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Abstract 

We consider a firm with the following characteristics: (i) it has a vintage capital technology with 

two complementary factors, capital and a resource input subject to quota; (ii) the resource is 

increasingly scarce through an exogenously rising price, (iii) scrapping of obsolete capital is 

endogenous; (iv) technological progress allows saving the regulated input and is endogenous 

through R&D investment; (v) the innovation rate increases with R&D investment and decreases 

with complexity; (vi) the firm is price-taker and liquidity-constrained. We show that there exists a 

threshold level for the growth rate of the resource price above which the firm will collapse. 

Below this threshold, two important properties are found out. In the long-run, a sustainable 

growth is possible at a growth rate which is independent of the resource price. In the short-run, 

not only will the firms respond to increasing resource price by increasing R&D on average, but 

they will also reduce capital expenditures and speed up the scrapping of older capital goods. 

Finally, we identify optimal intensive Vs extensive transitional growth regimes depending on the 

history of the firms. 
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1. Introduction 

A crucial issue repeatedly addressed in the ongoing debate on sustainable development is 

the possibility for the economies to keep on growing while confronted to physical limits 

and legal constraints such like those related to the limited availability or regenerative 

capacity of natural resources (fossil energy, fish, forest, etc.), to economic and ecological 

regulation (emission quotas, harvesting quotas, etc.), or to financial resource constraints 

at the firm or national economy level.  One of the common ideas turns out to be that such 

a growth possibility is certainly widely open if the economies are able to maintain a 

permanent stream of innovations, assuring long-term technological progress (see Arrow 

et al., 2004, for a comprehensive view of sustainability).  

In terms of economic theory, the issue actually traces back to seminal studies on the 

relationship between resource scarcity and innovation. Scarcer resources are increasingly 

expensive, and this should in a way affect the behavior of consumers and firms and end 

up shaping the direction of technological progress. A related fundamental hypothesis, 

popularized by Hicks (1932), is the so-called induced-innovation hypothesis. According 

to this hypothesis, the change of relative prices of production inputs stimulates innovation 

directed to save the production factor that becomes relatively expensive. In the context of 

the energy consumption debate, this hypothesis simply stipulates that in periods of 

rapidly rising energy prices (relative to other inputs), economic agents will find it more 

profitable to develop alternative technologies, that is, energy-saving technologies. In their 

well-known work on the menu of home appliances available for sale in the US (between 

1958 and 1993), Newell, Jaffee, and Stavins (1999) concluded that a large portion of 

energy efficiency improvements in US manufacturing seems to be autonomous, and 

therefore not driven by the Hicksian mechanism outlined above. However, they also 

concluded that a non-negligible part of the observed improvement can be attributed to 

price changes and to the emergence of new energy-efficiency standards, ultimately 

leading to the elimination of old models. 

Indeed, just like scarcity, regulation can also be a decisive determinant of technological 

progress. As an immediate illustration of such a potential nexus, environmental 

economists use to put forward the so-called Porter hypothesis (Porter, 1991) according to 
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which a carefully designed environmental regulation can increase firm competitiveness 

by encouraging innovation in environmental technologies. A considerable amount of 

studies has been devoted to the empirical corroboration of this hypothesis, reaching 

distinct and contrasted conclusions (see Parto and Herbert-Copley, 2007, for an excellent 

compilation of case studies). 

In this paper, we take the firm perspective, which is the traditional framework for the 

study of Hicksian technical progress (see among others, the seminal paper of Kamien and 

Schwartz, 1969). Firms are typically affected by several institutional and economic 

factors, notably by competition, credit constraints, and legal constraints which are not 

only linked to ecological regulation. We consider the worst scenario possible in this 

respect: (1) no market power (the firm is price-taker), (2) liquidity-constraints (the firm 

cannot incur in a negative cash flow at any date), (3) a quota constraint on the use of a 

resource input (fossil energy or natural resource like fish as immediate examples), which 

may feature emission or extraction quotas, (4) the price of this production input is 

increasing reflecting scarcity, and (5) no substitution is possible between this resource 

and other production inputs. In such a context, could the firm experience a sustainable 

growth of profits?  

Answering this question properly requires accounting for a comprehensive set of 

modernization instruments that the firm can use in response to the above constraints. At 

the first place, the role of innovation and technology adoption at the firm and/or industry 

level is a key. If the firms do effectively respond to the latter constraints and 

circumstances by doing more R&D and/or adopting better technologies, then the 

“sustainability problem”, stated in the beginning, can be at least partially solved. But 

firms cannot always push on this command button for many reasons. Two are quite 

obvious. First of all,  firms are subject to financial or liquidity constraints, as mentioned 

above. If the firms do not face any type of financial constraints, then they could finance 

R&D expenditures and/or technology adoption with no limit, which is certainly 

unrealistic. Second,  technological complexity can be a decisive factor. It is very well 

known that the success of R&D and technology transfer programs depends, among 

others, on the complexity and sophistication of the technologies to be up-graded (see for 

example, Segerstrom, 2000). Needless to say, the problem of technological sophistication 
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is also a sensitive barrier to technological progress because of limited amount of available 

skills and hi-tech capital. We shall account for it in our modeling. 

In addition, to innovative and/or adoptive R&D, firms may decide to scrap old and 

definitely non-sustainable technologies with their associated capital goods and to replace 

them (or not) with leading technologies and new equipment. If one aims to thoroughly 

capture the mechanisms of modernization, the latter instruments are crucial to consider. 

Typically, firms will respond by combining all these instruments and by choosing the 

optimal timing for each of them. We take this avenue here by considering vintage 

technologies at the firm level, allowing the firm to innovate, to scrap, and to invest. A 

fundamental contribution of this paper is the identification of the optimal modernization 

strategies pursued by firms based on the three instruments listed just above. 

We shall use vintage capital technologies in line with Malcomson (1975), Benhabib and 

Rustichini (1991), Boucekkine et al. (1997, 1999) and Hritonenko and Yatsenko (1996, 

2005). There are two inputs, capital and a resource subject to quota, which can be fossil 

energy or any natural resource. Capital goods produced at different dates embody 

different technologies, the youngest vintages are the most resource-saving. Beside 

realism, working with vintage capital production functions allows us to capture some key 

elements of the problem under consideration, which would be lost under the typical 

assumption of homogenous capital. For instance, facing an emission tax, firms are 

tempted to downsize. However, in the vintage capital framework where the firm also 

chooses the optimal age structure of capital, downsizing entails modernization: the oldest 

and, thus, the least efficient technologies are then removed.  

 

Main contributions 

Our paper essentially makes three contributions: 

i) Within a realistic (and thus sophisticated) firm framework, it characterizes 

finely the inducement mechanisms at work. Essentially, our work identifies a 

highly nonlinear inducement mechanism. In particular, there exists a threshold 

level for the growth rate of the resource price above which the firm will 

collapse: for these price values, the inducement mechanism does not even 

make sense. Below this threshold, two important properties are found out. In 

the long-run, sustainable growth regimes are possible but within such regimes, 
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the growth rate of technological progress is independent of the resource price. 

In our work, this is a long-term property, which occurs when the resource 

price does not grow too much. In the short-run, the inducement mechanism 

seems to work: not only will the firms respond to increasing resource price by 

increasing resource-saving investment on average, they will also reduce 

capital expenditures and speed up the scrapping of older (and more resource 

consuming) capital goods, which is highly consistent with the evidence 

gathered by Newell et al. (1999). 

ii) Secondly, our paper makes a contribution to the literature of growth under 

scarcity and regulation, which is an important component of the modern 

environmental economics literature. Among the many recent papers on the 

topic, Tsur and Zemel’s contributions (2003, 2005) are of particular interest 

since they carefully derive the possible dynamics arising under scarcity and 

endogenous technological progress (via the development of backstop 

substitutes in these papers). With respect to this literature, our contribution is 

double. On one hand, since both scarcity and regulation are considered, it is 

possible to study which one is more harmful (if any) to growth. For constant 

resource prices (no scarcity), we show that sustainable growth regimes are 

always possible thanks to endogenous technical progress under non-increasing 

input quotas and despite liquidity constraints. Under scarcity, this property 

holds as long as the growth rate of the resource price is below a threshold. 

Above this threshold, no sustainable growth is possible.  A second 

contribution relies on the optimal transition dynamics derived. We disentangle 

3 different optimal dynamic patterns: economic collapse (originating in too 

high energy or capital prices), intensive growth (sustained investment in new 

capital and in R&D with scrapping of the oldest capital goods), and extensive 

growth (sustained investment in new capital and in R&D without scrapping 

of the oldest capital goods). In particular, our paper is the first one to 

disentangle the last transition regime as a possible optimal regime.  

iii) Last but not least, the contribution is technical. To our knowledge, this is the 

first paper with vintage capital, endogenous scrapping, and endogenous 

technological progress (see next paragraph for more details). The technical 
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difficulties are numerous but we manage to find a way to bring out a fine 

enough analytical characterization of optimal paths. 

 

Relation to the literature 

Our paper contributes to the literature of vintage capital models. Due to the analytical 

complexity of vintage models, very few papers rely on such specifications. A noticeable 

exception is Feichtinger, Hartl, Kort, and Veliov (2005) who introduced a proper 

specification of embodied technological progress underlying the considered vintage 

capital structure. They concluded that if learning costs are incorporated into the analysis 

(i.e., running new machines at their full productivity potential takes time), then the 

magnitude of modernization effect is reduced, and regulation has a markedly negative 

effect on industry profits. Our paper extends the latter result in two important directions: 

it endogenizes the optimal lifetime of technologies and associated equipment through 

endogenous scrapping decision and it endogenizes the pace of technological progress in 

the workplace by considering an optimal innovative or adoptive R&D decision (the 

technological progress is exogenous at the firm level in Feichtinger et al. (2005). In such 

a context, the set of possible modernization strategies is much richer.  On the other hand, 

our paper extends the more traditional vintage literature following Solow et al. (1966), 

like Boucekkine et al. (1997) or Hritonenko and Yatsenko (1996), by endogenizing 

technical progress, which definitely enriches the model in many directions as it will be 

explained along the way. Recently, Hart (2004) has built up a multisectoral endogenous 

growth model with an explicit vintage sector. Beside the macroeconomic approach taken, 

this paper differs from ours in many essential respects: there are two types of R&D, one 

output-augmenting and the other, say, environmental-friendly, while in our model only 

resource-saving adoptive and/or innovative R&D is allowed. In addition, the model of 

Hart (2004) has no explicit scarcity feature, and the treatment of vintages is rather short 

(only two exogenously given vintages are considered in the end, no endogenous 

scrapping incorporated).  

 

On the other hand, our paper is directly related to the literature on technological progress 

under increasing energy prices and regulation, as surveyed by Jaffe et al. (2002). As 

explained above, it can be connected to the empirical findings in the field. Beside the 
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already mentioned paper of Newell et al. (1999), it can be indeed closely related to the 

recent important work of Popp (2002). Using energy patent citations, the latter establishes 

that both energy prices and the quality of the existing knowledge have significantly 

shaped energy-saving innovations, therefore confirming the relevance of the inducement 

mechanism in this context. Moreover, Popp also shows clearly that the omission of the 

existing quality of knowledge negatively affects the estimation results. In our modeling, 

we do account for the latter feature through the complexity effect à la Segerstrom 

outlined above: thanks to this specification, there is an immediate link between current 

and future research, as recommended by Popp (2002). 

Last but not least, our paper can be also directly connected to the theoretical literature on 

scarcity and growth originating in the limits to growth stream. In particular, it shares with 

Tsur and Zemel (2003, 2005) the objective to characterize the different possible optimal 

patterns of technological progress and growth when the resources are increasingly scarce. 

While the modeling strategies are different (including the modeling of scarcity and the 

specification of endogenous technical progress and production) the main conclusions are 

similar in that collapse, and sustainable growth regimes are identified. Our vintage 

approach and the inclusion of environmental regulation allows for an even more complete 

characterization of sustainable development possibilities and strategies. 

 

The rest of the paper is organized as follows. Section 2 formally describes our firm 

optimization problem and outlines some of its peculiarities. Section 3 derives the 

optimality conditions and interprets them. Section 4 is concerned with the long-term 

optimal behavior of firms and Section 5 identifies the short-term modernization strategies 

that the firms pursue in response to regulation and prices. Section 6 concludes.  

 

2. The firm problem 

We shall consider the problem of a firm seeking to maximize the net profit that takes into 

account the consumption E(t) of a regulated resource, the investment R(t) to innovative 

and/or adoptive R&D, and the investment µ(t) into new capital:  
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where k(t) is the given unit capital price (per capacity unit), p(t) is the given price of the 

regulated resource, and e
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 is the discounting factor. We assume that         

0    ,)( ≥= γγtePtp , 0≥P ,  reflecting scarcity of the resource. Then, Q(t) is the total 

product output at t,    
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t

ta
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                 c(t) = )1( θ− Q(t) − p(t)E(t) − R(t) − k(t)µ(t)                                              (3) 

is the net profit or cash flow, θ  is a tax rate on production or sales (which could be also 

interpreted as an emission tax in the environmental context, see Feichtinger et al., 2005) . 

We postulate a Leontief vintage capital production function as in Malcomson (1975), 

Boucekkine, Germain, and Licandro (1997, 1999) or Hritonenko and Yatsenko (1996, 

2005). In equation (2), a(t) measures the vintage index of the oldest machine still in use at 

time t, or in other words, t-a(t) is the scrapping time at date t. The complexity of the 

optimization problem considered in this paper comes from the fact that a is a control 

variable, which is quite unusual in economic theory. We shall come back to this point in 

detail later. For now, let us notice that we do not assume any output-augmenting 

(embodied or disembodied) technological progress: whatever the vintage τ  is, all 

machines produce one unit of output. In our framework, the technological progress is 

exclusively resource-saving, which is the key component of the debate around 

technological progress and environmental sustainability.  

In contrast to the related literature (notably to Feichtinger et al., 2005, 2006), we assume 

that firms choose the optimal lifetime of their capital goods, and also invest in adoptive 

and/or innovative R&D. Let us call β(τ) the level of the resource-saving technological 

progress at date t. We postulate that this level evolves endogenously according to:  

                            ,0       ,
)(

))((

)(

)(
>= d

Rf'
d τβ

τ
τβ
τβ

                                                            (4) 

where f is increasing and concave: df/dR>0, d
2
f/dR

2
<0. Equation (4) deserves a few 

comments. It stipulates that the rate of resource-saving technical progress is an increasing 

(and concave) function of the R&D effort and a decreasing function of its level. The latter 
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specification is designed to reflect the negative impact of technological complexity on 

R&D success. The parameter d measures the extent to which complexity impacts the rate 

of technological progress (see Segerstrom, 2000, for example). It will play an important 

role hereafter, consistently with the available evidence on the role of technological 

complexity in the adoption of new technologies. 

We also assume that the resource-saving technological progress is fully embodied in new 

capital goods, which implies, keeping the Leontief structure outlined above, that total 

resource consumption is given by  

                .
)(

)(
)(

)(

τ
τβ
τµ

dtE

t

ta

∫=                                                                           (5)                   

Now we introduce the quota constraint on the regulated resource:  

                E(t) ≤ Emax(t),                                                                                          (6)                        

where the regulation function Emax(t) is given. The firms are also subject to a second type 

of constraint, financial constraint, which we also model in a straightforward way by 

imposing the non-negativity of cash-flows, c(t), at any date t, as we will see later. 

 

Let us now summarize the optimal control problem to tackle. The unknown functions are: 

♦ the investment µ(t), µ(t)≥0, into new capital (measured in the capacity units) 

♦ the R&D investment R(t), R(t)≥0, and the technology β(t),   

♦ the capital scrapping time t-a(t), a′ (t) ≥ 0,  a(t) < t, 

♦ the output Q(t), cash-flow c(t),  and resource consumption E(t),  t∈[0,∞). 

 

The constraints are given by the quota (6), the positivity and liquidity constraints, and 

other regularity conditions: 

        R(t) ≥ 0,      c(t) ≥ 0,      µ (t) ≥ 0,            a′(t) ≥ 0,     a(t) ≤  t,                        (7)  

The constraint a′(t)≥0 is standard in vintage capital models and implies that scrapped 

machines cannot be reused. We shall also specify the initial conditions as follows: 

                    a(0) = a0<0,   β(a0)=β0,   µ(τ) ≡ µ 0(τ),  R(τ)≡R0(τ),  τ∈[a0,0].                   (8) 

 

The optimal control problem (1)-(8) has several mathematical peculiarities. We come 

back to the technical part in the next Section 3 where the necessary optimality conditions 
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are developed. Before, let us start stressing that in our modelling, technological 

improvements affect only the new capital goods. This is crystal clear in equation (5) 

giving total resource consumption. Of course, this need not to be the case in general. Part 

of resource-saving innovations is probably disembodied, and a more general formulation 

of the problem taking into account this aspect would, in particular, replace the ODE (4) 

for β(t) by a PDE for β(τ,t). This extension is out of the scope of this paper. Second, one 

would find somehow strange to have imposed scarcity (exogenously increasing price) 

and a quota on the same input. There are two different responses to this objection. The 

first one is to defend the realism of such a specification. Suppose this resource input is 

fossil energy. Then such a resource is typically increasingly scarce, but at the same time, 

pollution quotas, as originated in international protocols, do imply upper bounds on the 

use of such an input. Second, we will see rather quickly that scarcity and quota do  not 

have at all the same implications within our set-up so that one can directly figure out that 

there is no redundancy between the two characteristics. Last but not least, one has to 

mention that the results obtained in this framework will remain qualitatively the same in 

an optimal growth set-up with a linear utility function. With nonlinear utility functions, 

the (already extremely complicated) problem becomes even more trickier due to the 

endogeneity of the interest rate. We, therefore, choose the firm problem setting.
5
 

 

3. Extremum conditions 

Let us derive optimality conditions. For mathematical convenience, we change the 

unknown (decision) variable µ(t) to 

                                                      m(t) = µ(t)/β(t),                                                      (9) 

which is also the investment into new capital (but measured in resource consumption 

units rather than in capacity units). In the variables R and m, the optimization problem 

(1)-(8) becomes  

                        max)]()()()()()()()1[(
,

0
m,aR

rt dttmttktRtEtptQeI →−−−−= ∫
∞

− βθ  (10) 

                   c(t) = )1( θ− Q(t) − p(t)E(t) − R(t) − k(t)β(t)m(t),                                    (11) 

                                                 
5
 The computations for the optimal growth model with linear utility are available upon request.  
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         R(t)≥0,    m(t)≥0,     c(t) ≥ 0,      a′(t) ≥ 0,     a(t) ≤  t,                               (14) 

              a(0) = a0<0,   β(a0)=β0,   m(τ) ≡ m0(τ),  R(τ)≡R0(τ),  τ∈[a0, 0].                   (15) 

The substitution (9) removes β(t) from equation (5) and adds it to the last term in the 

functional (10). Equation (4) for the unknown β(t) remains the same. In the case d>0, the 

solution of (4) has the form: 

                     ,))(()(

/1

0

d

dBdvvRfd 





 +∫=

τ

τβ                                           (16) 

where the constant B=

d

d

a

dvvRfd

/1

0

0

0

0

))(()0( 







+∫= ββ is uniquely determined by the 

initial conditions (15). From now on, we work with the following explicit specification 

for endogenous technological progress:  

                                     f(R)=bR
n
,    0<n<1,    b>0.                                                     (17) 

By (4), this implies that the elasticity of the rate of technological progress with respect to 

R&D expenditures is constant and equal to n. The larger is n, the bigger is the efficiency 

of investing in R&D. 

 

The optimization problem (OP) (10)-(17) includes seven unknown functions R, β, m, a, 

Q, c, and E connected by four equalities (11), (12), (13), and (16). Following Hritonenko 

and Yatsenko (1996) and Yatsenko (2004), we will choose R, m, and a′ as the 

independent decision variables (controls) of the OP and consider the rest of the unknown 

functions β, m, a, Q, c, and E as the dependent (state) variables.  

The majority of optimization models of mathematical economics are treated using first-

order conditions for interior trajectories only. In contrast, the nature of the OP (10)-(17) 

requires taking into account the inequalities E(t)≤Emax(t), R(t)≥0, m(t)≥0, a′(t)≥0, a(t)≤t, 

and c(t)≥0 on unknown variables in the constraints (13) and (14). These inequalities have 

an essential impact on extremum conditions and optimal dynamics and are treated 



 11

differently in the below analysis. The inequalities R≥0 and m≥0 are the standard 

constraints on control variables, which are common in the optimization theory. The non-

standard constraints a′(t)≥0 and a(t)≤t are handled following the technique developed by 

Hritonenko and Yatsenko in several papers already cited. The constraint E≤Emax is 

considered in two cases of Theorem 1 below. Finally, the constraint c≥0 is the most 

inconvenient and is analyzed separately in Section 5 (see also Remark 2 below).  

 

Let the given functions p, k, and Emax be continuously differentiable, and m0 and R0 be 

continuous. To keep the OP statement correct, the smoothness of the unknown variables 

should be consistent. We will assume that R and m (and a′ when necessary) are 

measurable almost everywhere (a.e.) on [0,∞). Then, the unknown state variables a, c, Q, 

and E in (10)-(15) are a.e. continuous on [0,∞), as established in Hritonenko and 

Yatsenko (2006). We also assume a priori that the improper integral in (10) converges. 

The necessary condition for an extremum (NCE) in the OP (10)-(17) is given by the 

following statement  

 

Theorem 1. Let R*(t), m*(t), a*(t), β*(t), Q*(t), c*(t), E*(t), t∈[0,∞), be a solution of the 

OP (10)-(17).  

(A) If E*(t)=Emax(t) and c*(t)>0 at t∈∆⊂[0,∞), and Emax′(t)≤0, then  

                         IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                    (18) 

                         Im'(t)≤0 at  m*(t)=0,         Im'(t)=0  at  m*(t)>0,    t∈∆,                       (19) 

where  
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the state variable a(t) is determined from (13), a
−1

(t) is the inverse function of a(t), and       
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(B) If E*(t)<Emax(t) and c*(t)>0 at t∈∆, then  

                  IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                          

                  Im'(t)≤0 at  m*(t)=0,         Im'(t)=0  at  m*(t)>0,                                          (23) 

                 Ia’'(t)≤0  at  da*(t)/dt=0,      Ia’'(t)=0  at  da*(t)/dt>0,    t∈∆,                  

where  

     [ ] )()()()1)(()('

)(1

tktedptetI rtr

ta

t

m βττθβτ −− −−−= ∫
−

,                                        (24) 

     τττβθττ damapetI r

t

a ))((]))(()1()([ )(' ' −−= −
∞

∫ ,                    (25) 

IR'(t) is as in (20), and β(t) is as in (22).   

 

The proof is very long and technical and we report all its details in Appendix. The 

expressions (20), (21), (24), and (25) are the Frechet derivatives of the functional I in 

variables R, m, and a’. The derivative Im’(t) has different forms (21) and (24) depending 

on whether the restriction (13) is active or inactive. Before giving the economic 

interpretation of the optimality conditions, some technical comments are in order.  

 

Remark 1. If (13) is active (Case A), then the state variable a is determined from 

m(a(t))a′(t)=m(t)− Emax′(t) and the state restriction a′≥0 on the variable a in (14) is satisfied if 

Emax′(t)≤0, t∈[0,∞). If the condition Emax′(t)≤0 fails for some t∈∆⊂[0,∞), then Theorem 1 is still 

valid in Case A if we replace the differential constraint a’(t)≥0 in (14) with the stricter constraint  

m(t) ≥ max{0, Emax′(t)} on the control m (see Hritonenko and Yatsenko, 2006, for a proof).                   

 

Remark 2. To keep mathematical complexity reasonable, we have not included the constraint 

c(t)≥0 into the NCE. To be complete, Theorem 1 needs to include two more cases: E*<Emax, 

c*=0, and E*=Emax, c*=0. The problem (10)-(17) in these cases should be treated as an OP with 

state constraints, which leads to certain mathematical challenges (see Hartl, Sethi, and Vickson, 

1995, for an insight into this issue). As we shall see, the regime c*(t)=0 does not appear in the 

long-term dynamics (Section 4). We return to its analysis in Section 5, where it arises during the 

transition dynamics as one of possible scenarios.  
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Remark 3. Sufficient conditions for an extremum for such OPs are complicated and involve the 

second Freshet derivatives of the functional I. The authors derived and analyzed such a condition 

in the form 0
)()(

)()(
<

′′′′

′′′′

tItI

tItI

mmmR

RmRR
at R=R*, m=m* for Case (A). It is not included into this paper.    

 

Remark 4. The vintage models with endogenous TC are multi-extremal under natural conditions, 

see Chapter 6 in Hritonenko and Yatsenko (1996). We can show that the OP (10)-(17) may also 

possess two local extrema: 

(1) the trivial solution R
0
(t)≡0, m

0
(t)≡0, a0≤a

0
(t)≤0, t∈[0,∞). This solution is verified by 

its substitution into (20),(24),(25), then IR′(t)<0, Im′(t)<0, and Ia′′(t)<0, i.e., the NCE (23) 

holds. This local solution describes economic dynamics with no investment to 

technological renovation when the entire profit goes to the consumption goods. The 

solution is not stable in the sense that some (small) positive investments in new capital 

and R&D can force the economic system to jump to the next solution.  

(2) the non-trivial solution, where R*(t),  m*(t), a*(t) are positive, at least, on some parts 

of the planning horizon [0,∞). It describes the case where the economic system installs 

new equipment and invests into science and technology. 

The paper focuses on the structure of the non-trivial solution (R*, m*, a*). 

 

Let us move now to some economic interpretations of the obtained first-order optimality 

conditions. In order to compare more easily with the existing literature, we start with 

Case (A), that is, when the quota constraint is binding. Indeed, in such a case, the latter 

can be broadly viewed as an “equilibrium” condition in the resource market, where the 

quota plays the role of supply. Let us interpret the optimality conditions with respect to 

investment and R&D, the case of scrapping being trivially fixed by Remark 1 above. 

Using equations (19) and (21), the (interior) optimal investment rule may be rewritten as: 

                 )(
)(

))((
1)1(

)(
1

tked
t

a
e rt

ta

t

r −− =







−− ∫

−

τ
β

τβ
θ τ

. 

The interpretation of such a rule is quite natural having in mind the early vintage capital 

literature (notably, Solow et al., 1966, and Malcomson, 1975) as exploited in 

Boucekkine, Germain, and Licandro (1997). In our model, one unit of capital at date t 

costs k(t) or )(tke rt−
 in present value. This is the right-hand side of the optimal rule 
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above. The left-hand side should, therefore, give us the marginal benefit from investing. 

Effectively, it is the integral of discounted gains from investing over the lifetime of a 

machine bought at t (since a
-1

(t) is by construction the lifetime of such a machine). At 

any date comprised between t and a
-1

(t), a machine bought at t will provide one unit of 

output but the firm has to pay the corresponding energy expenditures 
)(

))((

t

a

β
τβ

. Given 

our Leontief specifications, 
)(

1

tβ
is the resource requirement of any machine bought at 

date t. Therefore, ))(( τβ a  plays the role of the effective price of the input paid by the 

firm. How could this be rationalized? Simply by noticing that under a binding quota, the 

latter mimics a clearing market condition as in the early vintage macroeconomic literature 

(see for example, Solow et al., 1966).
6
 In such a framework, the marginal productivities 

of energy should be equalized across vintages, implying a tight connection between the 

effective price of resource and the resource requirement of the oldest machine still 

operated. More precisely, the latter price, which happens to be the Lagrange multiplier 

associated to the binding environmental constraint, is equal to the inverse of the resource 

requirement of the oldest machine still in use, which is equal to ))(( τβ a  at any date τ 

comprised between t and a
-1

(t). Notice that in such a case, the effective price of 

resource ))(( τβ a  is not generally equal to p(t). The latter does not play any role since 

resource consumption becomes predetermined equal to p(t)Emax(t) in the constrained 

regime.  

Things are completely different in the case where the quota is not binding (case B of 

Theorem 1). In such a case, the optimal investment rule becomes (following equation 

(24)): 

        )(
)()1(

)(
1

)(1

tked
t

tp
e rt

ta

t

r −− =








−
−∫

−

τ
βθ

τ , 

and )1( θ− ))(( τβ a = p(t) as in the firm problem studied by Malcomson (1975), making a 

clear difference with respect to the constraint case A. Our framework thus extends 

significantly the benchmark theory to allow for situations in which resource input 

markets do not necessarily clear due to institutional constraints. 

                                                 
6
 In Solow et al., the role of resource is played by labor. 
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Let us interpret now the R&D optimal rule, which is also new in the literature. Using  

(20), it is given by 

        
rtr

rar
d

t

n edke
r

ee
mtbnR −−

−−
−

∞
− =












−−

−
−

∫ ττθττβ τ
ττ

)()1()()()(
)(

11

1

 

The right-hand side is simply the present value of marginal investment in R&D. The 

marginal benefit is given by the left-hand side. Contrary to the optimal investment rule, 

the gains from doing R&D last forever: the R&D investment induces a knowledge 

accumulation process, which is not subjected to obsolescence in our case, in contrast to 

capital goods. The integrand can be understood if one has in mind the maximized 

function (10) in the form  

    dttmttktRdmtpdmeI

t

ta

t

ta

rt )]()()()()()()()()1[(
)()(0

βτττττβθ −−−−= ∫∫∫
∞

−        

and the given endogenous law (16),(17) of motion of technological progress.  It should be 

noticed that rewriting the problem in terms of m(t), rather than in terms of investment in 

physical units µ(t), does not mean rewriting a problem with input-saving technical 

progress as a problem with output-augmenting technical progress. As one can see, at the 

fixed m(t), an increase of R(t) (and, therefore, β(t)) increases not only the output Q(t) but 

also the investment expenditures through the term )()()( tmttk β . The left-hand side of the 

optimal R&D rule takes precisely into account this trade-off. On one hand, the marginal 

increase in β(τ), τ≥t, following the marginal rise in R(t), that is, 
)(

)(1

τβ d

n tbnR −

, impacts 

positively output by improving the efficiency of all vintages after the date t. Let us notice 

that, since machines have a finite lifetime, this effect should be computed between τ and 

a
-1

(τ) for each vintage τ, which explains the factor 
r

ee rar )(1 ττ −−− −
= ∫

−

−
)(

1 τ

τ

a

rsdse  in the 

integrand. On the other hand, the rising β(t) increases investment expenditures (for a 

fixed m(t)), which explains the negative term, )(ττ ke r− , in the integrand. 

 

Let us now move to the study of the system of the optimality conditions extracted above. 

We first start by seeking for exponential solutions (for naturally growing variables like 
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R(t)), the so-called balanced growth paths (Section 4),  in order to address in a standard 

way the critical issue of sustainable growth under constraint, which one of the main 

questions asked in this paper. We then move to short-term dynamics (Section 5) to 

identify the principal modernization routes. 

 

4. Analysis of optimal long–term dynamics.    

For the sake of clarity, we restrict ourselves to the case  

              0const)(     0,const)( max >==>== EtEktk .                                           (26) 

Alternative trajectories for the exogenous variables k(t) and Emax(t) are studied in 

Boucekkine, Hritonenko, and Yatsenko (2008). The optimal long–term dynamics of the 

OP can involve interior regimes such that IR'≡0 and Im'≡0. Let us assume that the quota is 

active in the long run: E(t)=Emax(t) at t∈[tl, ∞), tl≥0. We will study the alternative case 

later. The corresponding long-term interior regime (RΛ, mΛ, aΛ) is determined by the 

system of three nonlinear integral equations  

                                 IR'(t)=0,         Im'(t)=0,                                                                  (27) 

                         max

)(

)( Edm

t

ta

=∫ ττ ,     t∈[tl , ∞),                                                           (28) 

where IR'(t) and Im'(t) are determined by (20) and (21). The equations (27) lead to  

 
rt

t

r
rard

dnn edke
r

ee
mBdRbdtbnR −

∞
−

−−−
− =








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


−−

−




 +∫∫

−

ττθτξξ τ
τττ

)()1()()()(
)(1/1

0

1

1

, (29) 
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t

d

d
t

n

d

d
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n kedeBdRbdBdRbd −− =















 +∫




 +∫−− ∫
−

τξξξξθ τ
τ)( /1

0

/1
)(

0

1

)(/)(1)1(     (30) 

at t∈[tl, ∞).   

We will explore the possibility of exponential solutions for R(t), while m(t) and t-a(t) are 

constant, to the system (28)-(30) separately in the cases n=d, n>d and n<d. First of all, 

we start with the following preliminary result: if R(t) is exponential, then β(t) is almost 

exponential and practically undistinguishable from an exponent at large t in the sense of 

the following lemma: 
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Lemma 1. If R(t)=R0e
Ct

 for some C>0, then
7
  

                                          β(t) ≈ dCnt

d

dn
e

Cn

bd
R /

/1

/

0 







                      (31) 

at large t. In particular, β(t)= ( ) dCntddn
eCnbdR //1/

0 /  if  bdR0
n
 = CnB

d
.             

Proof. At R(t)=R0e
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Dividing β(t) by dCnt
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~
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
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=β , we obtain 
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Expanding the function (1+x)
c
 in (32) into the series, we obtain  )(1
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+= , where 

the small parameter ...11
1

2

1
1

1
)( 2

2

00

+









−







 −+









−= −− Cnt

n

d
Cnt

n

d

e
bdR

CnB

dd
e

bdR

CnB

d
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decreases as e
−Cnt

. The lemma is proved.                    / 

 

We now define the concept of balanced growth paths considered. 

 

Definition 1. The Balanced Growth Path (BGP) is a solution (R, m, a) to (28), (29) and 

(30), where R(t) is exponential and m(t) and t-a(t) are positive constants, which satisfy 

constraints (14), in particular, the non-negative cash-flow requirement.   

If the quota is not binding, then the system to be solved is  

                                IR'(t)=0,       Im'(t)=0,      Ia''(t)=0,   t∈[tl ,∞),                               (33) 

where IR'(t), Im'(t) and Ia''(t) are determined by (20), (24), and (25). As shown below, the 

optimal long-term growth with inactive regulation, E<Emax, is possible only at n>d (see 

Section 4.2). 

Remark 5. In the case of the inactive quota constraint, it is convenient to introduce the Frechet 

derivative 

                                                 
7
 For brevity, we will omit the expression “at large t” when using the notation f(t) ≈ g(t) 
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         ))((]))(([)1()(' tamtaePetI trt

a βθ γ −−= −
                   (34) 

in a instead of the derivative (25) in a’ and use it during the BGP analysis. Indeed, it is easy to see 

that if  Ia’'(t)≡0 at  t∈[ tl ,∞) for some tl≥0,  then Ia'(t)≡0 at  t∈[ tl ,∞).   

 

4.1.  Balanced growth in case n=d. 

Let the parameter n of “R&D efficiency”, 0<n<1, be equal to the parameter d of “R&D 

complexity”, 0<d<1. In this case, the optimal long-term growth involves the active 

regulation at natural conditions. More precisely, we get the following important 

characterization: 

 

Lemma 2. At n=d, any interior solution (R, m, a) of the OP (10)-(17) with an 

exponentially growing R(t) involves the binding quota E(t)=Emax starting at some tk≥0,  

under the condition γ<C, where C is the endogenous rate of optimal R(t). 

Proof. Let us consider R(t)=R0e
Ct

, then β(t) ≈ ( ) Ctd
eCbR

/1

0 /  by Lemma 1. 

We assume that E(t)<Emax at [tl,∞), tl≥0. Then, by Theorem 1, an OP interior regime (R, 

m, a) has to satisfy the nonlinear system (33) on [tl ,∞). Substituting the above R and β 

into the expressions (20) and (34) for IR'(t) and Ia'(t), we obtain from (33) that  

                 ( ) ttCad
ePeCbR γ=)(/1

0 / ,                                                      (35) 
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1

,      t∈[tl,∞).  (36) 

Equation (35) determines a, which is such that t-a(t)→∞ at t→∞ because of γ<C. 

Equation (36) determines m at a given a. After introducing the function f(t) = 

kre ttar −−− −− −

/]1)[1( ])([ 1

θ and differentiating (36), we have  

            )(//)/)](1([)( 1 tfbdbCdCrtm d−−−= .                                               (37) 

Since f(t)<(1−θ)/r for any possible k and a, then  

m(t) > const = bdbCdCrr d /)/)](1([ 1−−− /(1−θ)/r >0. Therefore, by (13), E(t) increases 

indefinitely at t→∞, our assumption is wrong and E(t)=Emax at some tk> tl.     

The lemma is proved.      / 
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Some comments are in order here. First of all, though it involves a control variable, that 

is, R at the minute, the restriction γ <C on the price of energy is still highly interesting. 

Of course, it is important to observe that since the growth rate C is endogenous, it may 

depend on γ, and, therefore, the restriction might be impossible. We will show that it is 

not whence the optimal control R(t) better characterized and the optimal growth rate C 

uncovered. Nonetheless, the restriction γ <C sounds as a natural (sufficient) condition for 

the firm to overcome increasing scarcity as reflected by a strictly positive growth rate of 

the energy price. The fact that a permanent growth regime does imply active regulation at 

a finite time is much less surprising, provided such a regime exists. Second, the 

restriction γ<C is indeed sufficient. We will see below that a balanced growth with the 

active quota regulation can take place at γ=C as well. This is part of the following key 

theorem which essentially establishes the existence of balanced growth paths in the sense 

of Definition 1 when the economic and institutional environments are held constant. This 

theorem is crucial in that it fully characterizes the endogenous growth rate, C. 

 

Theorem 2 (about the balanced growth).  At  n=d and γ ≤C, the interior optimal regime 

– BGP (RΛ, mΛ, aΛ) exists,  

     RΛ(t)≈ R e
Ct

,   QΛ(t),βΛ(t),cΛ(t) ~ e
Ct

,     mΛ(t)= M =const,   aΛ(t)=t– ME / ,         (38) 

where the constants C and M are determined by the nonlinear system 
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that has a positive solution, at least, at small r. Namely, if r <<1 and 

                                              ])1/(21[/1/1 θ−−< krbEr dd ,                                       (41) 

then C, 0<C<r, is a solution of the nonlinear equation  

      )( 
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1)]1([ /1/)1( roC
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and )()1/(2/ rokCEM +−= θ . Therefore, the growth rate C does not depend on the 

energy price but does depend on the regulation parameters E and θ. 
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The uniqueness of the solution is guaranteed if  

                                          
θ−−

<−

1

2

)1(4

/12
2/1/1 k

d

Ebd
r

d
d

.                                 (43) 

If  γ <C, then the BGP (38) exists for any R >0. If  γ =C, then the BGP (38) is possible at 

the condition  

                     
)1)(( θ−−

>
Cr

Cd
PER .                           (44) 

 

The proof is long and it is reported in Appendix. Before commenting on the theorem, let 

is state the following useful corollary. 

 

Corollary 1. For a given energy price growth rate γ, let C be the solution of (39)-(40), C 

be independent of γ, then, no BGP is possible at γ >C. 

The proof immediately follows from the proof of Theorem 2 provided in Appendix 

(precisely, from formula (A13): indeed, if γ >C , then cΛ(t)<0 at large t). 

 

Theorem 2 and its Corollary make clear when the firm can still grow in the long-run 

despite scarcity. Without scarcity (γ=0), sustainable growth regimes are possible despite 

input quotas and liquidity constraints. And such a property actually holds up to a certain 

threshold level of the growth rate of resource price (or of the scarcity degree). Theorem 2 

brings more striking results. First of all, it should be noted that the resource price 

 )( tePtp γ= is not involved in the BGP (38) when γ<C. In particular, the overall 

innovation rate is independent of the characteristics of the energy price patterns. In our 

model, this property comes naturally: if  γ<C, then by Lemma 2 any balanced growth 

regime should involve active regulation (or a binding quota), and active regulation 

eliminates the resource price from the NCE formulas (18)-(22), as stated and 

economically interpreted in Section 3. So, the optimal long term dynamics (RΛ, mΛ, aΛ) 

are the same for any resource price path up to a certain rate. Second, this important 

property does not mean that energy prices play no role in the long-run. On one hand, 

Corollary 1 shows clearly that there is no hope to have a BGP if the growth rate of 

resource price (or in other words the degree of scarcity) is large enough. We will show 
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clearly in Section 5.1 that in such a case, the firm collapses. On the other hand, the 

resource price does matter in the edge-of-knife case γ=C. Indeed, in the latter case, while 

the price level P  still does not impact the endogenous balanced economy rate C, the 

cash-flow non-negativity requirement precisely implies condition (44), which limits the 

long-run R&D investment level depending on the value of  P . 

Finally, notice that even if  γ <C,  and while the long-term optimal policy is to invest the 

same in machines and in R&D whatever the resource price trajectory is, the latter does 

affect the optimal value of functional (10), since it impacts the optimal cash flows c*: 

higher p means a lower level of cash c. We shall see in Section 5 that the resource price 

impacts crucially the transition dynamics in our model, and not only via the collapse 

cases mentioned just above. The role of this price in the long-run dynamics is also a valid 

question when n>d (then the environmental regulation is not binding) and will be 

considered in Section 4.2 hereafter.  

Some more technical comments on comparative statics are useful. First of all, more can 

be said about the uniqueness of the growth rates C compatible with the BGP 

requirements. Indeed, if equation (42) has a solution 0 < C < r, then, in the general case, 

it has another solution C2, r<C2<r/(1-d). However, the larger solution C2 has no sense, 

since at C>r the value of (1) is infinite and c*(t)<0 (by (A13) given in Appendix). 

Second, it is very important to notice that in Theorem 2, the BGP scale parameter R  is 

actually undetermined. We have the indeterminacy of the long-term dynamics under the 

BGP, because technical progress is endogenous. It happens for similar problems in the 

endogenous growth theory. A typical example is the Lucas-Uzawa model (Boucekkine 

and Ruiz-Tamarit, 2008).  

We shall now move to comparative statics, which are particularly useful in the context of 

Theorem 2 and its Corollary. Since the BGP growth rate C is independent of γ, what are 

the possibilities to alter the value of C, for a given, possibly higher energy price growth 

rate? The needed properties are summarized hereafter. 

 

Corollary 2. At (26) and r<<1, a decrease of E leads to the decrease of both optimal 

parameters C and M , and leaves the long-term lifetime of capital goods unaltered since 
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M ~ E . A decrease of capital price k and/or of the tax θ  increases the optimal C and M  

and diminishes the long-term lifetime of capital goods. 

 

More stringent regulation through a decrease in E  is bad for the growth rate of firms’ 

output and profit. Even though the firms can respond to tighter quotas by more 

innovation, such an instrument does not allow to completely circumvent the impact of 

more severe regulation. Lower capital prices are good for investment (in resource 

consumptions units) and also prove to be beneficial for the growth rate of firms’ output 

and profit. Lower equipment prices make firms wealthier and such a positive wealth 

effect boost the investment either in capital or in R&D. For the same reasons, a lower tax 

rate θ raises the optimal growth rate, C, and stimulates the two latter forms of investment. 

It should be noted at this point that both regulation parameters E and θ do matter in the 

BGP growth rate C. And they work in a way opposite to the Porter hypothesis, 

depressing growth and investment in the long-run.  

A further interesting result concerns the optimal long-term lifetime of capital goods. 

Since aΛ(t)=t– M / E , and M ~ E , it follows that a tighter environmental regulation 

leaves the optimal lifetime of capital goods unaltered. While a lower E  does reduce the 

optimal lifetime of machines, such a tighter regulation also pushes the investment 

downward, which forces the maximizing firm to use fewer machines longer. These two 

effects appear to offset each other in our framework. Under decreasing prices for capital 

goods (or a falling tax rate), the firm invests more and uses the machines for a shorter 

time. This is somehow consistent with the recent literature on embodied technological 

progress observing that a more rapid investment-specific technological progress (like the 

one conveyed by the information and communication technologies) reduces the relative 

price of capital goods and decreases their lifetime due to rising obsolescence costs (see, 

for example, Krusell, 1998). 

 

 

4.2.  Cases n<d and n>d. 

In these cases, no BGP in the sense of Definition 1 exists. However, a long-term regime 

with exponentially growing R and decreasing m appears to be possible at a special 
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combination of given parameters (see also Yatsenko, Boucekkine and Hritonenko, 2009, 

for other related dynamics) 

Theorem 3. Let (26) hold. Then: 

(a) If n<d, then no interior optimal regime with an exponentially growing R exists.  

(b) If n>d, then an interior optimal regime (RΛ, mΛ, aΛ) such that RΛ(t) grows 

exponentially, mΛ(t)→0 at t→∞, and E(t)<Emax, is possible ONLY if γ=C, where C is the 

endogenous rate of RΛ(t).  

The proof is provided in Boucekkine, Hritonenko, and Yatsenko (2008). When n>d, the 

efficiency of the R&D investment appears to be higher as compared with the investment 

into the new capital. Theorem 3 concludes that, in the optimal long-time regime, almost 

all the output goes to R&D investment and the part of capital investments (exponentially) 

decreases in the total distribution of the output. Also, the quota constraint needs not to be 

binding and we can keep a larger amount of older assets (since we buy an increasingly 

smaller amount of new capital).  

 

In addition, by (29), the restriction k<(1-θ)/r on the given capital price is necessary for 

the existence of any positive optimal regime. The resource price teP γ plays a decisive role 

in the case n>d, in particular, an interior optimal path with an exponential RΛ is 

impossible if  γ=0 (the resource price does not increase). Only when the resource price 

increases at the rate γ=C, an interior regime with exponentially increasing RΛ and 

decreasing mΛ is possible. The increase of teP γ  raises aΛ(t), that is, decreases the lifetime 

of capital goods. In other words, a kind of induced-innovation mechanism seems to be 

active in the case n>d, that is, when the R&D activity is highly efficient, so efficient that 

the investment into equipment goes to zero. In such a case, the firm is in perpetual sharp 

modernization, and is not suffering at all from any regulation. We have to notice that this 

regime is not a BGP in the sense of Definition 1, because mΛ(t) asymptotically tends to 

zero. We shall disregard such a configuration in the short-term dynamics section below.  

 

5. Transition dynamics: Collapse cases and optimal 

modernization strategies      
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From now on, we set n=d. For simplicity sake, let assumptions (26) hold.  

Since we have to deal with short-term dynamics in this section, some comments on initial 

conditions are in order. The OP solution (R*, m*, a*) satisfies the initial conditions (15). 

An essential initial condition is a(0)=a0 because the endogenous a(t) is continuous. If 

a0≠aΛ(0), then the dynamics of (R*, m*, a*) involves a transition from the initial state 

a(0)=a0 to the long term interior trajectory aΛ. 

By (14), c(0) = )1( θ− Q(0)-p(0)E(0)-R(0)-kβ(0)m0(0) ≥ 0 at the initial state t=0, or  
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
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+−≤+ ∫ ∫ ττβθ
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.                   (45) 

Otherwise, the economic system is not possible at t=0 because the resource and capital 

prices p(0)= P and  k are too high. Condition (45) implies two simpler constraints: 

                            P  < )1( θ− B      and         km0(0) < E(0) )1( θ− .                             (46)          

Even if (45) holds, the optimal dynamics may be such that the economic system will 

never reach the restriction E(t)=Emax because of high resource and/or capital prices. Let 

us demonstrate the corresponding scenarios. 

 

5.1.  The collapse cases.  

 Let ττ dmE
a

∫=
0

0

0

)()0( <Emax  at the initial time t=0.        

Scenario 1: The case of too high resource price. Let us assume that the market resource 

price p(t)= teP γ  increases faster than the optimal β(t): γ >C. Then, by (25),  

      τττβθγττ damaePetI r

t

a ))((]))(()1([ )(' ' −−= −
∞

∫ ,                  (47) 

Ia''(t)>0 for all t, and the optimal strategy is to keep the lifetime of the capital t−a*(t) as 

short as possible because of the high resource cost teP γ .  In this case, the optimal a*(t) 

soon becomes a*(t)=t and the optimal investment m*(t)=0 is determined by the sign 

Im'(t)<0 in 

       [ ] )()()1()('
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.                                    (48) 
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Finally, by (20),  
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    (49) 

therefore IR'(t)<0 implying R*(t)=0. So, the optimal dynamics reflects a situation of 

economic collapse (no capital renovation and complete scrapping of existing capital) 

because of too high price of the resource. The variable E(t)= ττ dm

t

ta

∫
)(

)(  strives to 0 and is 

always less than Emax.  

 

 Scenario 2: The case of too high capital cost k (or too high tax θ). Let the market price 

k of new capital be k≥(1-θ)/r. Then, by (48), Im'(t)<0 at t>0 and the optimal new 

investment m*≡0. So, the optimal investment strategy is to buy no new capital. By (49), 

IR'(t)<0 and the optimal R*≡0. By (47), if γ=0 (the resource price does not increase), then 

Ia''(t)<0 and, hence, a*≡a0. If γ>0, then a*(t) may also increase. Regardless of that, we 

have E(t)= ττ dm
ta

∫
0

)(

0 )( ≤E(0)<Emax, meaning that the quota constraint is never binding. The 

optimal dynamics feature an economic decline (no R&D investment, no capital 

renovation and no capital scrapping) because of too high price k of new capital. The same 

situation k≥(1-θ)/r happens if the tax θ is too high. 

 

The above scenarios do not enhance the nature of technological capital replacement. 

Below, we consider cases when the optimal system dynamics involves capital renovation 

and an optimal modernization process takes place.  

The OP produces qualitatively different optimal regimes (R*, m*, a*) depending on 

whether the quota restriction (13) is active, E(t)=Emax, or inactive, E(t)<Emax. If the 

resource is energy, the firms-polluters are the firms for which (13) is active. We will 

consider the cases of firms-polluters and firms-non-polluters separately, under the 

conditions γ<C and k<(1-θ)/r to rule out the collapse cases mentioned above. By 

Theorem 3, the long-term BGP dynamics involves the active quota restriction (13). As 

shown below, the transition dynamics reach the restriction (13).     
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5.2.  Optimal intensive growth (the case of a dirty firm).  

Let us assume that E(t)=Emax starting with an instant tk, tk≥0.  

Scenario 3: The intensive growth at the active resource quota. Let tk=0. The optimal 

dynamics at t≥tk follows Case A of Theorem 1 (with the E(t)=Emax restriction). This 

regime is a growth with intensive capital renovation induced by technical progress. In 

order to make a new capital investment m(t), the firm needs to scrap some obsolete 

capital m(a(t))a’(t), following equality (13) or 

                 ττ dm

t

ta

∫
)(

)( =Emax.  

In the long-term dynamics considered in Section 5.1, the optimal R&D innovation R*(t) 

is the interior trajectory RΛ(t) determined from IR'(t)=0, where IR'(t) is given by (49). The 

optimal R*(t) reaches the trajectory RΛ(t) immediately after tk. The OP has the interior 

turnpike trajectory aΛ for the capital lifetime, determined from Im'(t)=0 or 

             [ ] )())(()()1(

)(
1

tkedate rt

ta

t

r βττββθτ −− =−−∫
−

.                                            

If aΛ(0)=a0, then the optimal a*≡aΛ. If aΛ(0)≠a0, then we can show that the optimal a*(t) 

will reach aΛ(t) at some time tl>tk. If aΛ(0)<a0, then the optimal investment m*(t)=0 is 

minimal at 0<t≤tl (otherwise, c*(t)=0 and m*(t) is determined by additional 

considerations). Later, at t>tl, the optimal m*(t) has cycles (the replacement echoes as in 

Boucekkine, Germain and Licandro, 1997) determined by the prehistory of m(t) on [a0, 

tk]. A formal proof of this optimal m*, a* dynamics can be done similarly to Hritonenko 

and Yatsenko (2005). 

Under Scenario 3, the resource price does not enter the NCE formulas (18)-(22). 

However, an increase of the resource price reduces the corresponding optimal c*(t) and, 

therefore, can make the optimal transition longer (if aΛ(0)>a0). Figure 1 and the following 

simulation example illustrate this scenario.  

 

Example 1. Let  

             r=0.05,   d=n=0.5,   b=0.01,   Emax(t)= E =10.5,    k(t)=0.12,    p(t)=0.5,  
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              θ=0,       a0 = −2,   β0=1,   R0(τ)=0,   m0(τ)=5.25,    τ∈[−2,0].                                    (50) 

and B=β(0)=1 by (16). Then, there is the BGP, determined by Theorem 2 above, 

                 RΛ(t)= R e
Ct

,  C=0.01,   mΛ(t)= M  =2.1,     aΛ(t)=t–5   ,  t∈[0,∞),                          (51)    

indicated by the grey lines in Figure 1. In this case, E(0)=m0a0=5.25*2=10.5 is equal to Emax(0)= 

E , hence, the quota (13) is active starting t=0. Since aΛ(0)=−5 < a0=−2, then the optimal 

a*(t)= −2 and m*(t)=0 at 0<t≤tl=3. After tl, the optimal a*(t) coincides with the BGP aΛ(t) and 

m*(t)=m*(t-5) exhibits replacement echoes. 

 

5.3.  Optimal extensive growth (the case of a firm-non-polluter).  

This case means that the consumed resource E(t) at the initial state t=0 is lower than the 

limit Emax. Let us assume that E(t)<Emax at 0≤t<tk, where the moment tk will be 

determined. Mathematically, this scenario is more complicated and involves the case 

c*(t)=0, not covered by Theorem 1.  

We assume that p(t)= teP γ  is not too high, so that  

         [ ] 0)()()1()('

)(1

>−−−= −−∫
−

tkedePtetI rtr

ta

t

m βτβθ γττ
            (52)  

on the “extensive-growth” part [0, tk] of transition dynamics (the alternative case of too 

high p(t) is Scenario 1 above). Then, m*(t) is maximal on interval [0, tk]. On the other 

side, by (49), IR'(t)>0 at small R*(t), hence, the optimal R*(t) is positive. In this case, the 

constraint c*(t)≥0 in (14) limits both controls R* and m*:  

                         )1( θ− Q*(t) − R*(t) − k(t)β*(t)m*(t) − p(t)E*(t) ≥ 0.                         

Then, the transition optimal dynamics on some initial period [0, tk] is determined by the 

restriction c*(t)=0, i.e., the optimal m*(t) and R*(t) are connected by  

                 R*(t) + k(t)β*(t)m*(t) = )1( θ− Q*(t) − p(t)E*(t),    t∈[0, tk].                     (53) 

Therefore, we need a first order condition for this case.  

Lemma  3. If E*(t)<Emax(t) and c*(t)=0 at t∈[0,tk], then the interior optimal R*(t)>0 

satisfies the condition 
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where the function χ(t)=exp(-rt) at t∈[tk,∞) and χ(t) is found from the following Volterra 

integral equation of the second kind:  
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at t∈[0,tk]. The optimal m*(t)>0 is found from (53) at the given R*(t), and the optimal 

a*(t)=0 at Ia’'(t)<0 or a*(t)>0 satisfies Ia’'(t)=0, where  

     τττβθττ damapetI r

t

a ))((]))(()1()([ )(' ' −−= −
∞

∫ .                   (56) 

Proof is provided in Appendix.  

Lemma 3 defines the following extensive-growth scenario on some initial period [0, tk] of 

the transition optimal dynamics. 

 

Scenario 4: Extensive growth. If γ=0 (the price p(t) is constant), then by (56) Ia''(t)<0 at 

a≡a0, hence, a*≡a0 is optimal while E(t)<Emax (as in Example 2 below). So, one can buy 

a new capital and there is no need to remove the old one, i.e., we have an extensive 

growth. If γ>0 (p(t) increases), then the optimal a*(t)=0 while teP γ <β0 and a*(t) 

increases following Ia'(t)=0 at teP γ >β0 on [0,tk]. If γ<C (p(t) increases slower than the 

BGP), then the optimal capital lifetime t−a*(t) increases while E(t)<Emax(t). 

By (54), IR'(t)>0 at small R*(t), hence, the optimal R*(t) is positive and, therefore, β*(t) 

increases. If β*(t) increases, then by (52) the optimal investment m* is maximal and is 

determined by Lemma 3 while E(t)<Emax. Since both optimal m* and t−a*(t) increase, the 

quota E(t)=Emax will be reached soon and the optimal renovation dynamics will switch to 

Scenario 3 with the active constraint (13). The end tk of the “extensive-growth” transition 

period [0, tk] is determined from condition E(tk)= Emax. 

 

Example 2. Let all given parameters be as (50) in Example 1 but  

                                         m0(τ) = 2,  τ∈[−2,0].                                                           (57) 

Then the BGP (51) is the same as in Example 1 but the transition dynamics is different.  



 29

In this case, E(0)=m0a0=2*2=4 is less than Emax(0)= E =10.5, hence, the quota (13) is inactive on 

an initial interval [0, tk] at the beginning of the planning horizon. The dynamics of optimal m*(t) 

and R*(t) on [0, tk] follow the restriction c*(t)=0 and is shown in  Figure 2. The determination of 

m* and R* is based on Lemma 3. It appears that m*(t)=17.8, R*(t)=0.003 at 0≤t≤tk.  Then, the 

corresponding E*(t) increases fast and reaches the limit value E =10.5 at tk≈0.36. The later 

optimal dynamics on [tk,∞) is described by Case A of Theorem 1 and is similar to Scenario 3. 

Namely, since aΛ(0.36)<a0=−2, then a*(t)= −2 and the optimal m*(t)=0 is minimal during the 

second part of transition dynamics, 0.36 < t ≤ tl=3. Later, at t>3, a*(t)=aΛ(t) and the optimal 

m*(t)=m*(t-5) is determined by its previous dynamics on [-2, 3]. 

 

The optimal dynamics highlighted in this scenario are quite new in the related economic 

literature (see for example, Boucekkine, Germain and Licandro, 1997). They deserve 

some comments: 

i) At first, note that the modernization policy chosen by the firm consists of 

increasing investment in new equipment and R&D without scrapping the older 

and more resource consuming machines. In Hritonenko and Yatsenko (1996) and 

Boucekkine et al. (1997), the modernization policy also encompasses scrapping 

part of the older capital goods in a way similar to the intensive growth scenario 

described in Section 5.2. The reason behind this difference is quite elementary: a 

firm with a low enough initial capital stock (and so, with low enough initial 

resource consumption) has no incentive to scrap its old machines as long as its 

resource quota constraint is not binding. In contrary, at a binding quota, investing 

in new machines is not possible without scrapping some obsolete older machines 

because of market clearing conditions or binding regulation constraints. 

ii) Note that in our case firms which are historically “small” polluters are precisely 

those which are historically “small” producers. Extended to a country level, our 

exercise predicts that historically poor countries will find it optimal to massively 

invest and, therefore, to massively pollute during their development process. 

During such a transition, new and clean machines will co-exist with old and dirty 

machines in the productive sectors, implying an unambiguously dirty transition. 
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We complete our analysis of optimal modernization strategies by examining 

explicitly how the Hicksian mechanisms work in our model. 

 

5.4. The impact of resource price on extensive growth. 

In the case of extensive growth (Scenario 4), the transition dynamics is directly impacted 

by the behavior of the resource price teP γ  because of (52).  Let γ>0 and, for simplicity 

sake, θ =0. 

 

Theorem 4. If the transition dynamics period [0, tk] with E*(t)<Emax is relatively short 

such that 10 <<ktβ  and 1max 0
]0,[ 0

<<mt
a

k , then an increase of the resource price p(t) 

increases the R&D investment R*(t), decreases capital investment m*(t), and increases 

the length tk of the period. In the case of an arbitrary interval [0, tk], the R&D investment 

R*(t) increases, at least, on some parts of [0, tk]. The capital lifetime t-a*(t) remains the 

same while teP γ <β0 and becomes shorter when teP γ >β0. 

The proof is in Appendix.  

 

Apart from technicalities, Theorem 4 allows us to deepen the knowledge on functioning 

of the induced-innovation Hicksian mechanisms in a sophisticated model like ours where 

firms have three controls in hand. The theorem establishes the existence of such a 

modernization mechanism, at least, during some time along the transition. It is not 

difficult to construct extreme cases, not covered by Theorem 4, where the Hicksian 

mechanism fails to appear.
8
  However, the general wisdom one has to extract from this 

exercise is that the latter mechanism is still relevant in sophisticated models like ours.    

This said, the picture conveyed by Theorem 4 is an accurate and peculiar modernization 

process. While rising resource prices may stimulate R&D at some points in time, they 

definitely depress investment in capital goods. It becomes optimal for the firm to find an 

                                                 
8
 Consider the extreme case of the prices p1(t) and p2(t) such that )1( θ− Q(0)−p1(0)E(0)>0 but 

)1( θ− Q(0)−p2(0)E(0)=0. The corresponding optimal a*, m*, and R* are indicated with the subscripts 1 

and 2. Then, by (58), R1*(0) and/or m1*(0) are positive, but R2*(0)=m2*(0)=0 since all given output 

)1( θ− Q(0) is spent at t=0 to buy resources. Under natural assumptions, the production will never become 

profitable at the price p2. There is no contradiction with Theorem 5 since the control R2*(0)=m2*(0)=0 is 

not interior in this case and an increase δR*2 of R*2 is not possible because of too tight initial conditions. 
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efficient way to save resources, and to delay the investment in equipment. Modernization 

also works via scrapping, provided resource prices are shifted to large enough levels. In 

such a case, the firms start to scrap older equipment and technologies while decreasing 

investment in equipment and increasing the resource-saving R&D effort. This is quite 

consistent with available descriptions of how the inducement works in practice. For 

example, Newell et a. (1999) make it clear that a major observed effect of changes in 

energy process and in energy-efficiency standards is the commercialization of new 

models and elimination of old ones.  

 

6. Concluding remarks 

In this paper, we have studied in depth the optimal behavior of a firm subject to 

environmental-based quotas, resource scarcity and liquidity constraints. In addition, the 

vintage structure adds realism to the problem under study and considerably enriches the 

discussion. We have extracted some new results, either in the investigation of short-term 

dynamics (optimal modernization strategies) or in the analysis of long-run growth 

regimes (sustainability). We have also characterized the general contours of the Hicksian 

mechanisms at work in the model, ultimately showing its peculiar but predominant 

nature. 

A few remarks are in order. Of course, our results are based on price-taking firms and our 

modeling of liquidity-constraints is probably too simple. Adding market power is no 

problem, although it is not likely that our results would be dramatically altered. 

Modelling and treating the liquidity constraints more accurately is a much more 

complicated task, both mathematically and conceptually. We believe that allowing firms 

to incur into debt to fasten its modernization and compliance to legal standards is a quite 

decisive issue that should be considered in more comprehensive research. This is our next 

step. 

 

7. Appendix 

Proof of Theorem 1: The proof uses standard perturbation techniques of the optimization 

theory, adjusted for the class of models under study in Hritonenko and Yatsenko (1996, 

2005, 2006) and Yatsenko (2004). Let us consider Case (B) first.  
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Case (B). If the restriction (13) is inactive, E*(t)<Emax(t) at t∈∆, then we choose R, m, 

and v=a' as the independent unknown variables of the OP. Then, the differential 

restriction a'(t)≥0 in (14) has the standard form v(t)≥0.  We assume that R, m, and v are 

measurable and R(t)e
-rt

, m(t)e
-rt

, v(t)e
-rt

 are bounded a.e. on [0,∞). Substituting (17) to 

(16), we obtain expression (22) for β(t).    

We refer to measurable functions δR, δm, and δv as the admissible variations, if R, m, v, 

R+δR, m+δm, and v+δv, satisfy constraints (14)-(15). 

Let us give small admissible variations δR(t), δm(t), and δv(t), t∈(0,∞), to a, m, and R and 

find the corresponding variation ),,(),,( vmRIvvmmRRII −+++= δδδδ  of the objective 

functional I. Using (10)-(13), we obtain that  
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        (A1)                      

where ∫=
t

dvta
0

)()( ξξδδ . To prove the Theorem, we shall transform the expression (A1) 

to the form  

   ),,())()()()()()((
0

vmRodttvtItmtItRtII vmR δδδδδδδ +⋅′+⋅′+⋅′= ∫
∞

,           (A2) 

where the norm is |)(|sup
),0[

tfeessf rt−

∞
= . It will involve several steps. First, using the 

Taylor expansion f(x+δx)=f(x)+f’(x)δx+o(δx) twice, we have that  
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Next, using (A3) and the elementary property 
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where max{a(t),0} emphasizes that the variations δR(t), δm(t) are non-zero only on the 

interval [0,∞). 

Next, we interchange the limits of integration in the second term of (A4) as 
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in the first term as 
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and in the fifth term similarly. To transform the third term, we use the Taylor expansion 
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. Collecting coefficients of δR, δm, and δa, we 

rewrite (A4) as: 
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Finally, recalling ∫=
t

dvta
0

)()( ξξδδ , we convert the last expression to 
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      (A5) 

Formula (A5) in notations (21), (24), (25) provides the required expression (A2). The 

domain (14) of admissible controls R, m, v has the simple standard form R≥0, m≥0, v≥0.  

So, the NCE (23) follows from the obvious necessary condition that the variation δΙ of 

functional Ι  can not be positive for any admissible variations δR(t), δm(t), δv(t), t∈[0,∞).   

Case (A). If the restriction of (13) is active: E(t) = Emax(t) at t∈∆⊂[0,∞), then we choose 

R and m as the independent unknowns of the OP. The dependent (state) variable a is 

uniquely determined from the initial problem  

           m(a(t))a′(t) = m(t) − Emax′(t),     a(0)= a0, 

obtained after differentiating (13). As shown in Hritonenko and Yatsenko (2006), if 

Emax′(t)≤0, then for any measurable m(t)≥0, a unique a.e. continuous function a(t)<t 

exists and a.e. has a'(t)≥0 (see Remark 1 about the possible case Emax′(t)>0). Therefore, 

the state restrictions a'(t)≥0 and a(t)<t in (14) are satisfied automatically, so we can 

exclude a from the extremum condition.  

Similarly to the previous case, let us give small admissible variations δR(t) and δm(t), 

t∈[0,∞), to R and m and find the corresponding variation ),(),( mRImmRRII −++= δδδ  
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of the functional I. In this case, the variation δa is determined by δm. To find their 

connection, let us present (13) as    
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We will use the above formula (A4) for the variation δI as a function of δR, δm, and δa 

and eliminate δa from (A4) using (A6). To do that, we rewrite the third term of (D4) as 
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by adding ± dtdmtae
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rt ττβ
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 and applying (A6). The integral 

τττββ
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)())()(( −∫
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in (A7) has the order o(δa) because β(τ) is continuous.  

Substituting (A7) into (A4) and collecting the coefficients of δm and δR, we obtain the 

expression  

          ),())()()()((
0

mRodttmtItRtII mR δδδδδ +⋅′+⋅′= ∫
∞

                               (A8) 

in the notations (20) and (21). The rest of the proof is identical to Case B. 

The Theorem is proved.    / 

 

Proof of Theorem 2:  By Lemma 1, at n=d  
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The substitution of (26), (38), and (A9) into equation (29) leads to 
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and, after integration, to  
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that can be rewritten as (39). Substituting (37), (38), and (A9) to (30) gives  
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which becomes (40) after integration. 

Equations (39) and (40) may have a positive solution C and M  at natural assumptions. In 

particular, let r<<1. Then, presenting the exponents in (40) as the Taylor series, we obtain   
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     [ ] )1/(2)()()/( 2 θ−=+−+ krorCrME , 

which has the solution  )()1/(2/ rokCEM +−= θ .  

Now, expressing the exponent in (39) as the Taylor series, we obtain  
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Substituting the obtained M   into (A10) leads to one equation (42) for C. To analyze this 

equation, we use the new variable Cx = and rewrite (42) as  

                                              F1(x) = F2(x),                           (A11) 
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where    F1(x)= ))1(( 22/2 −+− dxrx d , 
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These functions are shown in Figure 3 and are such that F1(0)=0, F1’(x)>0 at 0<x< r , 

F1’(x)=0 at x= r , and F2’(x)>0 at 0<x< r , F2’(x)=0 at x= r . Also, F2(x)<0<F1(x) at 

small 0<x<<1. Therefore, to have a solution 0 < x < r  to equation (A11), it is necessary 

and sufficient that F2( r )>F1( r ), which leads to the inequality (41). The sufficient 

condition for the uniqueness of x is F1’(x)<F2’(x) at 0<x< r , which leads to (43).  

Finally, let us prove that cΛ(t)>0 at large t.  
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Expressing the exponent in (A12) as the Taylor series and using (A10), we obtain  
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Thus, cΛ(t)>0 at large enough t for any positive value R  if γ <C, and at 

)1)(( θ−−
>

Cr

Cd
PER   if γ =C.  The theorem is proved.           / 

 

 

Proof of Lemma 3: We apply the standard method of Lagrange multipliers to take into 

account the equality-constraint (48), or 

                        R(t) + k(t)β(t)m(t) = Q(t) − p(t)E(t),    t∈[0, tk].                                

Let us introduce the Lagrange multiplier λ(t), t∈[0,∞), for the equality (48) and notice 

that λ(t)=0 at t∈[tk,∞) because of the complementary slackness condition. Now we 

minimize the Lagrangian  



 38

                         dtttcIL )()0)((
0

λ−+= ∫
∞

           

instead of the functional I (10). Providing all transformations as in the proof of Theorem 

1, we arrive to the following expression   
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and Iv'(t) is given by the same formula (25).   

       Following the method of Lagrange multipliers, we will choose λ(t) from the 

condition Î ′ m(t)=0,  t∈[0, tk].  In the new variable χ(t)=[1-λ(t)]e
-rt

, it leads to the formula 

(55). The expression for Î ′ R(t) in the variable χ is (54) and Î ′ R(t)=0 on [0, tk] for interior 

R*. The lemma is proved.     / 

 

Proof of Theorem 4: We will compare the transition dynamics on [0, tk] under two 

different increasing prices p(t) and p(t)+δp, where δp=const>0 on [0,a
−1

(tk)] or [0,∞). The 

perturbation δp causes perturbations δa(t), δm(t), δR(t) and δβ(t) of the corresponding 

optimal a*(t), m*(t), R*(t) and β*(t) on interval [0, tk) as well as the change δtk of the 

interval length. The further optimal dynamics on [tk,∞) follows the above Scenario 3. At 

t>tk, δR(t)=0 because IR'(t) does not depend on p, and δm(t)=0 because m*(t) is boundary 

on [tk, t1]. However,  

         ττδτβδβ dRRtbdt d

tt

d
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)()()()( 1
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1 −− ∫=    for all   t∈[0,∞).          (A14)     

By (56), δa(t)= ))(('/ tap βδ <0 on [0, tk] is determined from the equation Ia'(t)=0 or 

δa(t)=0 if p(t)<β0. The perturbations δm(t), δR(t), δβ(t), and the auxiliary δχ(t) should not 

violate equalities (53)-(55). Varying (53), we obtain 
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Varying (55), we obtain 
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Finally, varying (54), we obtain 
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The proof is clear in the case of small tkβ0<<1 and 1max 0
]0,[ 0
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k . Then, )()( ktot =δβ  

by (A14) and by (A16) δχ(t) )](1[
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on the interval [0,tk]. Substituting δR to (A15), we obtain 
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δ <0,  t∈[0,tk]. Therefore, R*(t) is larger and m*(t) is 

smaller at a higher resource price p(t).  
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Let us estimate the change δtk of the interval length. The instant tk is determined from the 

equality max
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∫−= . As shown above, δa(t)≥0 and δm(t)<0, 

therefore, δtk>0.  

In the case of an arbitrary [0,tk], we have the system (A14)-(A17) of four non-Volterra 

integral equations  of the second kind for δR(t), δm(t), δβ(t), δχ(t), t∈[0,tk], which is 

difficult to analyze qualitatively. The only conclusion we can provide is the following.   

Let  δβ(tk)≥0, then by (A15) δR(t)>0, at least, on some parts of interval [0, tk]. Now let 

δβ(tk)<0, then δβ(t)≤0 on some final part [tc,tk], tc<tk, by continuity. Then, by (A16) 

δχ(t)<0 on [tc,tk]. By (A17) 
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hence δR(t)>0, at least, near the end of interval [0, tk].  

The theorem is proved.  / 

 

References 

 

[1] Arrow, K., P. Dasgupta, L. Goulder, G. Daily, P. Ehrlich, G. Heal, S. Levin, K. 

Mäler, S. Schneider, and B. Walker, Are we consuming too much?, Journal of 

Economic Perspectives, 18(2004), 147-172. 

[2] Benhabib, J. and A. Rustichini, Vintage capital, investment, and growth, Journal of 

Economic Theory, 55(1991), 323-339. 

[3] Boucekkine, R., N. Hritonenko, and Yu. Yatsenko, Optimal firm behavior under 

environmental constraints, CORE Discussion Paper 2008/24, Université catholique 

de Louvain, Louvain-la-Neuve, Belgium, 2008; Discussion Paper 2008-11, 

Department of Economics, University of Glasgow, UK, 2008. 

[4] Boucekkine, R. and R. Ruiz-Tamarit, Special functions for the study of economic 

dynamics: The case of the Lucas-Uzawa model, Journal of Mathematical 

Economics 44(2008), 33-54.  

[5] Boucekkine, R., M. Germain, and O. Licandro, Replacement echoes in the vintage 

capital growth model, Journal of Economic Theory 74(1997), 333-348. 



 41

[6] Boucekkine, R., F. del Rio, and O. Licandro, Exogenous vs endogenously driven 

fluctuations in vintage capital growth models, Journal of Economic Theory 

88(1999), 161-187. 

[7] Feichtinger, G., R. Hartl, P. Kort, and V. Veliov, Environmental policy, the Porter 

hypothesis and the composition of capital: Effects of learning and technological 

progress, Journal of Environmental Economics and Management 50(2005), 434-

446. 

[8] Feichtinger, G., R. Hartl, P. Kort, and V. Veliov, Capital accumulation under 

technological progress and learning: a vintage capital approach, European Journal 

of Operation Research 172(2006), 293-310. 

[9] Hart, R., Growth, environment and innovation- a model with production vintages 

and environmentally oriented research, Journal of Environmental Economics and 

Management 48(2004), 1078-1098. 

[10] Hartl, R., S. Sethi, and R. Vickson, A survey of the maximum principles for optimal 

control problems with state constraints, SIAM Review 37(1995), 181-218. 

[11] Hicks, J., The theory of wages. McMillan, London, 1932.  

[12] Hritonenko, N. and Y. Yatsenko, Modeling and Optimization of the Lifetime of 

Technologies Kluwer Academic Publishers, Dordrecht, 1996.  

[13] Hritonenko, N. and Y. Yatsenko, Turnpike and optimal trajectories in integral 

dynamic models with endogenous delay, Journal of Optimization Theory and 

Applications 127(2005), 109-127. 

[14] Hritonenko, N. and Y. Yatsenko, Concavity in a vintage capital model with 

nonlinear utility, Applied Mathematics Letters 19(2006), 267-272. 

[15] Jaffe, A., R. Newell, and R. Stavins, Environmental policy and technological 

change, Environmental and Resource Economics 22 (2002), 41-69. 

[16] Kamien, M. and N. Schwartz, Induced Factor Augmenting Technical Progress from 

a Microeconomic Viewpoint, Econometrica 37 (1969), 668-684. 

[17] Krusell, P., Investment-specific R&D and the decline in the relative price of capital, 

Journal of Economic Growth 3(1998), 131-141. 

[18] Malcomson, J., Replacement and the rental value of capital equipment subject to 

obsolescence, Journal of Economic Theory 10(1975), 24-41. 

[19] Newell, R., A. Jaffee, and R. Stavins, The induced innovation hypothesis and 

resource-saving technological change, The Quarterly Journal of Economics 

114(1999), 941-975. 

[20] Parto, S. and B. Herbert-Copley (Eds.), Industrial Innovation and Environmental 

Regulation, The UN University, Maastricht, 2007.  

[21] Porter, M., America's green strategy, Scientific America 264(1991), 4. 

[22] Popp, D., Induced innovation and energy prices, American Economic Review 92 

(2002), 160-180. 

[23] Segerstrom, P., The long-run growth effects of R&D subsidies, Journal of 

Economic Growth 5(2000), 277-305 



 42

[24] Solow, R., J. Tobin, C. Von Weizsacker, and M. Yaari, Neoclassical growth with 

fixed factor proportions, Review of Economic Studies 33(1966), 79-115. 

[25] Tsur, Y. and A. Zemel , Scarcity, growth and R&D, Journal of Environmental 

Economics and Management 49 (2005), 484-499 

[26] Tsur, Y. and A. Zemel , Optimal transition to backstop substitutes for nonrenewable 

resources, Journal of Economic Dynamics and Control 27 (2003), 551-572. 

[27] Yatsenko, Y., Maximum principle for Volterra integral equations with controlled 

delay time, Optimization 53(2004), 177-187.  

[28] Yatsenko, Y., R.Boucekkine, and N.Hritonenko, On explosive dynamics in R&D-

based models of endogenous growth, to appear in Nonlinear Analysis, 2009, doi 

10.1016/j.na.2008.11.068. 



 43

 
  

 a0000      0=tk                                                                tl     

a*(t) 

 m*(t) 
 

 m0 

 
 M0 

 

 R*(t) 
 

 

 

Figure 1. Transition and long-term dynamics under active environment regulation from Example 

1 (at specific initial conditions a0 and m0). The dotted lines indicate the BGP regime. The dashed 

line shows the inverse function a
-1

. 
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Figure 2. Transition and long-term dynamics under inactive environment regulation from 

Example 2. The optimal dynamics at active regulation (Example 1) is shown in grey color. 
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Figure 3. Solving the nonlinear equation (A9) with respect to the unknown Cx = .  
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