) 1 ( / )
T T

T N T N i

i T

w
SV N v w N v v N v

w T w w
  

 



   


 


 

Assuming 0 for all 1iw i   and letting 1 0,w   we obtain a well-defined limit, namely v(1).  

When there are more than three players and at least two of them are assigned a zero weight, 

there may be a continuum of values depending on the relative speeds of convergence.    

The set of all weighted values is obtained by considering all positive weights and all possible 

limits of sequences of positive weights. More precisely, considering normalized weights in 

n  and a sequence of positive weights ( )kw  converging to some boundary point ,nw  the 

resulting limit is given by 

 
( )\{ }

\

1
( , , ) ( ) lim ( , ).

1 ( / )
k

i

i Tk kw w
T N i j i

j T i

SV N v w v i N v
w w








 





 

It exists and it coincides with ( )v i  if /k k

j iw w   for all .j i  We denote by ( , )WS N v  the 

resulting set of all weighted values.  

Applying (18) to the unanimity game ( , ),NN u  we get: 

 ( , , ) ( 1,..., ).
( )

i
i N

w
SV N u w i n

w N
   (19) 

It is a well defined expression for all \ 0nw   and it equals 1/n in the symmetric case.  

Weighted Shapley values ( , , )SV N v w  can alternatively be obtained as random order values 

( , , )wRV N v p  where wp  is a probability distribution on players' orderings depending on w. 

For an arbitrary players' ordering , the marginal contributions of player i in the unanimity 

game ( , )NN u  is defined by: 

 
( , ) 1 if (and only if ) comes in ,

0 otherwise.

i NN u i last 


 

Hence, (19) corresponds to the random order values associated to distributions such that 

/ ( )iw w N  is the probability that player i comes last in an arbitrary ordering, i.e. ( )Np   

should satisfy  

 

\

( , , ) ( , ) for all .
( )i

N i

i i
i N

w
RV N u p p i i N

w N








    
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Let's assume for a moment that weights are positive and natural numbers, iw  being 

interpreted as the number of players of type i. We then compute the probability that a given 

ordering comes out through a sequence of ( )w N  independent drawings, knowing that each 

time a player is drawn, he is removed and only the last player of a given type to be removed is 

placed in the ordering. The number of possible sequences is given by ( )! !iw N w  and they 

all have the same probability of occurrence. To illustrate the process, let's take n = 3 and 

w = (1,2,3). Then, ( ) 6w N   and there are 60 drawing sequences. For instance, the sequence 

(3,2,3,3,1,2) leads to the ordering (3,1,2) where player 2 comes last.  

Player  j comes out last in a given ordering if and only if he is the last to be drawn. This 

occurs with probability  

 
  !( ) 1 !

.
( 1)! ! ( )! ( )

i j

j i

i j

w ww N

w w w N w N










 

The probability that player k comes next to last knowing that player j came last is given by: 

 
 

,

!
( \ ) 1 !

.
( 1)! ! ( \ )! ( \ )

i

i j k

k i

i j k

w
w N j w

w w w N j w N j













 

Using this argument repeatedly until the second position, the probability that the ordering 

1( ,..., )ni i   comes out is given by: 

 12

1 2 1 1 1
2

1

( ) ...
... ...

n n k

n n j

n
i i ii

w k
ki i i i i i ij

w w ww
p

w w w w w w w
 






 
    




 

or 

 
1

2
1

1
( ) .

1 ( / )
j k

n

w k
k i ij

p
w w













 (20) 

This formula is then extended to the case where weights are real numbers.16 If a player is 

assigned a zero weight, weighted values are obtained as limit of sequences of positively 

weighted values. If there is a single zero weight player, say player i, the limit distribution is 

still uniquely defined: player i is first with probability 1 and receives his individual worth 

( ).v i  When two players or more are assigned a zero weight, a continuum of values may be 

associated to the same normalized weight system. Considering converging sequences of 

positive weights, the resulting value may depend on their relative speeds of convergence.   

                                                 
16 I am grateful to Gerard van der Laan for suggesting this procedure. I initially used the sequence of n drawings 

where, each time a player is drawn, all players of the same type are removed. It leads to a probability distribution 

where wi/wj is the probability that player i comes first. This is appropriate for cost games and duals of surplus 

sharing games. The distribution (20) is then obtained by considering the reverse order; see Dehez [2011].   
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The probability distributions wp  are homogeneous of degree zero in w. Weights may 

therefore be normalized. For a given set N of players and weights ,nw  the set of all 

weighted values is obtained from probability distributions in the set 

 ( ) ( ) ( ) lim ( ) for some converging sequence ( ) int .k
k

k

N N nww w
F w p p p w 


       

In view of (20), this is a well-defined set: for any positive sequence ( )kw  converging to 

,nw  the associated sequence of distributions kw
p  converges to a distribution ( ).w Np    

The Shapley set is then defined as the set of all weighted values:  

  ( , ) ( , , ) for some ( ) and .n

N nWS N v x x RV N v p p F w w      (21) 

Remark 7. There is a one-to-one relationship between the set of positively weighted values 

and the (relative) interior of :n  any positively weighted value is associated to a unique 

normalized weight system, and vice-versa.  

Let us denote by { | 0 }iZ i N w    the set of zero weight players.17 Given a game ( , ),N v  

let ( , )ZZ v  be its restriction to Z and define the game ˆ( \ , )N Z v  by ˆ( ) ( ) ( ).v S v Z S v Z    It is 

the game that concerns the subset of non-zero weight players, once ( )v Z  has been distributed 

to zero weight players. The following proposition establishes that, in order to compute 

weighted values, positive-weight players and zero weight players can be treated separately.  

Proposition 3. The values of the weighted game ( , , )N v w  consists of the allocations 

\( , )Z N Zx x x  where ( , )Z Zx W Z v  and \ \
ˆ( \ , , ).N Z N Zx SV N Z v w   

Proof.  Inspecting (20), we observe that the distributions in ( )NF w  assign a zero probability 

to orderings in which a non-zero weight player is followed by a zero weight player. Hence, 

only orderings of the form \( , ) ( )Z N Z        do actually matter and the distributions 

( )w Np F w  are of the form 

 
\0 \( ) ( ) ( ) for all ( , ) ,

0 otherwise.

N Zw w Z N Zp p p           



 

where 0p  is an arbitrary probability distribution on Z.  The corresponding allocation is then 

given by:  

 
\

\

( , )

0

( , )

( ) ( ) ( , ).
N Z

Z N Z

i w ix p p N v 

 

  
 

   

    

By definition of the marginal contribution vectors, 
( , )

i

 
 

 can be decomposed as follows:  

 
( , ) ˆ( , ) ( ( , ), ( \ , )).i i Z iN v Z v N Z v     
   

  

                                                 
17 We omit the dependence of Z on w. 
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Hence, for a player ,i Z  we have:  

 
\

\

0 0( ) ( , ) ( ) ( ) ( , )
N Z

Z N Z Z

i i Z w i Zx p Z v p p Z v 

  

    
 

    

       

i.e. 0( , , ).Z Zx RV Z v p  Hence, the probability distribution 0p  being arbitrary, we can 

conclude that ( , ).Z Zx W Z v  

Consider now the game ˆ( \ , ).N Z v  For a player \i N Z  and an arbitrary ordering 

\( , ) ( )Z N Z       and we have:  

 
\ \

\ \

0
ˆ( ) ( \ , ) ( ) ( ) ( \ , )

N Z N Z

N Z Z N Z

i w i w ix p N Z v p p N Z v 

  

    
 

    

       

i.e. \N Zx  is the weighted value of the game \
ˆ( \ , , ).N ZN Z v w    

Remark 8.  In practice, when more than one player are assigned a zero weight, it would be 

natural to treat them equally by considering converging sequences such that the ratios of their 

weights are equal to 1. The distribution is then given by 0 ( ) 1/ ! for all Zp z    and the 

resulting allocation is the symmetric Shapley value of the game ( , ).ZZ v 18  

The Shapley set is clearly a non-empty subset of the Weber set and, as a solution, it is 

covariant. It is however not a convex set in general, as was observed by Monderer, Samet and 

Shapley [1992], except for the 2-player games or for convex games, as we shall see later.  

Remark 9.  Owen [1968] has been the first to notice that weighted values are not necessarily 

monotonic with respect to weights: an increase in the weight assigned to a player may indeed 

result in a decrease of his payoff. Weights being interpreted as measures of players' relative 

importance (Shapley talks about bargaining abilities), this is an embarrassing fact. It is 

however no surprise in view of (18), knowing that dividends may be negative.19 Monotonicity 

clearly holds for almost positive games. Monderer et al. [1992] have shown that it actually 

holds for (and only for) convex games. This can be explained intuitively by the link that exists 

between a characteristic of convex games and the probability distribution over orderings 

induced by the weights. Increasing the weight of a player means increasing his probability of 

arriving late and we know that marginal contributions are increasing with coalition size in 

convex games. Hence, increasing the weight of a player naturally increases his expected 

payoff.  

                                                 
18 See Dehez and Tellone [2013] for an application of the weighted Shapley value with zero weight players.   
19 Owen [1968] suggests to interpret weights as reflecting slowness to reach a decision. An alternative definition 

of weighted value has been proposed by Haeringer [2006] in which an increase in the weight of a player leads to 

an increase in his share in positive dividends and a decrease of his share in negative dividends.  
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3.7  Relation between solutions 

The question is now to see how the core, the Weber set, the Shapley set and the Harsanyi set 

are interrelated. 

Proposition 4. The following sequence of inclusions holds for 0-monotonic games: 

( , ) ( , ) ( , ) ( , ) ( , ).C N v WS N v W N v HI N v H N v     

  When applied to convex games, the first three solutions coincide.  

Proof. Weber [1988] has shown that the core is a subset of the Weber set and that, when 

applied to convex games, the two solutions coincide. Actually this coincidence is a necessary 

and sufficient condition for convexity. We have already seen that weighted values are random 

order values.20 Monderer, Samet and Shapley [1992] have shown that the core is a subset of 

the set of weighted values. By Proposition 2, random order values are convex combinations of 

Harsanyi imputation vectors. Hence, the Weber set is a subset of the Harsanyi set. The 

sequence of inclusions then follows from the convexity of the Harsanyi set.      

Proposition 5. All solutions coincide on the set of almost positive games:  

( , ) ( , ) ( , ) ( , ) ( , ).C N v WS N v W N v HI N v H N v     

This is a corollary of the following proposition due to Hammer et al. [1977] and Vasil'ev 

[1978].  

Proposition 6. The core and the Harsanyi set coincide on the set of almost positive games.  

Proof. Let ( , )N v  be an almost positive (and thereby convex) game. Looking at its 0-

normalization, we have:  

 0 0

( )

( ) ( , ) ( )T T

T N

v S N v u S


   

where the 'T s  are all non-negative. For any given ,T N  the core of the game ( , )T TN u  is 

given by:  

  ( , ) ( ) and 0 for all .n

T T T iC N u x x T x i T       

Indeed ( ) 0Tu i   for all { },T i  { }( ) 1iu i   and { }( ) 0 for all .iu j j i   The core is additive on 

the class of convex games. This follows from the following two lemmas:  

Lemma 3.  The core is a superadditive solution (Peleg [1986]). 

Lemma 4.  The Weber set is a subadditive solution (Dragan, Potters and Tijs [1989]).  

                                                 
20 In fact, the Shapley set is in general a dimensionally small subset of the Weber set. 
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Hence, we have:  

 0

( ) ( )

( , ) ( , ) { | ( ) and ( \ ) 0}n

T T T

T N T N

C N v C N u x x T x N T 

 

       

where the right-hand side is the Harsanyi set of the game 0( , ).N v    

Actually, Hammer et al. [1977] and Vasil'ev [1981] prove that the core and the Harsanyi set 

coincide only if they apply to almost positive games. Knowing that core allocations (if any) 

are H-payoff vectors, another way to prove Proposition 6 consists in showing that the reverse 

inclusion ( , ) ( , )H N v C N v  holds for almost positive games. Indeed, using (15), we have:  

 

( ) ( ) ( )

( ) ( ) ( )

( , , )

( ) ( ).

T T T

i i T i T i T

i S i S T N i S T S i S T N
T S

T T T

T i i T i T

T S i T i S T N i S T N
T S T S

h N v

v S v S

      

     

      


     
 

  

    

      

     
 

At this stage, we can conclude that the core, the Shapley set, the Weber set and the Harsanyi 

imputation set all satisfy the five basic properties when applied to convex games. In 

particular, the Shapley set is a convex set in this case.  

By Proposition 6, ( , ) ( , ) and ( , ) ( , ).C N v H N v C N v H N v      Furthermore, Derks et al. 

[2000] proves that ( , ) ( , ) ( , ).H N v C N v C N v    

Remark 10. Looking at the Shapley set and assuming convexity, there is a homeomorphism 

between the relative interior of the unit simplex and the relative interior of the core. This 

homeomorphism cannot be extended to non-negative weights and boundary core allocations, 

except if the game is strictly convex.  

4.  Characterizing Solutions 

There are different ways to characterize values and solutions. We will consider two ways: by 

axioms and by restrictions on dividend distributions.  

4.1  Characterization by axioms  

Given a player set N, consider the following properties applying to a value : ( ) :nG N   

 Efficiency: ( , ) ( ).i N v v N    

 Weak positivity: ( ) ( , ) .nv G N N v

     

 Strong positivity:  ( ) ( , ) .nv MG N N v     

 Null player:  null in ( , ) ( , ) 0.ii N v N v    

 Additivity: 1 2 1 2( , ) ( , ) ( , ).N v v N v N v      



 23 

These are usual properties. The following proposition is due to Vasil'ev [1982, 2006].21 We 

give here a simple proof.   

Proposition 7.  For any given player set N, a value  satisfies efficiency, weak positivity, null 

player and additivity if and only if   is a Harsanyi value.    

Proof.  H-payoffs vectors are efficient and the H-payoff of a null player is obviously zero. 

Weak positivity follows from the definition of H-payoffs (15). Additivity follows from 

dividends' additivity.  

Consider the unanimity game ( , )TN u  where T N  and .   Because unanimity games 

are positive and players outside T are null players, an application  satisfying efficiency, 

weak positivity and null player must be such that:  

 

( , ) ,

( , ) 0 for all ,

( , ) 0 for all .

i T

i T

i T

N u

N u i N

N u i T

  

 

 



 

 


 

Hence, ( , )TN u   is a H-payoff of the game ( , )TN u : ( , ) ( , , )T TN u h N u     for some 

.nM   More precisely, there exists nM   such that ( , ) for all .T

i T iN u i N      Now 

consider an arbitrary characteristic function v on N and its decomposition T Tv u  in 

terms of dividends. Following (7), v can be written as v v v    where ( , )N v
 and ( , )N v

 

are positive games that decompose as 
0T

T Tv u





  and 

0
.

T
T Tv u





   By additivity, 

we have:  

 ( , ) ( , ) ( , )N v N v v N v            ( , ) ( , ) ( , ).N v N v N v      

As a consequence, ( , )N v is a H-payoff vector of the game ( , ) :N v   

 
: 0 : 0

( , ) ( , ) ( , ) for all .
T T

T

i i T T i T T i T

T T T N

N v N u N u i N
 

      
  

         

Notice that the Harsanyi set, as a solution, is not additive.22 Indeed, considering for instance 

the unanimity game ( , ),NN u  we have:  

 
 

 

( , ( )) 0 ,

( , ) ( , ) 0 .

N N

N N n n

H N u u

H N u H N u

  

     
 

Vasil'ev [1981] provides an axiomatization of the Harsanyi set that requires convexity and a 

restricted notion of additivity applying to disjoint games.23 

                                                 
21 Vasil'ev also requires homogeneity although only additivity is actually needed.  
22 The author is grateful to a referee for pointing out the non-additivity of the Harsanyi set.  
23 See also Vasil'ev and van der Laan [2002].  
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Weber [1988] proved that strengthening the positivity axiom results in the Weber set.24 

Proposition 8.  For any given player set N, a value  satisfies efficiency, strong positivity, 

null player and additivity if and only if   is a random order value. 

To obtain weighted Shapley values, a specific axiom is needed. Derks et al. [2000] use the 

following axiom:25  

Consistency: ( , ( , )( ) ) ( , ).i T S i Ti S T N N u S u N u       

Proposition 9. For any given player set N, a value  satisfies efficiency, consistency, null 

player and additivity if and only if   is a weighted Shapley value.  

It is easy to check that consistency is satisfied by the weighted value when associated to 

positive weights. Indeed, we have:  

 ( , , )
( )

i
T

w
i T SV N u w

w T
    

and  

 
( )

( , ( , )( ) , ) .
( ) ( ) ( )

i i
T T

w ww S
i S T SV N N u S u w

w S w T w T
      

4.2  Characterization by restrictions on dividend distributions 

Harsanyi payoff vectors are defined by distribution matrices in nM  without any further 

restrictions. A natural question concerns the identification of restrictions on distribution 

matrices such that the resulting set of H-payoff vectors corresponds to  particular solution 

sets.  

Derks et al [2000] suggest to link distributions within a coalition to distributions within its 

sub-coalitions by requiring that a player's share in the dividend of a coalition does not 

increase if the coalition is enlarged:   

 .S T

i ii S T        (22) 

It means that if a player leaves a coalition, that should not reduce the share of those remaining 

in the coalition. This monotonicity property imposes strong restrictions on distribution 

matrices. In particular, if the share of a player in a coalition is zero, his share must be equally 

zero for all larger coalitions.  

We denote by ( , )mH N v  the subset of Harsanyi payoffs vectors derived from monotonic 

distribution matrices. The following proposition is due to Derks et al. [2000]. 

                                                 
24 See also Derks et al. [2000].  
25 Consistency is a weaker version of the axiom of partnership consistency used by Kalai and Samet [1987] to 

axiomatize the weighted Shapley value.  
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Proposition 3.  Distribution matrices associated to random order values are monotonic.  

Proof.  Let us fix a player set N and a non-monotonic distribution matrix nM   i.e. there 

exist a player i and coalitions S and T in N such that and .S T

i ii S T     Consider the 

game ( , )N v  defined by \ .S T S Tv u u u    Following Remark 1, its dividends are all zero 

except for coalitions , and \ :S T T S   

 
\( , ) ( , ) 1,

( , ) 1.

S T S

T

N v N v

N v

 



 

 
 

The H-payoff of player i is therefore given by ( , , ) 0S T

i i ih N v      . Hence, ( , )N v  being 

positive valued and monotonic, ( , , )h N v   cannot be a random order value.   

We therefore have the following inclusion: ( , ) ( , ).mW N v H N v  There may however be H-

payoff vectors derived from monotonic distribution matrices that are not random order value. 

To have equality, a stronger monotonicity requirement is needed. Vasil'ev [1988], Dragan 

[1994] and Derks et al. [2006] prove the following proposition.  

Proposition 11.  H-payoff vectors are random order values if and only if they are derived 

from distribution matrices  satisfying the following inequalities  

 
:

( 1) 0 for all and .s t S

i

S S T

T N i T



     (23)  

Probabilities ( )S

iq  and dividend distributions  are then related by a Möbius transform:  

 
:

( 1) for all and ,S t s T

i i

T T S

q S N i S



     

 
:

for all and ,S T

i i

T T S

q S N i S


    

and ( , ) ( , )smH N v W N v  where ( , )smH N v  denotes the set of Harsanyi payoff vectors 

derived from distribution matrices satisfying the strong monotonicity condition (23). 

An even stronger restriction consists in assuming that the distribution vectors 
S  are 

consistent in the Bayesian sense:   

 if ( ) 0.
( )

T
S Ti
i T

i S T S
S


 


      (24) 

In the case where ( ) 0,T S   
S  is any distribution on n  satisfying 0 for all .S

i i S    It is 

easily verified that distribution matrices satisfying (24) also satisfy the monotonicity 

properties (22) and (23). The following proposition can be found in Derks et al. [2000] or 

Billot and Thisse [2005].    



 26 

Proposition 12. The weighted Shapley values associated to the weight system \ 0nw   

coincides with the set of H-payoff vectors of the form ( , , )h N v   where  is 

a distribution matrix satisfying (24) for / ( ).N w w N   

Proof.  Let's fix some .nw  If 0,w  the equivalence follows for the distribution matrix  

satisfying (24) with 
N w  : 

 
( ) ( )

( , , ) ( , , ).
( ) ( )

i i

N
T i i

i i T T T iN
T N T N T N

w
h N v SV N v w

T w T


    

  

       

Assume now that the set Z of zero weight players is non-empty. We first observe that, for all 

S N  such that ( \ ) ,S N Z   (24) implies 0S

i   for all .i Z S   Hence, we can treat 

zero weight and non-zero weight players separately. Consider first non-zero weight players 

and the distribution matrix ̂  derived from the distribution vector 
\

\

N Z

N Zw   using (24). 

Applying the above argument for the player set \ ,N Z  we obtain 

\
ˆˆ ˆ( \ , , ) ( \ , , )N Zh N Z v WS N Z v w   where ˆ( \ , )N Z v  is the game defined by 

ˆ( ) ( ) ( )v S v Z S v Z    introduced within the proof of Proposition 3. Consider now zero 

weight players and an arbitrary distribution 
Z  on Z. The distribution vectors 

T  for subsets 

T Z  are then obtained applying (24). Considering all distributions on Z generates the 

Harsanyi set ( , )ZH Z v  which coincides with ( , )ZW Z v  by Proposition 8.  

Hence, ( , ) ( , )bH N v WS N v  where ( , )bH N v  denotes the set of H-payoff vectors derived 

from distribution matrices satisfying (24).   

4.3  Implications of monotonic dividend distributions  

Monotonicity of dividend distribution can be considered as a natural restriction. Can we 

characterize ( , ),mH N v  the set of H-payoff vectors derived from distribution matrices 

satisfying (24) ?  

We already know that ( , ) ( , ).mW N v H N v  Furthermore, the core and the Harsanyi set 

coincide if (and only if) they apply to almost positive games, in which case 

( , ) ( , ) ( , ) :mC N v H N v H N v   core allocations can be written as H-payoff vectors derived 

from monotonic dividend distributions.  

What about a larger class of games? Billot and Thisse [2005] claim that ( , )mH N v  coincides 

with the core if (and only if) the game is convex. Actually, this is true only for 2 and 3-player 

games!  

Consider a 3-player game and let x be the H-payoff vector corresponding to a monotonic 

dividend distribution matrix . Using (22), individual rationality results from superadditivity:   
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12 13

1 1 1

123

1

12 123 13 123

1 1 1 1

123

1

123

1

(1) ( (12) (1) (2)) ( (13) (1) (3))

( (123) (12) (13) (23) (1) (2) (3))

( )( (12) (1) (2)) ( )( (13) (1) (3))

( (123) (23) (1))

( (123) (2

x v v v v v v v

v v v v v v v

v v v v v v

v v v

v v

 



   





      

      

       

  

  3) (1)) 0.v 

 (25) 

Considering 2-player coalitions, superadditivity implies the following inequality:  

 

13 23

1 2 1 2

123 123

1 2

123

1

123

2

( ) (12) ( (13) (1) (3)) ( (23) (2) (3))

( )( (123) (12) (13) (23) (1) (2) (3))

( (123) (12) (23) (2))

( (123) (12) (13) (1)).

x x v v v v v v v

v v v v v v v

v v v v

v v v v

 

 





       

       

   

   

  

where the last part is non-negative under convexity. The argument applies identically to all 

single players and 2-player coalitions, confirming that x is a core allocation under convexity.  

For more than three players, convexity is not sufficient to ensure that H-payoff vectors are 

core allocations under monotonicity. Consider the 4-player convex game defined by 

( ) 1.v S s   Its dividends are given by:  

 

{ }

{ , }

{ , , }

{1,2,3,4}

0,

1,

1,

1.

i

i j

i j k













 



 

The H-payoffs associated to the monotonic matrix given in Table 1 are (0.4, 0.7, 0.8,1.1),  an 

allocation that does not belong to the core: the coalition {1,2,3} indeed obtains only 1.9.  

 

 12 13 14 23 24 34 123 124 134 234 1234 

1 0.5 0.4 0.3 0 0 0 0.4 0.3 0.3 0 0.2 

2 0.5 0 0 0.5 0.3 0 0.3 0.3 0 0.2 0.2 

3 0 0.6 0 0.5 0 0.3 0.3 0 0.3 0.2 0.2 

4 0 0 0.7 0 0.7 0.7 0 0.4 0.4 0.6 0.4 

Table 1 
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For 3-player games, (25) tells us that superadditivity is enough to ensure that monotonic 

dividend distributions define imputations. For 4-player games, adding convexity ensures 

individual rationality. To simplify and without loss of generality, let's assume ( ) 0v i   for 

all i. Then, by Lemma 1, ( ) 0v S   for all S. The H-payoff of player 1 for an arbitrary 

distribution matrix  is given by:   

 

12 13 14 123

1 1 1 1 1

124 134

1 1

1234

1

(12) (13) (14) ( (123) (12) (13) (23))

( (124) (12) (14) (24)) ( (134) (13) (14) (34))

( (1234) (123) (124) (134) (234)

(12) (13) (14) (23) (24

x v v v v v v v

v v v v v v v v

v v v v v

v v v v v

   

 



      

       

    

     ) (34)).v

 

Using the monotonicity condition (22), we obtain:  

 

123 124

1 1 1

134

2

1234

1

( (123) (13) (23)) ( (124) (12) (24))

( (134) (14) (34))

( (1234) (123) (124) (134) (234)

(12) (13) (14) (23) (24) (34)).

x v v v v v v

v v v

v v v v v

v v v v v v

 





     

  

    

     

 

Rearranging the above expression, we get:  

 

123 1234 124 1234

1 1 1 1 1

134 1234 1234

1 1 1

( )( (123) (13) (23)) ( )( (124) (12) (24))

( )( (134) (14) (34)) ( (1234) (234))

x v v v v v v

v v v v v

   

  

       

     
 

Combining (22) and convexity, we finally get 
1234

1 1 ( (1234) (234)) 0.x v v    

Convexity is needed for the result to hold. Indeed, consider the following 4-player game and 

associated dividends.  

 

{ }

{ , }

{ , , }

{2,3,4}

{1,2,3,4}

( ) 0 0

( , ) 1 1

(1, , ) 1 1 3 2

(2,3,4) 2 2 3 1

(1,2,3,4) 2 2 5 6 3

i

i j

i j k

v i

v i j

v i j

v

v











 

 

     

    

    

 

This game is superadditive but not convex. The distribution matrix given in Table 2, while 

satisfying the conditions of monotonicity, leads to an allocation that violates individual 

rationality. Player 1 is indeed allocated a negative amount: 1 2.1 4.2 1.65 0.45 0.x         
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 
 

 

 

 

 

Table 2 

Beyond four players, convexity does not ensure individual rationality under monotonicity. 

Indeed, consider the following convex game: 

 

{ }

{ , }

{1, , }

{ , , }

{1, , , }

{2,3,4,5}

{1,2,3,4,5}

( ) 0 0

( , ) 1 1

(1, , ) 2 1

( , , ) 3 0

(1, , , ) 4 1

(2,3,4,5) 5 1

(1,2,3,4,5) 6 1

i

i j

i j

i j k

i j k

v i

v i j

v i j

v i j k

v i j k

v

v















 

 

  

  

 

  

  

 

Again here, player 1 is allocated a negative amount (– 0.2) on the basis of the monotonic 

distribution matrix given by Table 3.26  

 

 12 13 14 15 123 124 125 134 135 145 1234 1235 1245 1345 12345 

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 

2 0.9 0 0 0 0.45 0.45 0.45 0 0 0 0.33 0.33 0.33 0 0.25 

3 0 0.9 0 0 0.45 0 0 0.45 0.45 0 0.33 0.33 0 0.33 0.25 

4 0 0 0.9 0 0 0.45 0 0.45 0 0.45 0.33 0 0.33 0.33 0.25 

5 0 0 0 0.9 0 0 0.45 0 0.45 0.45 0 0.33 0.33 0.33 0.25 

 

Table 3 

                                                 
26 We only reproduce the shares of player 1. Shares can easily be allocated to the other players so as to satisfy 

monotonicity.  

 12 13 14 23 24 34 123 124 134 234 1234 

1 0.7 0.7 0.7 0 0 0 0.7 0.7 0.7 0 0.55 

2 0.3 0 0 0.7 0.3 0 0.15 0.15 0 0.15 0.15 

3 0 0.3 0 0.3 0 0.3 0.15 0 0.15 0.15 0.15 

4 0 0 0.3 0 0.7 0.7 0 0.15 0.15 0.7 0.15 
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4.4  Graph structures and restrictions on dividend distributions  

Given a game, additional data can be used to place restrictions on dividend distribution. This 

question has been studied by van den Brink, van der Laan and Vasil'ev [2014] assuming that 

players are ordered following a directed graph. Given a finite set N, a directed graph 

D N N   is a set of pairs ( , )i j  such that ( , ) .i i D  The set of directed graphs is denoted by 

D. Nodes are players and ( , )i j D  means that i "precedes" j. For a given game, the payoff of 

a player then depends not only upon the characteristic function but also on his position on the 

graph.27  

More specifically, van den Brink et al. suggest that, for any given pair of players, the shares in 

the dividends of all coalitions containing them must be larger or equal for the player that 

precedes the other:  

 ( , ) S S

i ji j G      for all S containing i and j.  (26) 

Given a game ( , )N v  and a graph ,DD  this condition leads to a subset of the Harsanyi set 

that we denote by ( , , ).gH N v D   

The authors consider only positive games, in which case ( , , )gH N v D  is a subset of the core 

by Proposition 6, that they call Harsanyi constrained core. Core allocations are then H-payoff 

vectors derived from Bayesian consistent distributions and ( , )i j D  is equivalent to 

.N N

i j   Equivalently, core allocations are weighted values and ( , )i j D  is equivalent to 

.i jw w  They prove the following two propositions, the second one applying exclusively to 

positive games.  

Proposition 13.  For any given game ( , )N v and graph ,DD  the Shapley value ( , )SV N v  

is an element of ( , , ).gH N v D  Furthermore, the Shapley value is the unique 

element of ( , , )gH N v D  if and only if D is the complete directed graph 

 ( , ) .D i j N N i j     

Proof.  The Shapley value is defined by 1/S

i s   for all andi S S N   and therefore (26) is 

verified for all graph .DD  If ,D D  
S S

i j   for all , andi j S S N   and 1/S

i s   for all 

and .i S S N   Hence,  ( , , ) ( , ) .gH N v D SV N v  Next, consider a graph D such that 

( , )j k D  for some j and k, ,j k  and the unanimity game { , }( , ).j kN u  From Remark 1, the 

allocation 
nx   defined by 1 and 0 for allk ix x i k    belongs to { , }( , , ).g

j kH N u D  It 

differs from the Shapley value { , }( , )j kSV N u  which allocated 1/2 to j and k.   

Proposition 14. For any positive game ( , ) ( )N v G N  and graph DD,  we have:  

( , , ) ( , )gH N v D C N v  if and only if .D    

                                                 
27 Another instance of graph-driven restrictions on distributions is given by van den Brink, van der Laan and 

Pruzhansky [2011] who consider games with communication graphs à la Myerson [1977]. Their idea is to link 

the dividend distribution to the "power" of players as measured for instance by the size of their neighborhood.  
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Proof.  When ,D    ( , , ) ( , )gH N v D H N v  and ( , ) ( , )H N v C N v  by Proposition 6. When 

instead ,D    there exist j and k such that ( , )j k D  and the allocation x  defined in the 

proof of Proposition 13 does not belong to { , }( , , ).g

j kH N u D  However, it belongs to 

{ , }( , ).j kC N u    

van den Brink et al. [2014] also characterize axiomatically the Harsanyi constrained core on 

the class ( )G N  of positive games. A solution associates a subset ( , , )N v D  to any game 

( , ) ( )N v G N  and directed graph .DD  They show that the Harsanyi constrained core is 

maximal among the solutions satisfying efficiency, null player property, additivity, weak 

positivity, together with the additional property of structural monotonicity defined by: 

 For all game ( , ) ( )N v G N  and directed graph DD,  allocations ( , , )x N v D   

are such that i jx x  if ( , )i j D  and i is necessary to j in ( , ).N v   

4.5  An illustration: liability games 

Liability games have been introduced in Dehez and Ferey [2013].28 They cover situations 

where damage has been caused to a victim by several tortfeasors. The causality question is 

solved once the damage ( )v S  that the members of any coalition S would have caused is 

known, their potential damage. The problem is to divide the actual damage ( )v N  between the 

n tortfeasors. In this framework, the symmetric Shapley value stands as a benchmark from 

which a judge may deviate if he considers that some tortfeasors are faultier than others. 

Furthermore, the core has an interesting interpretation: core allocations of a liability game are 

fair judgments in the sense that they satisfy the following two (equivalent) conditions: 

 no coalition of players contributes less than its potential damage 

 ( ) ( ) for all ,x S v S S N    

 no coalition of players contributes more than its additional damage 

 ( ) ( ) ( \ ) for all .x S v N v N S S N    

Here we will consider the sequential case, usually considered as a difficult one in the legal 

literature. Following the natural order 1,2,…,n, each player is responsible for an additional 

damage, id  for player i. The associated game ( , )N v  is then given by:  

 1

1 2

( ) 0 if 1 ,

( ) if 1 and 2 ,

( ) if 1,2 and 3 .

v S S

v S d S S

v S d d S S

 

  

   

 

and so on… Defining {1,..., }iT i  as the set of successive players, starting with 1 and ending 

with i, the characteristic function can be written as:  

                                                 
28 The legal aspects are documented in Dehez and Ferey [2016]. 
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( ) ( )
ii T

i N

v S d u S


  

and Harsanyi dividends are given by: 

 
( , ) if

0 otherwise

T i iN v d T T  


 (27) 

Hence, sequential liability games are positive (and thereby convex) and all solutions coincide 

with the core.29 In the 3-player case, the vector of dividends is given by 1 2 3( ,0,0, ,0,0, ).d d d   

The problem is to divide the total damage 1( ) ... nv N d d    among the n players. The 

resulting allocation specifies the compensation that each player must pay to the victim. Using 

(8), it can be verified that the core of a liability game can be written in terms of the Ti's:    

  ( , ) ( ) ( ) and ( ) ( ) for all .n

i iC N v x x N d N x T v T i N      

We observe that the allocation that imposes to the first player to pay the entire damage as well 

as the allocation x d  that imposes to players to pay each his additional damage are core 

allocations. Sequential liability games being convex, the core is the polytope whose vertices 

are the 12n  distinct marginal contribution vectors.  

In the 3-player case, there are four distinct marginal contribution vectors:  

 

(1,2,3)

1 2 3

(1,3,2) (3,1,2)

1 2 3

(2,1,3)

1 2 3

(2,3,1) (3,2,1)

1 2 3

( , , ),

( , ,0),

( ,0, ),

( ,0,0).

d d d

d d d

d d d

d d d



 



 



  

 

   

 

The core and the Shapley set coincide. Hence, fair judgments can be defined equivalently as 

weighted Shapley values with normalized weights w or Harsanyi payoff vectors with 

distribution matrix   satisfying the Bayesian consistency condition (24) such that .N w   In 

the context of Tort Law, weights can be used to reflect differences in the degree of 

misconduct or negligence. Given (27), the H-payoff vector associated to 0N   defines the 

following apportionment rule: 

 ( , , ) .
( )

Nn
i

i jN
j i j

SV N v w d
T





   (28) 

                                                 
29 Liability games are dual of airport games, known to be positive games.  
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In the 3-player case, for positive weights, (28) reduces to:  

 

123
12 123 1231

1 1 1 2 1 3 1 2 1 3123

123
12 123 1232

2 2 2 2 3 2 2 3123

123

3 3 3

,
(12)

,
(12)

.

x d d d d d d

x d d d d

x d


  




  





     

   



 

This triangular formula shows the one-to-one relationship that exists under convexity between 

the relative interior of the core and the relative interior of the unit simplex: to each interior 

core allocation is associated one and only one weight vector in intN

n    and vice versa. 

For boundary core allocations, some players may be exempted and there is indeterminacy if 

there exists j, 1 < j < n, such that ( ) 0 for 1,2,..., .N

iT i j    If it is the case, then any 

distribution onS

iT  for 1, 2,...,i j  is possible, for all .S N   

As a matter of illustration, consider the case where n = 4. If 
1234 (0,0,0,1),   we have  

 
12 ( ,1 ,0,0)a a    and 

123 ( , ,1 ,0)b c b c     

for some , , [0,1]a b c  such that 1.b c   The choice a = 1/2 and b = c = 1/3 corresponds to 

the Shapley value restricted to the player set {1,2,3}. In the case n = 3, if 
123(12) 0,   we 

have  

 
123 (0,0,1)   and 

12 ( ,1 ,0)a a    

for some [0,1].a  It corresponds to the allocation 1 2 2 3( , (1 ) , ).d a d a d d   The choice of 

a = 1/2 corresponds to the Shapley value restricted to the player set {1,2}. Instead, the 

allocations 1 2 3( , , )d d d  and 1 2 3( ,0, )d d d  corresponds to a = 0 and a = 1 respectively. The 

allocation 1 2 3( ,0,0)d d d   that exempts players 2 and 3 is associated to the weight vector 
123 (1,0,0).   The allocation 1 2 3( , ,0)d d d  that exempts player 3 is associated to the weight 

vector 
123 (0,1,0).   In this way, we have covered the four vertices of the core.  

The symmetric Shapley value is given by:  

 
1

( , ) .
n

i j

j i

SV N v d
j

  

In the 3-player case, we get the following allocation:  

 

1 1 2 3

2 2 3

3 3

1 1
,

2 3

1 1
,

2 3

1
.

3

x d d d

x d d

x d

  

 


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It is important to observe that, as a rule, weighted values (or Harsanyi payoffs) are such that 

no one is liable for damage caused downstream in the sequence: what  player i contributes 

depends only on ( ,..., ).i nd d  This is a characteristic of the core.  

5. Concluding Remarks 

Other solution concepts could be considered, for instance the nucleolus introduced by 

Schmeidler [1969]. When the core is non-empty, it is a core selection and we know that it is 

then a particular H-payoff vector. Can it be characterized in terms of dividend distributions? 

The answer is negative: sequential liability games offer a counter-example. As shown in 

Dehez and Ferey [2013], the nucleolus of a 3-player sequential liability game is given by   

 

3 3 32 2
1 3 2

2 3 2 3 2 3
1 3 2

( , ) , , if 2 ,
2 4 2 4 2

, , if 2 .
3 3 3

d d dd d
N v d d d

d d d d d d
d d d


 

     
 

   
   
 

 

In the first case, it is the average of core's vertices which coincides with the H-payoff 

associated to 
12

1 1/2   and 
123 123

1 2 1/4.    In the second case, it is the equal loss allocation 

to which it is not possible to associate an admissible distribution matrix. Furthermore, as an 

apportionment rule, the nucleolus violates the "downstream" condition: in the second case, 

what player 3 contributes depends upon damage caused by player 2. 

Among the questions that remain open, there is the identification of restrictions on dividend 

distributions such that the resulting H-payoff vectors are imputations. Following Proposition 

11 and individual rationality of random order values for 0-monotonic games, we know that it 

is the case under strong monotonicity for 0-monotonic games. There may be some weaker 

restrictions. At this stage, we have only learned that monotonicity is not sufficient even in the 

case of convex games. Another question concerns the set of H-payoffs resulting from 

restrictions on dividend distributions associated to graphs, possibly combined with 

monotonicity and/or convexity. 

 

Acknowledgments. The author is grateful to Gerard van der Laan for useful comments and 

suggestions, and to referees for pointing out shortcomings in a previous version and for 

offering valuable suggestions.  
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Appendix 

Proof of Lemma 1.  Consider a coalition S N  and a player .i S  By superadditivity, we 

have ( ) ( ) ( ).v S i v S v i    Hence, if ( ) 0v i   for all ,i N  adding a player to a coalition does 

not decrease its worth. This extends to the addition of any number of players. Positivity of v 

follows using the above inequality, starting with { }, 1,..., .S j j n       

Proof of Lemma 2. Consider a coalition \T N i  not containing  j. We already know that 

( ) 0T v j    if { }.T j  Assume now that 0 for allS S T    such that .j S  We proceed 

by induction using (2). Because i is necessary for j in ( , ),N v  we have:  

 
\

( ) ( ) ( ) ( \ ) 0.T S S

S T S T j

v T v T v T v T j  
 

           

Proof of Lemma 3.  Given a player set N, consider two set functions 1 2, ( )v v G N  and an 

allocation 1 2( , ) ( , ).x C N v C N v   Hence there exist 
1 2andx x  such that 1 2 ,x x x   

1

1( ) ( )x S v S  and 
2

2( ) ( )x S v S  for all .S N  Consequently, we have: 

 
1 2

1 2( ) ( ) ( ) ( )( ) for allx S x S x S v v S S N      

i.e. 1 2( , ).x C N v v     

Proof of Lemma 4. Given a player set N, consider two set functions 1 2, ( )v v G N  and the 

corresponding marginal contribution vectors 1 2and   as defined by (5). By definition of 

convex hull (Rockafellar [1970]), we have:  

 

 

1 2

1 2

1 2

( , ) ( , ) { ( ) | } { ( ) | }

{ ( ) | } { ( ) | } .

N N

N N

W N v W N v co co

co

     

     

    

   
 

The marginal contribution vectors associated to the game 
1 2( , )N v v  are the sum of the 

marginal contribution vectors. Hence, 
1 2 1 2( , ) { ( ) ( ) | }NW N v v co          where  

 
1 2 1 2{ ( ) ( ) | } { ( ) | } { ( ) | }.N N N                 

Consequently, by the definition of the convex hull, we have:  

  1 2 1 2{ ( ) ( ) | } { ( ) | } { ( ) | } .N N Nco co                   
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