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FAST METHODS FOR COMPUTING THE p-RADIUS
OF MATRICES∗

RAPHAËL M. JUNGERS† AND VLADIMIR Y. PROTASOV‡

Abstract. The p-radius characterizes the average rate of growth of norms of matrices in a
multiplicative semigroup. This quantity has found several applications in recent years. We raise
the question of its computability. We prove that the complexity of its approximation increases
exponentially with p. We then describe a series of approximations that converge to the p-radius with
a priori computable accuracy. For nonnegative matrices, this gives efficient approximation schemes
for the p-radius computation.
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1. Introduction. For a given set M = {A1, . . . , Am} of d× d matrices and for
a parameter p ∈ [1,+∞] we consider the value (where Mk denotes the set of all mk

products of k matrices from M)

(1.1) ρp =

⎧⎪⎨
⎪⎩

limk→∞
[
m−k

∑
B∈Mk ‖B‖p

]1/(pk)
, p <∞,

limk→∞
[
maxB∈Mk ‖B‖

]1/k
, p = ∞,

called the Lp-norm joint spectral radius, or, in short, the p-radius of the set M.
Thus, ρp is the limit of the Lp-averaged norms of all products of length k to the

power 1/k as k → ∞. This limit exists for any set M and does not depend on the
multiplicative norm chosen. If M consists of one matrix A (or if all matrices of M
coincide), then ρp is equal to ρ(A), the spectral radius of the matrix A, which is the
largest modulus of its eigenvalues.

The p-radius has found several important applications in the literature recently,
but very little is known about its computability. The reason is perhaps that from a
look at its definition this quantity might seem extremely difficult to compute. The
goal of this paper is to survey the few results on the topic, to delineate the easy and
the difficult cases, and to introduce methods for estimating the p-radius. We show
that for some particular situations this leads to efficient approximation schemes.

The value ρ∞, known as the joint spectral radius, was first introduced in a short
paper of Rota and Strang [28] in 1960. Thirty years later Daubechies and Lagarias [10]
revealed its crucial role in the theory of wavelets and functional equations. This
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work attracted real interest in the joint spectral radius, which has now found many
applications in various areas of mathematics, such as functional analysis, number the-
ory, dynamical systems, and formal languages. See [15] for a monograph on this topic.
Much research effort has been devoted to the computation of the joint spectral radius.
This problem is known to be extremely hard for general sets of matrices; see [30] and
the references therein for NP-hardness and undecidability results. Nevertheless, sev-
eral algorithms have been proposed, which are efficient in many practical cases (see,
for instance, [1, 12, 26]).

For finite values of the parameter p the history of the p-radius is more recent: it
was introduced by Wang [31] for p = 1 and independently by Jia [14]. It characterizes
the regularity of wavelets in Lp spaces (see [18, 22, 33] and the references therein)
and the convergence of subdivision algorithms in approximation theory [14, 20], and
it also rules fractal measures [24, 25, 29] and the solvability criterion for self-similarity
functional equations and refinement equations with a compact mask [7, 23, 31].

In spite of the growing interest in this subject very little is known about the
properties of the p-radius. It is a nondecreasing function in the parameter p and is
concave in 1

p [33].

It is straightforward that for any k ≥ 1 we have the following upper bound:

(1.2) ρp ≤ Uk =

⎡
⎣m−k

∑
B∈Mk

‖B‖p
⎤
⎦
1/(pk)

.

This is a simple consequence of submultiplicativity of the matrix norms. Since Uk →
ρp as k → ∞, this provides a theoretical opportunity to compute ρp. This bound Uk,
however, usually becomes sharp enough only for very large values of k, which makes it
impossible to compute ρp with some reasonable accuracy. Moreover, as no theoretical
guarantee exists on the speed of convergence of this quantity, even if for some k the
quantity Uk is very close to ρp, one could not conclude that the estimate has converged.
Indeed, the approximation Uk could in theory stagnate during a long period and start
decreasing again at a larger value of k. Already for d = 2 simple numerical examples
demonstrate a very slow convergence of Uk to ρp.

Our main approach for deriving effective bounds for ρp is to find a suitable norm
for which Uk rapidly converges. This idea is related to the concept of extremal norms.
For any norm ‖ · ‖ in R

d and for any set M of m matrices, we denote by Fp(|| · ||, x)
(abbreviated Fp(x)) the following function on R

d:

Fp(|| · ||, x) =
{ (

1
m

∑
A∈M ‖Ax‖p

)1/p
if p ∈ [1,∞),

maxA∈M ‖Ax‖ if p = ∞.

A norm ‖·‖ is called extremal for a given setM and a parameter p if there is λ ≥ 0 such
that Fp(|| · ||, x) = λ||x|| for any x ∈ R

d. The concept of extremal norms originated
in [3] for p = ∞ and in [24] for all finite p. The following theorem was proved in [7]
(the existence of ε-extremal norms) and in [25] (the existence of extremal norms for
irreducible families, i.e., for matrices without common nontrivial invariant subspaces).

Theorem 1.1. A norm ‖·‖ is extremal if and only if for this norm Fp(x) = ρp‖x‖.
If the set M is irreducible, then it possesses an extremal norm.

For every ε > 0, every set possesses an ε-extremal norm, that is, a norm ‖ · ‖ε,
for which Fp(|| · ||ε, x) ≤ (ρp + ε)‖x‖ε for any x ∈ R

d.
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The above theorem justifies the term “extremal” for such norms: they are the
norms for which the value sup|x|=1 Fp(|| · ||, x) is minimal (indeed this quantity is
always an upper bound for ρp (Proposition 3.2)). Thus, knowing an extremal norm
allows us to compute the value ρp. However, that norm is usually difficult to find.
Since the initial norm in R

d, say, the Euclidean norm, may be too far from the
extremal one, estimations of type (1.2) are not sharp and the corresponding algorithms
may have slow convergence. To cope with this problem, one could approximate the
extremal norm, i.e., find a norm ‖ · ‖ for which Fp(x) is close to λ‖x‖ for all x.
In the case p = ∞ this idea was put to good use in several works, where the extremal
norm was approximated by polyhedral functions, ellipsoidal norms, sums of squares
polynomials, etc. [1, 4, 5, 12, 21, 23]. Recently, conic norms have been used for this
purpose [26]. These methods have proved very efficient, even for large dimensions d.

We finally observe that most methods of computation that are quite efficient for
the joint spectral radius ρ∞ are inapplicable for finite p. For example, in the case
p = ∞, one always has an easy lower bound for ρ∞: for any k the value

ρ∞(k) =
[
max
B∈Mk

ρ(B)
]1/k

,

where ρ(B) denotes the (usual) spectral radius of the operator B, which is the largest
modulus of its eigenvalues, does not exceed ρ∞(M). Moreover, this lower bound
converges to ρ∞ as k → ∞. In most practical cases this convergence is pretty fast,
which makes ρ∞(k) an efficient lower bound for ρ∞.

This fact has been put to good use in most approximation algorithms for the joint
spectral radius. In the case of finite p it seems natural to consider an analogous value

ρp(k) =

⎡
⎣m−k

∑
B∈Mk

(
ρ(B)

)p⎤⎦
1/kp

.

However, simple examples show that this is not a lower bound for the p-radius. For
instance, consider two 2 × 2 diagonal matrices A1 = diag (1, α) , A2 = diag (α, 1),
where α ∈ (0, 1). It is easily shown that ρ1(A1, A2) =

1+α
2 , while for k = 1 we have

ρ1(1) = 1, which is bigger than 1+α
2 .

Another powerful tool for computing ρ∞ is to find a set Sk of dominating products
in Mk which have large spectral radius. In many cases the largest spectral radius
equals ρ∞(M)k for k not too large, which provides the exact value of the joint spectral
radius. Even if it does not, it often allows one to compute the dominating products
of larger length by using the elements of Sk as building blocks. For finite p this idea
is not applicable either, because sometimes all products might be important. In the
above example there are two dominating products Ak

1 , A
k
2 . Both have spectral radius

equal to 1 for all k. Thus, their spectral radii do not converge to ρp.
In this paper we are going to see that there are, nevertheless, two approaches

that can be extended from the case p = ∞ to all finite p. These are the concepts of
extremal norm and the conic programming approach. We apply these ideas to derive
efficient algorithms for the p-radius computation.

In this paper, we make the first step in analyzing the computability of the p-radius
for general p. We show that unless P = NP, there is no algorithm that approximates
the p-radius of an arbitrary set of nonnegative matrices in time polynomial in the
accuracy, in p, and in the size of the set of matrices. Then we propose a method
for deriving bounds on the p-radius for arbitrary sets of matrices within an arbitrary
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accuracy. These bounds can be computed as the solution of an optimization prob-
lem. For nonnegative matrices the optimization problem appears to be convex and
unconstrained and can then be solved efficiently.

2. Computability of the p-radius. In this section we analyze the computabil-
ity of the p-radius. The difficulty of the task strongly depends on p as well as on prop-
erties of the matrices. We delineate the different cases and prove that the complexity
of approximating the p-radius increases exponentially as p → ∞, even for nonnega-
tive matrices (i.e., matrices with nonnegative entries). Since for such matrices and
fixed p ∈ N, there exist polynomial time algorithms that compute the p-radius, this
settles the complexity of the problem for the case where p ∈ N and the matrices are
nonnegative.

The fact that ρp is computable in polynomial time for nonnegative matrices and
fixed p ∈ N is due to the following proposition. Particular cases of this result are
proved in [22, 32].

Proposition 2.1. For any set of matrices M and any p, k ∈ N, the p-radius of
M satisfies

ρp =
[
ρ p

k
(M⊗k)

]1/k
,

where

M⊗p = {A⊗p : A ∈ M}
and A⊗p denotes the pth Kronecker power1 of A.

Proof. It is well known that Kronecker powers have the following two fundamental
properties (where ‖ · ‖ is the Euclidean norm):

‖A⊗k‖ = ‖A‖k,

(AB)⊗k = (A)⊗k(B)⊗k.

Thus,

lim
t→∞m−t

⎡
⎣ ∑
B∈(M⊗k)t

‖B‖p/k
⎤
⎦
k/(kpt)

= lim
t→∞m−t

[ ∑
B∈Mt

‖B⊗k‖(p/k)
]1/(pt)

(2.1)

= lim
t→∞

[
m−t

∑
B∈Mt

‖B‖p
]1/(pt)

.

(Note that the size of the matrices in M⊗p is exponential in p.) As a corollary,
for any p ∈ N, the p-radius can be expressed as the 1-radius of an auxiliary set of
matrices.

Corollary 2.2 (see [22, 32]). For any set of matrices M and any p ∈ N, the
p-radius of M satisfies

ρp = ρ1(M⊗p)1/p.

1The kth Kronecker power of an n × n matrix is an nk × nk matrix, defined inductively as

A⊗k = A⊗A⊗k−1, where A⊗B is the Kronecker product of A and B: A⊗B =

( A(1,1)B ... A(1,n)B
.
.
.

.

.

.

.

.

.
A(n,1)B ... A(n,n)B

)
.
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In some cases the value ρ1 can be expressed as the usual spectral radius of a
certain matrix, which we now explain. Let K be a convex closed pointed cone in R

d

with a nonempty interior (these assumptions on K are crucial in the remainder of the
paper, and we will make them from now on). We say that a set of matrices M leaves
K invariant if AK ⊂ K for all A ∈ M.

Proposition 2.3 (see [4, 22]). If a set of m matrices M leaves a cone K
invariant, then

ρ1(M) = ρ

(
1

m

∑
A∈M

A

)
.

Putting Propositions 2.1 and 2.3 together, one gets the following theorem.
Theorem 2.4 (see [22, 32]). Let M be a set of matrices and let p ∈ N. If either
• the set M leaves a cone K invariant, or
• p is even

holds, then

ρp(M) = ρ

(
1

m

∑
A⊗p∈M

A

)1/p

.

Proof. For the first case, just put Propositions 2.1 and 2.3 together and use the
fact that if M leaves K invariant, then M⊗k leaves conv {K⊗k} invariant.

For the second case, note that M⊗2p = (M⊗p)⊗2 and that, given a set of matrices
M′ acting in R

d, the set M′⊗2 leaves invariant the cone K = conv {x⊗ x : x ∈ R
d}.

See [4, 22, 32] for details.
So, if p ∈ N and the matrices are nonnegative (or, more generally, for sets of

matrices with an invariant cone), there is an algorithm that computes the p-radius
in finite (but exponential) time. We now show that this algorithm is optimal, since
the p-radius computation is NP-hard. Actually, we show that it is even NP-hard to
approximate it. In the following, we refer to the size of a rational number as its “bit
size,” that is, if ε = p/q for two natural numbers p, q ∈ N, its size is log(pq).

Theorem 2.5. Unless P = NP, there is no algorithm that takes a set of matrices
M, an accuracy ε, and an integer p, and that returns an approximation ρ∗p such that
|ρp−ρ∗p|/ρp < ε in a time which is polynomial in the size of the instance. This is true
even if M consists of two binary matrices.

Proof. We reduce the SAT problem, whose NP-completeness is well known, to
the p-radius approximation. The construction of the reduction is the same as in [30,
Theorem 1]. In that paper, the authors show that, given an instance of SAT with m
clauses and n unknown variables, it is possible to construct in polynomial time a set
of two matrices M whose joint spectral radius is equal to m1/(n+2) if and only if the
instance is satisfiable. In the opposite case, ρ(Σ) ≤ (m − 1)1/(n+2) (we use ρ(Σ) for
ρ∞(Σ) as is customary in the literature). Thus, if the instance is satisfiable, it implies
(see [15]) that there is a constant K1 such that, for all t, there is a product of length
t with a norm greater than K1m

1/(n+2). Thus, we have

ρp ≥ lim
t→∞ {K1m

tp/(n+2)/2t}1/(pt) = m1/(n+2)/21/p.

If ρ(Σ) ≤ (m − 1)1/(n+2), there is a constant K2 such that, for all t, all products of
length t have a norm which is smaller than K2(m− 1)tp/(n+2)tK2 . Thus we have

ρp ≤ lim
t→∞ {K2(m− 1)tp/(n+2)tK2}1/(pt) = (m− 1)1/(n+2).
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Then, taking p = m(n+ 2) > n+2
log (m/(m−1)) , we have

ρp ≥ m1/(n+2)/21/p

if the instance is satisfiable, and

ρp ≤ (m− 1)1/(n+2) < m1/(n+2)/21/p

in the opposite case (logarithms are base 2). Now, if there existed a polynomial time
algorithm to approximate the p-radius, choosing ε small enough (for instance ε <
((m1/(n+2)/21/p)/(m − 1)1/(n+2)) − 1), one could check whether ρp = m1/(n+2)/21/p

and then check whether the instance is satisfiable.

Open Question 1. Does there exist an algorithm that decides, given a set of
matrices, whether its p-radius is less than one?

Open Question 2. Does there exist an algorithm that decides, given a set of
matrices, whether its p-radius is less than or equal to one?

For matrices with an invariant cone and a finite nonnegative integer p, or for
even p, the answer is affirmative, since the p-radius can be expressed as the spectral
radius of a special matrix, as we have seen above. Also, Open Question 2 is known to
be undecidable for p = ∞, even if the matrices are nonnegative. As far as we know,
the other cases are open. See [8, 16] for a study of the first question with p = ∞.

3. Approximating the p-radius. In this section we describe four quantities
that approximate the p-radius within an approximation error of at most 1/d, where
d is the dimension of the matrices. Then we show how to iterate this in order to get
more and more precise approximations. We start with two auxiliary results. The first
is a consequence of Theorem 1.1.

Lemma 3.1 (see [25]). Let M be a set of matrices. For any x ∈ R
d there is a

constant C1 depending only on M and x such that, for all k ≥ d,

⎛
⎝m−k

∑
B∈Mk

‖Bx‖p
⎞
⎠

1/p

≤ C1k
d−1(ρp)

k.

Moreover, if x does not belong to a common invariant subspace of the matrices of the
set M, then there is a constant C2 depending only on M and x such that

C2(ρp)
k ≤

⎛
⎝m−k

∑
B∈Mk

‖Bx‖p
⎞
⎠

1/p

.

Let Vp(M) = sup‖x‖=1 Fp(x). This value depends on p, M, and the norm ‖ · ‖.
Proposition 3.2. For any norm one has Vp ≥ ρp. For extremal norms this

inequality becomes an equality.

Proof. We claim that for any x, ‖x‖ = 1, and for any k,

(Vp)
k ≥

⎛
⎝m−k

∑
B∈Mk

‖Bx‖p
⎞
⎠

1/p

.
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We prove it by induction on k. For k = 1 there is nothing to prove, by definition of Vp.
Now,

(3.1)

m−k
∑

B∈Mk ‖Bx‖p =m−1
∑

A∈Mm−(k−1)
∑

B∈Mk−1 ‖BAx‖p,
=m−1

∑
A∈Mm−(k−1)

∑
B∈Mk−1 ‖By‖p‖Ax‖p,

=m−1
∑

A∈M ‖Ax‖p [m−(k−1)
∑

B∈Mk−1 ‖By‖p
]
,

≤ (VpV
k−1
p )p.

In the above equations the vector y refers to (Ax)/‖Ax‖. Now, we can suppose without
loss of generality that there is a vector that does not belong to a common invariant
subspace. Thus, by Lemma 3.1 there is x ∈ R

d, ‖x‖ = 1, such that

(Vp)
k ≥

⎛
⎝m−k

∑
B∈Mk

‖Bx‖p
⎞
⎠

1/p

≥ C(ρp)
k, k ∈ N.

As k → ∞, this inequality implies that Vp ≥ ρp.
The following analysis will be restricted to families M with a common invariant

cone.
As usual, any cone K defines a corresponding order in the following way: for any

x, y ∈ R
d, x ≥K y if x − y ∈ K, and x >K y if x − y ∈ intK. Thus, x ≥K 0 if

x ∈ K. For a matrix A we write A ≥K 0 if AK ⊂ K. We deal with norms ‖ · ‖ defined
for x ∈ K. Any such a norm can easily be extended onto the whole space R

d in a
standard way by defining its unit ball as co

{
BK ,−BK

}
, where co is the convex hull

and Bk = {x ∈ K : ‖x‖ ≤ 1}. We spot two special families of norms in the cone K.
The primal conic norms rx(·) are defined by unit balls BK = K ∩ (x − K), where
x ∈ intK is a given point. Thus, rx(y) = inf

{
λ > 0 | y ≤K λx

}
. The dual conic

norms are defined by unit balls B∗
K =

{
y ∈ K

∣∣(v, y) ≤ 1
}
, where v ∈ intK∗ is an

arbitrary functional (K∗ =
{
v ∈ R

d
∣∣infx∈K(v, x) ≥ 0

}
denotes as usual the cone dual

to K). For self-dual cones K (for, instance, if K = R
d
+) these norms are dual to each

other (with x = v).
In what follows, we need the following geometrical characteristic of a cone.
Definition 3.3. For a given cone K ⊂ R

d the value h(K) is the supremum of
the numbers h possessing the following property: for any norm ‖ · ‖ in R

d there exist
points x ∈ intK, v ∈ intK∗ such that ‖x‖ = 1 and for any y ∈ K,

(3.2) hrx(y) ≤ (v, y) ≤ ‖y‖.
When the choice of the cone K is clear from the context, we simply write h for

h(k).
The constant h is related with other geometrical characteristics of cones such

as the parameter of self-concordant barriers [19]. It is related to the constant α(K)
introduced in [26] (see this reference for more information on this constant). The key
property that we need for h is the following, largely inspired from [26, Theorem 2.7].

Proposition 3.4. For any cone K ⊂ R
d, one has h(K) ≥ 1

d .
Proof. Let B be the unit ball of a given norm. We define v and x as follows.

Among all hyperplanes that do not intersect intB there exists a hyperplane H =
{y ∈ R

d | (v, y) = 1} that cuts from K a convex compact set of the smallest possible
volume. Then the center of gravity x = gr (G) of the (d−1)-dimensional cross-section
G = K ∩H belongs to B [2, p. 229].
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Clearly, x ∈ intK, and v ∈ intK∗ since G is bounded. Also, the second inequality
in Definition 3.3 (equation (3.2)) is satisfied by construction.

We now prove the first inequality: rx(y) ≤ d (v, y) for any y ∈ K. This means that
d (v, y)x ≥K y for any y ∈ K, or, writing z = y/(v, y), we obtain d x ≥K z for any
z ∈ G. Now we apply the Minkowski–Radon theorem [27], which states that, for
any segment [z1, z2] passing through the center of gravity x of a (d − 1)-dimensional
convex set and having its ends on the boundary of G, one has |z1−x| ≤ (d−1)|z2−x|.
This implies that for any z ∈ G one has x+ 1

d−1 (x−z) ∈ G. Therefore, 1
d−1 (d x−z) ∈

K, and so d x ≥K z, which completes the proof.
Remark 1. It is possible to show (see [26, Theorem 2.7]) that for any polyhedral

cone in dimension d, as well as for the d2+d
2 -dimensional cone Kd of symmetric positive

semidefinite d×d matrices, the constant h is equal to 1
d . For any Lorentz (or spherical)

cone h = 1
2 .

3.1. The primal conic radius αp. We consider a set M with an invariant
cone K. For any point x >K 0 we first focus on the primal conic norm rx(·) on K.
The corresponding induced matrix norm appears to be particularly easy to evaluate:
indeed, y ≤K x implies that Ay ≤K Ax for any matrix A ≥K 0, and hence rx(Ay) ≤
rx(Ax). Thus the corresponding induced matrix norm is

‖A‖rx = sup
rx(y)≤1,y≥K0

rx(Ay) = rx(Ax).

As we have seen above (Proposition 3.2), any norm provides an upper bound on ρp,
and thus

αp(x) = sup
y∈K,rx(y)≤1

[
1

m

∑
A∈M

[
rx(Ay)

]p]1/p
(3.3)

=

[
1

m

∑
A∈M

[
rx(Ax)

]p]1/p
(3.4)

≥ ρp.(3.5)

Then, minimizing over x in order to get the best upper bound, one obtains

(3.6) αp = inf
x>K0

αp(x) ≥ ρp.

We call αp the primal conic radius of the set M. The ratio between αp and ρp
can be estimated in terms of the constant h defined above (Definition 3.3).

Theorem 3.5. For any set M with an invariant cone K we have hαp ≤ ρp ≤ αp.
Proof. We need to prove that hαp ≤ ρp. For some small ε > 0 consider an

ε-extremal norm ‖ · ‖ε for the set M (Theorem 1.1). Take a point x corresponding to
this norm, for which ‖x‖ε = 1 and (h− ε)rx(y) ≤ ‖y‖ε for all y ∈ K (Definition 3.3).
We have

ρp + ε ≥
[
1

m

∑
A∈M

‖Ax‖pε
]1/p

≥
[
1

m

∑
A∈M

(h− ε)p
(
rx(Ax)

)p]1/p ≥ (h− ε)αp.

Taking now ε→ 0, we complete the proof.
Invoking now Proposition 3.4, we obtain the following corollary.
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Corollary 3.6. For any set M ⊂ R
d⊗d with an invariant cone K we have

1

d
αp ≤ ρp ≤ αp.

We end this subsection by commenting on the computability of αp. As we have
seen, given a vector x, the optimization problem (3.3) is trivial (its solution is x), and
so it is very easy to obtain the corresponding upper bound αp(x) on ρp. However,
in order to compute αp (to have a guaranteed accuracy), one then has to solve the
optimization problem (3.6) on x. In general, αp(x) is not even quasi-convex, and so
the computation of the real value αp for general cones might be difficult. We will see
below particular cones for which the situation is much more appealing.

3.2. The dual conic radius βp. We now do a similar analysis for the dual
estimate βp. To an arbitrary v ∈ intK∗ we associate the dual conic norm (v, x) on K.
Let us introduce

βp(v) = sup
x>K0,(v,x)≤1

[
1

m

∑
A∈M

(
v,Ax

)p]1/p
(3.7)

= sup
x>K0

[
1

m

∑
A∈M

(v,Ax)p

(v, x)p

]1/p
(3.8)

and

βp = inf
v>K∗0

βp(v).

Again, by Proposition 3.2, βp(v) ≥ ρp for any v. And again, it appears that βp is
within the same approximation factor h as αp. To show this we start with more
auxiliary results.

We call a norm ‖ · ‖ consistent with a cone K if it is monotone in the cone, i.e.,
for any x, y ∈ K the relation x ≥K y implies ‖x‖ ≥ ‖y‖. Geometrically this means
that for any point x ∈ K from the unit ball the set (x −K) ∩K is contained in the
unit ball.

Proposition 3.7. For any set M with an invariant cone K and for any ε > 0
there exists a consistent ε-extremal norm.

Proof. For an arbitrary v ∈ intK∗ let

fλ(x) =

⎛
⎝ ∞∑

k=1

(
λm
)−k ∑

B∈Mk

(
v,Bx

)p⎞⎠
1/p

.

By Lemma 3.1 this series converges for any λ > ρpp. The function fλ(x) is convex in x,
because it is the lp-norm of the two-indexed sequence{

(λm)k
(
v,Bx

)}
, B ∈ Mk, k ∈ N

(see [6, Example 3.14]). This function is also positively homogeneous and monotone
on the cone K; moreover,

1

m

∑
A∈M

fp
λ(Ax) +

1

m

∑
A∈M

(
v,Ax

)p
= λ[fλ(x)]

p,
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and therefore (
1

m

∑
A∈M

fp
λ(Ax)

)1/p

≤ λ1/pfλ(x).

Taking now λ = (ρp + ε)p, we obtain an ε-extremal consistent norm fλ(·) defined on
the cone K. We then extend it in a standard way to the whole space R

d.
Proposition 3.8. For any cone K ⊂ R

d, for any consistent norm ‖ · ‖ in R
d,

and for any ε > 0, there is a vector v ∈ intK∗ such that (h − ε)‖y‖ ≤ (v, y) ≤ ‖y‖
for all y ∈ K.

Proof. By Definition 3.3, there are points x ∈ intK, v ∈ intK∗ such that ‖x‖ = 1
and (h− ε)rx(y) ≤ (v, y) ≤ ‖y‖ for all y ∈ K. If the norm is consistent, then rx(y) ≥
‖y‖, which concludes the proof.

Theorem 3.9. For any set M with an invariant cone K we have hβp ≤ ρp ≤ βp.
Proof. Fix ε > 0 and consider a consistent ε-extremal norm ‖ · ‖ε of the set M,

which exists by Proposition 3.7. Take the corresponding v ∈ intK∗ from Proposi-
tion 3.8. For any y ∈ intK we have ‖Ay‖ε ≥ (v,Ay) and (v, y) ≥ (h − ε)‖y‖ε.
Combining these two inequalities, we get ‖Ay‖ε

‖y‖ε
≥ (h − ε) (v,Ay)

(v,y) . It now follows that

for all y ∈ intK,

ρp + ε ≥
[
1

m

∑
A∈M

‖Ay‖pε
‖y‖pε

]1/p
≥
[
1

m

∑
A∈M

(h− ε)p
(v,Ay)p

(v, y)p

]1/p
.

The supremum of the right-hand side over all y >K 0 equals (h− ε)βp(v). Thus, for
any ε > 0

ρp + ε ≥ (h− ε)βp(v) ≥ (h− ε)βp,

from which the theorem follows.
Corollary 3.10. For any set M with an invariant cone K we have 1

dβp ≤
ρp ≤ βp.

In the next section we compare more precisely the quality of the estimates αp

and βp.
We end this subsection by commenting on the computational aspect for the value

βp. The function

βp(v) = sup
x>K0

[
1

m

∑
A∈M

(v,Ax)p

(v, x)p

]1/p

is quasi-convex. To see this, consider the level sets of the function f(v) = [ 1m
∑

A∈M
(v,Ax)p

(v,x)p ]1/p. The inequality f(v) ≤ c is equivalent to

[
1

m

∑
A∈M

(
v,Ax

)p]1/p ≤ c(v, x).

The left-hand side is convex in v, and the right-hand side is linear, so the set of
solutions v of this inequality is convex. Therefore, the function βp(v) is quasi-convex,
being a supremum of quasi-convex functions. Hence the value βp = infv>K0 βp(v)
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can be effectively computed, provided that we can compute βp(v) for any v. This
problem, however, may be hard for general cones. Indeed, in order to compute βp(v)
we need to find the maximum of a quasi-convex function (see (3.7)) on the cone K,
for which there are no efficient algorithms. Already for p = 4, K = Kd (i.e., K is the
cone of positive semidefinite d× d matrices), this problem amounts to maximizing a
homogeneous polynomial of degree 4 on a linear subset of Kd, which is known to be
NP-hard.

Nevertheless, for polyhedral cones this problem is effectively solvable. In this
case the cone K has a finite number of extreme directions; i.e., K is the conic hull
of several points {xj}Nj=1. Whence the supremum of a quasi-convex homogeneous
function is attained at one of these points:

(3.9) βp(v) = max
j=1,...,N

[
1

m

∑
A∈M

(v,Axj)
p

(v, xj)p

]1/p
.

Thus, this supremum over all x >K 0 can be replaced with the maximum over a finite
number of points xi that can be found by exhaustion for any fixed v. We show this
in detail for the case K = R

d
+ is section 4.

3.3. The transposed quantities α∗
p, β

∗
p and the algorithm. In this subsec-

tion we first establish relations between the primal and dual conic radii. For this we
introduce some more notation. Let A∗ denote the adjoint matrix of A, and let M∗

be the set of adjoint matrices of the matrices in M, and let h∗ = h(K∗). Clearly,
ρp(M) = ρp(M∗), and if the set M possesses an invariant cone K, then K∗ is an
invariant cone for M∗. Finally denote α∗

p = αp(M∗,K∗) and similarly with β∗
p . Ap-

plying Theorem 3.5 and taking into account that ρp(M) = ρp(M∗), we obtain the
following corollary.

Corollary 3.11. For any set M with an invariant cone K we have

h∗β∗
p ≤ ρp ≤ β∗

p , h∗α∗
p ≤ ρp ≤ α∗

p.

It appears that the upper bounds βp and β∗
p are always tighter than α∗

p and αp,
respectively.

Proposition 3.12. For any set M with an invariant cone K we have βp(v) ≤
α∗
p(v) for all v ∈ intK∗ and β∗

p(x) ≤ αp(x) for all x ∈ intK.
Proof. Let us establish the second inequality; the proof of the first is the same.

Since z ∈ K if and only if infv∈K∗(v, z) ≥ 0, we see that y ≤K λx for x, y ∈ K

if and only if (v, y) ≤ λ(v, x) for all v ∈ K∗. Therefore, rx(y) = supv>K∗0
(v,y)
(v,x) .

Consequently,

αp(x) =

[
1

m

∑
A∈M

(
rx(Ax)

)p]1/p
(3.10)

=

[
1

m

∑
A∈M

(
sup

v>K∗0

(v,Ax)

(v, x)

)p
]1/p

(3.11)

=

[
1

m

∑
A∈M

(
sup

v>K∗0

(A∗v, x)
(v, x)

)p
]1/p

(3.12)

≥ sup
v>K∗0

[
1

m

∑
A∈M

(A∗v, x)p

(v, x)p

]1/p
= β∗

p(x).(3.13)
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Corollary 3.13. For any set M with an invariant cone K we have

βp ≤ α∗
p, β∗

p ≤ αp.

Remark 2. For p = ∞ we have βp = α∗
p and β∗

p = αp. This is because in this case
inequality (3.13) above becomes an equality. Therefore, for p = ∞ the primal conic
radius is equal to the dual conic radius of the adjoint matrices.

Corollary 3.13 yields that the values βp, β
∗
p provide better upper bounds for ρp

than the values αp, α
∗
p, but the latter may provide better lower bounds. We obtain

the following theorem.
Theorem 3.14. For any set M with an invariant cone K we have

(3.14) ap ≤ ρp ≤ bp,

where

(3.15) bp = min
{
βp, β

∗
p

}
, ap = max

{
hαp, hβp, h

∗α∗
p, h

∗β∗
p

}
.

Observe that ap ≥ max{h, h∗}bp. Hence the ratio between the lower and upper
bounds is greater than or equal to max{h, h∗}, which is always at least 1

d .
Remark 3. In the case p = 1 the upper bound in (3.14) is always sharp. The

reader will have no difficulty in showing that β1 = β∗
1 = ρ1.

Theorem 3.14 allows us to compute the p-radius of matrices that possess an
invariant cone with any prescribed relative accuracy ε > 0. To do this we apply
inequality (3.14) to the set Mk that consists of allmk products of length k of matrices
from M. Taking into account that ρp(Mk) = [ρp(M)]k, we obtain the following
bounds for ρp(M):

(3.16)
[
ap(Mk)

]1/k
≤ ρp(M) ≤

[
bp(Mk)

]1/k
.

Since the families Mk and (M∗)k still have the same invariant cones K and K∗,
respectively, we can use the same constants h(K) and h(K∗) and obtain

(
max{h, h∗})1/k[bp(Mk)

]1/k
≤
[
ap(Mk)

]1/k
.

Thus, the ratio between the lower and upper bounds is greater than or equal to
(max{h, h∗})1/k, which is always at least d−1/k. Therefore, the estimate (3.16) of the
p-radius has a relative error bounded by

(3.17) 1− (max{h, h∗})1/k ≤ − 1

k
lnmax{h, h∗},

which is smaller than or equal to ln d
k . As we shall see in section 5, in practice this

estimate can even be much better.

4. Nonnegative matrices. In this section we focus on the case K = R
d
+ and

show that in this case both αp and βp can be found as solutions of convex minimization
problems. In this case h = h∗ = 1

d (Remark 1). Hence formula (3.15) for the bounds
ap and bp becomes

(4.1) bp = min
{
βp, β

∗
p

}
, ap =

1

d
max

{
αp, α

∗
p

}
.
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Let us start with the primal conic radius αp. We have rx(y) = maxi=1,...,d
yi

xi
, and

then

αp = inf
x>

Rd
+
0

[
1

m

∑
A∈M

(
rx(Ax)

)p]1/p

= inf
x>

Rd
+
0

[
1

m

∑
A∈M

(
max

i=1,...,d

(Ax)i
xi

)p]1/p
.

Each function (Ax)i
xi

is not convex in x, but it is quasi-convex. Therefore, so is the

function maxi=1,...,d
(Ax)i
xi

as a maximum of quasi-convex functions. However, αp(x)
as an Lp-average of quasi-convex functions is a priori not quasi-convex. This difficulty
can be overcome by the exponential change of variables xi = eui , i = 1, . . . , d. We
have

(4.2) αp = inf
u∈Rd

[
1

m

∑
A∈M

(
max

i=1,...,d
(ai, e

u)e−ui

)p]1/p
.

Note that all the functions (ai, e
u)e−ui =

∑d
j=1 aije

uj−ui are convex in u, and hence

their maximum maxi=1,...,d(ai, e
u)e−ui is also convex, and so is the function αp(x) as

an Lp-average of nonnegative convex functions. Thus, we have the following theorem.
Theorem 4.1. For any p ∈ [1,+∞] and for any set of nonnegative matrices M,

the value αp(R
d
+,M) is a solution of the following unconstrained convex minimization

problem:

(4.3) αp = inf
u∈Rd

⎡
⎣ 1

m

∑
A∈M

⎛
⎝ max

i=1,...,d

d∑
j=1

aije
uj−ui

⎞
⎠

p⎤
⎦
1/p

.

Now consider the dual conic radius βp. In the caseK = R
d
+, formula (3.9) becomes

βp(v) = max
j=1,...,d

[
1

m

∑
A∈M

(v, aj)p

vpj

]1/p
,

where aj denotes the jth column of the matrix A. Thus, the value βp is the solution
of a quasi-convex minimization problem:

(4.4) βp = inf
v>

Rd
+
0

max
j=1,...,d

[
1

m

∑
A∈M

(v, aj)p

vpj

]1/p
.

Again, we can apply the exponential change of variables vj = ezj , after which
(v,aj)p

vp
j

= (aj , ez)pe−pzj = (
∑d

i=1 aije
zi−zj )p. We thus obtain the following theorem.

Theorem 4.2. For any p ∈ [1,+∞] and for any set of nonnegative matrices M
the value βp(R

d
+,M) is a solution of the following unconstrained convex minimization

problem:

(4.5) βp = inf
z∈Rd

max
j=1,...,d

[
1

m

∑
A∈M

(
d∑

i=1

aije
zi−zj

)p]1/p
.
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We now make a last improvement on the estimation (4.1). It appears that in the
case K = R

d
+, the lower bound of Corollary 3.10 can be sharpened.

Theorem 4.3. For any set of nonnegative matrices one has

d
1
p−1βp ≤ ρp ≤ βp.

Thus, for any p we have

(4.6) max
{
d

1
p−1βp, d

1
p−1β∗

p , d
−1αp, d

−1α∗
p

} ≤ ρp ≤ min
{
βp, β

∗
p

}
.

For small values of p this gives a significant improvement. The ratio between the

upper and lower bounds does not exceed d1−
1
p . We briefly sketch the proof of the

above theorem. In the following we call a set M reducible if all of its matrices get a
block upper-triangular form after some permutation of coordinates.

Proof. The proof is based on the following successive arguments, which are of
independent interest:

• We can assume without loss of generality that our set M is irreducible.
Indeed it is known that if there is a permutation that puts all matrices in M
in the same upper-triangular form, then

ρp(M) = max
i=1,...,s

ρp(Mi),

where {Mi} is the ith set of diagonal blocks [22]. Moreover the permutation
can be found in polynomial time [17].

• If the set M is irreducible, then the infimum βp in (4.4) is attained at some
point v̄ >

R
d
+
0, and, moreover,

(
1

m

∑
A∈M

(v̄, aj)p

)1/p

= βpv̄j

for each j = 1, . . . , d.
It is not difficult to see that ifM is irreducible, βp(v) is finite only for v >

R
d
+
0,

and that if for some j

(4.7)

(
1

m

∑
A∈M

(v̄, aj)p

)1/p

< βpv̄j ,

then it is possible to decrease βp(v̄) by decreasing v̄j .

• The above point implies that d
1
p−1βp ≤ ρp.

We have the following inequalities:

ρp ≥ inf
y≥

Rd
+
0,(ṽ,y)=1

(
1

m

∑
A∈M

(ṽ, Ay)p

)1/p

(4.8)

=

(
1

m

∑
A∈M

(ṽ, Ax)p

)1/p

for some x ≥
R

d
+
0
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≥ d
1
p−1

d∑
j=1

(
1

m

∑
A∈M

(
ṽ, A(xjej)

)p)1/p

(4.9)

=
d∑

j=1

xj

(
1

m

∑
A∈M

(
ṽ, aj

)p)1/p

= d
1
p−1

d∑
j=1

βp(ṽ)xjvj = d
1
p−1βp(ṽ).

Inequality (4.8) is well known; it is proved in the same way as Proposition 3.2.

In order to obtain inequality (4.9), we write
(
ṽ, Ax

)
as
∑d

j=1

(
ṽ, A(xjej)

)
,

and use the well-known inequality
∥∥∑d

j=1 bj
∥∥
p
≥ d

1
p−1∑d

j=1

∥∥bj∥∥p, valid for

nonnegative vectors bj , with bj the vector in R
m with entries

m−1/p
(
ṽ, A(xjej)

)
, A ∈ M.

We now comment on the algorithmic complexity of our method. As we have seen
((3.17) and the equation below), it is possible to obtain an estimate with relative
accuracy ε by applying our methods to Mk, provided that k ≥ ln d

ε . The cost of such
an estimate is mainly to compute the set Mk and then to perform computations
on each of these matrices to compute the function αp(u) (these computations take
polynomial time). Then, since αp(u) is convex, only a polynomial (in 1/ε) number of
calls to this function are necessary to approximate its minimum with a relative error
of ε, say with a quasi-Newton method. Thus, the algorithm provides an accuracy of ε
in a computation time which is O(mlog d/εq(ε,m, d)) = O(dlogm/εq(ε,m, d)), where q
is a polynomial. This exponential behavior cannot be avoided because of Theorem 2.5
(unless P = NP ), and our results show that for nonnegative matrices, the p-radius
can be computed up to any required accuracy in an a priori computable amount of
time, which to the best of our knowledge was not known before.

5. Applications and examples. We apply our technique to problems of con-
vergence of subdivision schemes in the Lp-spaces, smoothness of refinable functions,
and smoothness of compactly supported wavelets. We end this section by reporting
computations on randomly generated nonnegative matrices.

5.1. Chaikin’s subdivision scheme. An important application of the p-radius
is that it expresses the rate of convergence of subdivision schemes and the exponent
of regularity of refinable functions in Lp (see [7] for details and many references). For
univariate functions the set of matrices consists of two block Toeplitz N ×N matrices
A1, A2 defined for a sequence c0, . . . , cN as follows:

(5.1) (A1)ij = c2i−j−1, (A2)ij = c2i−j , i, j ∈ {1, . . . , N}.

We focus on the simplest case of Chaikin’s subdivision scheme and the corre-
sponding refinable functions, De Rham curves. In this case N = 2 and c0 = ω, c1 =
1− 2ω, c2 = ω for a real parameter ω ∈ (0, 1/2). Thus, we have

A1 =

(
ω 0
ω 1− 2ω

)
, A2 =

(
1− 2ω ω

0 ω

)
.
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(c) (d)

Fig. 5.1. Evolution (with the length of the computed products) of the different bounds on ρp
for the Chaikin interpolation with ω = 1/3 ((a) and (b)) and ω = 1/5 ((c) and (d)). For p = 4, ((a)
and (c)), the exact value is available thanks to Proposition 2.1. For p = 3.5, ((b) and (d)) the exact
value is unknown.

The matrices A1, A2 are nonnegative, so we can find the values αp, βp effectively and
squeeze the p-radius between an upper and a lower bound. We show here the results
for w = 1/3 (where the set M is proportional to a set of binary matrices) and for
w = 1/5. We compute bounds on Mk for larger and larger k. The variable on the
x-axis is the length k of the products.

We choose p = 4 and p = 3.5. In the first case we are able to compute the exact
value of the p-radius thanks to Proposition 2.1, so that one can see in Figure 5.1 the
rate of convergence to the real value. We compare our results with the upper bound
obtained by applying (1.1) with the Euclidean norm. One can see not only that the
latter quantity provides only an upper bound on the p-radius, but, moreover, that it
converges far more slowly than the bound obtained with the best conic norm in the
case ω = 1/5. In the case ω = 1/3, both the best conic norm and the Euclidean norm
seem to converge very quickly to the exact value.

For p = 3.5, ω = 1/3 we obtain 0.49 ≤ ρp ≤ 0.512. Thus, the Hölder exponent of
the corresponding Chaikin–De Rham refinable function ϕ in the space Lp, which is
equal to 1 − log2 ρp [18], is between 1.96 and 2.02. In the case ω = 1/5 it is between
1.95 and 1.973.

5.2. Daubechies wavelets. The regularity of Daubechies wavelets in various
functional spaces has been thoroughly studied in the literature. Our results make it
possible to estimate their exponents of regularity in the spaces Lp for all p ∈ [1,+∞].
It is known [23] that the Lp-regularity of the nth Daubechies wavelet function ψn is
equal to n−log2 ρp(M), whereM = {A1, A2} and the matrices A1, A2 are constructed
by formulas (5.1) for N = n−1 with a special sequence c0, . . . , cn−1 (see [9] for details).
For n = 1 we obtain the Haar wavelets, for which everything is known, and for n = 2
all exponents of regularity are precisely computed for all p [23, sect. 12]. Therefore,
we focus on the case n ≥ 3. For every n the (n − 1)× (n − 1) matrices A1, A2 have
positive and negative entries, which forbids the use of Theorems 4.1 and 4.2 in order
to compute αp and βp exactly. However, one can apply Proposition 2.1 and compute
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Fig. 5.2. Evolution of the different bounds on ρp (p = 8) for the third (a) and fourth
(b) Daubechies wavelets.

instead the p
2 -radius of M⊗2, which leaves the cone K = {x⊗ x : x ∈ R

d} invariant.
One can then derive upper bounds on the p-radius by applying Theorems 3.5 and 3.9,
by picking at random an x ∈ R

d to build a norm rx̃, where x̃ = x ⊗ x. One can
then iterate to build several norms and take the lowest upper bound obtained. This
method appears to work well in practice.

We present in Figures 5.2(a) and 5.2(b) the result of approximation of ρ8 for
the third and fourth Daubechies wavelet functions ψ3, ψ4, respectively. One can see
in (a) that our method can also not behave so well in some examples, because we
do not have accuracy guarantees when matrices have negative entries. However, it
seems that the bigger the dimension is, the better the results are, and for the fourth
Daubechies wavelet our method already performs far better than the estimation with
the Euclidean norm. We see that for ψ3 we have ρ8 ≤ 3.61. Hence the derivative ψ′

3

belongs to L8(R), and its exponent of regularity in this space is 2 − log2 ρ8 ≥ 0.14.
For ψ′

4 we have ρ8 ≤ 5.114. Hence ψ′
4 also belongs to L8(R), and its exponent of

regularity in this space is 3− log2 ρ8 ≥ 0.64.

We then focus on the fifth Daubechies wavelet ψ5, obtained with the following
set of matrices (rounded up to the second decimal):

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
7.24 0 0 0
4.82 −8.90 7.24 0
0.15 −1.32 4.82 −8.90
0 0 0.15 −1.32

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
−8.90 7.24 0 0
−1.32 4.82 −8.90 7.24

0 0.15 −1.32 4.82
0 0 0 0.15

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

It is possible to show that for these matrices, ρ∞ = 8.174 . . . with existing techniques,
such as those introduced in [26]. Since 5−log2 ρ∞ = 1.9689 . . . , we see that ψ5 belongs
to C1(R) but not to C2(R), and the Hölder exponent of the derivative ψ′

5 is 0.9689 . . . ,
so ψ5 is “almost” in C2. On the other hand, ρ1 ≥ ρ((A1 + A2)/2) = 4.08 . . . , so for
any p ≥ 1 the p-radius satisfies 4.08 < ρp < 8.175. In Figure 5.3 we present results
of approximation of ρp(M5) for p = 4, 6, 6.5, and 8. For p = 4, 6 the exact value is
known from Proposition 2.1. Since ρ6 < 8, it follows that ψ′′

5 ∈ L6. For larger even p,
Proposition 2.1 is no longer applicable in practice because it involves computing the
spectral radius of a matrix of dimension at least 48 ≈ 100000.

For p = 6.5, 8 the upper bound seems to converge to some value around 8, but we
were not able to prove that the exact value is smaller than 8. In a separate computation
with products of length 13, we obtained that for p = 8, the p-radius is smaller than
8.055. Thus, the exponent of regularity of ψ′

5 in L8 is at least 0.99 . . . . It remains an
open question whether ψ′′

5 belongs to L8 and what is the largest p for which ψ′′
5 ∈ Lp,

but we conjecture this value to be 8.
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Fig. 5.3. Evolution of the different bounds on ρp for the fifth Daubechies wavelet.

5.3. The generalized four-point scheme. The generalized four-point scheme
is one of the best studied interpolatory subdivision algorithms for approximation
and curve design. Introduced in 1990 in [11], it has been analyzed and modified in
many papers (see [13] and the references therein). The scheme depends on the so-
called tension parameter ω ∈ R. For each value of ω it generates a limit curve, i.e.,
a continuous refinable function ϕω(x). One of the main questions in this context is
the smoothness of this function for various ω. It is known that the Hölder exponent
of the derivative ϕ′

ω in the space Lp is equal to − log2 ρp(A0, A1), where A0, A1 are
two special 4× 4 matrices with coefficients depending on ω. In 2009 it was shown [13]
that ϕω ∈ C1(R) precisely when 0 < ω < ω∗, where ω∗ = 0.19273 . . . is the unique
real solution of the cubic equation 32t3 + 4t− 1 = 0. Thus, ϕω /∈ C1(R) for ω ≥ ω∗.
We computed upper bounds on ρp(A0, A1) for various values of ω. Our calculations
show that, for instance, for ω = 0.227 the 3-radius of A0, A1 is smaller than 0.9978.
Hence, for ω = 0.227 the function ϕω is differentiable, its derivative is in L3(R), and
the Hölder exponent of ϕ′

ω in that space is bigger than − log2 0.9978 > 0.003. For
ω = 0.22, the 5-radius of A0, A1 is smaller than 0.9987. Therefore, for this omega we
have ϕ′

ω ∈ L5(R), and the Hölder exponent in L5 is bigger than− log2 0.9987 > 0.0018.
Let us observe that for this particular example, as well as for the butterfly scheme
below, the Euclidean norm also provides good bounds. However, for a fixed length of
the constructed products, we were always able to find a particular conic norm that
outperforms the Euclidean norm. For instance, for ω = 0.22, the Euclidean norm is
not able to prove that ρ3 < 1, as the bound obtained with this norm is 1.0021. This
is not surprising, as we have shown that there are always very good norms among the
conic norms (Theorem 3.5).

5.4. The butterfly scheme. The butterfly scheme, originated in [11], is an
interpolatory two-variate subdivision scheme. It is a natural generalization of the
univariate four-point subdivision algorithm. The scheme also depends on the ten-
sion parameter ω. It is known that only for ω = 1

16 the scheme reproduces all the
polynomials of degree three, while for all other ω it reproduces only linear functions.
Therefore, for ω = 1

16 the butterfly scheme has the best approximation properties.
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For this value of ω the Hölder smoothness of the limiting surface ϕ(x1, x2) is equal
to − log2 ρ∞(M), where ρ∞(M) is the joint spectral radius of the family M of four
special 17×17 matrices A1, . . . , A4 (we follow here the construction of [11]). The usual
spectral radius of three of those matrices is equal to 1

4 , therefore ρ∞(M) ≥ 1
4 . Hence,

ϕ /∈ C2(R2). On the other hand, there is a conjecture that actually ρ∞ = 1
4 , and so

ϕ ∈ C2−ε(R2) for any ε > 0. For this reason we focus here on finite p. Using our
algorithm we estimate the 3-radius of M. It appears that ρ3 ≤ 0.2415, and therefore
the Hölder exponent of ϕ in the space L3(R

2) is at least − log2 0.2415 = 2.0499 . . . .

5.5. p-radius of random matrices. To end this section we report computa-
tions on random matrices with nonnegative entries. In this situation too, our methods
perform well in comparison with other classical norms. However, we observe that the
Euclidean norm also performs very well for random matrices, at least if they are not
too sparse. The sparser the matrices become, the more the bound derived from the
Euclidean norm gives a bad estimate for the p-radius, while the quantities αp, βp do
not seem sensitive to sparsity.

As an example, we took p = 3.5, and we ran computations on pairs of sparse
random 7× 7 matrices with entries between 0 and 10 and probability 9/10 to be zero.
For products of length 10, the upper bound for ρ3.5 obtained with the Euclidean norm
gave 7.76, while the bound with our method gave 7.46, which we think is roughly the
exact value. As a matter of comparison, the ∞-norm (maximum row sum) gives an
upper bound of 7.97. Of course only our method allowed us to derive a lower bound,
which was equal to 6.49. As always, the upper bound seems to have converged to the
exact value much faster than expected theoretically. As we have observed on all the
examples, the ∞-norm gives much worse results than the two other above-mentioned
bounds.

6. Conclusion. In this paper we have proposed new methods for approximating
the p-radius of a set of matrices. Their interest is both theoretical and practical.
Indeed, to the best of our knowledge, our methods are the first that allow one to
obtain an arbitrary accurate estimate for the p-radius in the case where p is not an
integer and when the matrices have nonnegative entries. The previous methods, based
on the definition (1.1), only allowed us to derive closer and closer upper bounds on
the desired value, without knowing the quality of the approximation. Also, in the
case where the matrices have negative entries we provide a way to obtain good upper
bounds on the p-radius. However, in this latter case we leave open the question of
knowing whether there is an algorithm which, given a set of matrices and a prescribed
accuracy ε, returns an estimate of the p-radius which is within an accuracy ε of the
exact value.

Our methods also make it particularly easy in practice to obtain a good upper
bound: thanks to the several parameters in the approximation algorithms (one can
raise the set to a certain Kronecker power M⊗k, one can take the set of products of
length k Mk, one can try several norms rx(·) in the case where the matrices have
negative entries), it is possible to tune the methods to rapidly obtain good results by
trial and error. In the last section we have shown the efficiency of our technique by
computing the exponents of regularity in Lp spaces for some well-studied refinable
functions, subdivision schemes, and the Daubechies wavelets.
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