
Cyber-Physical systems control
 Course 3: TCS techniques

Raphaël Jungers (UCL, Belgium)

L’Aquila

April 2016

Computer
Science

Electrical
engineering

Mathematics

xt+1=

A0 xt

A1 xt
Cyber-
Physical
Systems

Further readings and sources

Theoretical Computer Science
For Cyber-Physical Systems

1. Language theory

2. Algorithmic complexity

3. Hybrid automata

What is an automaton or machine?

wow

asleep barking

1. Set of states:

wow, asleep, barking

2. Set of actions:
gets petted, sees squirrel

3. Rules of changing the
states after the actions

squirrel

squirrel

petted

petted

petted

squirrel

Applications I :
Search for a word in a document

Knuth–Morris–Pratt algorithm

States = the number of already

matched symbols

Matching “ABABAA” in a text stream

Actions = letters of the document

Matching ABABAA : ABABAB

Applications II :
Fast pattern matching

Bioinformatics: motif search

Micron Automata Processor

Network Security: deep packet inspection,

i.e. The Great Chinese Firewall or virus detection

Finance: high-frequency trading

Field-programmable automata on chip

Applications III : Typo
correction and voice recognition

Weighted automaton

Correct: I have seen a squirrel.

Wrong: I have see a squirrel.
H

S SN

see/0.0000001

have/0.01

seen/0.005

Keyword: Language models

Applications IV : Compilers design

Pushdown automaton

Grammar:
E → E+E | E∗E | (E) | 0 |

 1 | 2 | ...

Parse tree for the expression 4∗(3+17)

The Unified Modeling Language (UML)
state machine

Applications V : Naive modelling

A state diagram in the Unreal engine

Applications VI : Verification

Linear temporal formula to check:
Microwave oven state chart:

G (Heat ∧ ~Open)

In any moment of time, we are
heating a closed oven.

Theoretical Computer Science
For Cyber-Physical Systems

1. Language theory

2. Algorithmic complexity

3. Hybrid automata

Language theory

A language is complex
Need for a complex machine
to recognize him

A machine is performant
It can recognize complex
languages

Goal: understand the power of
computers, thanks to a theory of
languages

… or, is it understand properties
of language thanks to a ‘science
of computation’?

A Language is a set of words

Chomsky’s hierarchy

Grammar Languages Automaton

Type-0
Recursively
enumerable

Turing machine

Type-1 Context-sensitive
Linear-bounded
non-deterministic
Turing machine

Type-2 Context-free
Non-
deterministic push
down automaton

Type-3 Regular
Finite state
automaton

https://en.wikipedia.org/wiki/Recursively_enumerable_language
https://en.wikipedia.org/wiki/Recursively_enumerable_language
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Context-sensitive_grammar
https://en.wikipedia.org/wiki/Context-sensitive_grammar
https://en.wikipedia.org/wiki/Context-sensitive_grammar
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Finite_state_automaton

Chomsky, Turing,
and Schutzenberger

Language theory

 .

Language theory
 .

The Turing Machine

• A tape divided in cells
• A head that can read and write symbols
• A state register (storing the state of the machine)
• A look-up table, which from any couple (state, symbol), returns

• A new state
• A move
• A new character on the tape

Turing machines

 .

Example

Tape
symb

ol

Current state A Current state B Current state C

Write
symb
ol

Move
tape

Next
state

Write
symb
ol

Move
tape

Next
state

Write
symb
ol

Move
tape

Next
state

0 1 R B 1 L A 1 L B

1 1 L C 1 R B 1 R HALT

The Busy beaver:

Turing machines
 .

Definition: A language is recursively
enumerable if there exists a Turing machine
that accepts it (and not other words, of
course!)

Remarks

An extremely tedious model! (why?)

Example:

Many different variants: several tapes,

Are all languages recursively enumerable?

 For us, a Turing Machine is a computer!

Church-Turing’s Thesis: Turing machines
are as powerful as any computer (in terms
of the languages recognized, of course)

Language theory
 .

Automata

• A directed graph with rules to
jump from one node to another one at
each character read

• A word is accepted if it ends at an accepting node

 Again, a pretty tedious model, but…

Language theory
 .

Theorem: all these languages
Are strictly contained in each

other

Other models:
• Nondeterministic automata, …

• Pushdown automata
• Linearly bounded turing

machines

Theoretical Computer Science
For Cyber-Physical Systems

1. Language theory

2. Algorithmic complexity

3. Hybrid automata

Algorithmic complexity
 .

Is my problem hard?

Example: the shortest path
problem

Algorithmic complexity
 .

It’s all about languages!
(if we agree to talk about decision

problems)

Example: the shortest path
problem



() 1  

()> 1  Yes!

No!

NP-Hardness
 .

Decision problems

hi

Word

We want to make our decisions “efficiently”

 Paradigm: efficiently = in polynomial time



() 1  

()> 1  Yes!

No!

NP-Hardness
 .

Our dream: Theorem: there is no polynomial time
algorithm for your problem

Decision problems

hi

Word

We want to make our decisions “efficiently”

 Paradigm: efficiently = in polynomial time

Cook’s Theorem
 .

P: Set of languages for which there exists a
polynomial time Turing-Machine that recognises
them

NP: decision problems for which the instances
where the answer is "yes" have a certificate which
allows to verify in polynomial time by another
deterministic Turing machine

Lemma: P is in NP

Examples: the shortest path, the hamiltonian cycle,
the sat problem, … PRIMES

Cook’s Theorem
 .

P: Set of languages for which there exists a
polynomial time Turing-Machine that recognises
them

NP: decision problems for which the instances
where the answer is "yes" have a certificate which
allows to verify in polynomial time by a deterministic
Turing machine

Lemma: P is in NP

Examples: the shortest path, the hamiltonian cycle,
the sat problem, … PRIMES?

NP-Hardness
 .

Cook’s Theorem (1971): The boolean Satisfiability
problem is NP-Complete

The boolean Satisfiability problem is
hard: solving it efficiently allows to
solve any NP-Problem efficiently!

… but can we?
Any NP-Problem to which we can
reduce SAT is equally hard

Example: max-clique

Proof idea: one can encode the existence of a certificate
with a (large, but polynomial sat problem)

Karp’s 21 problems (1972)
 .

0–1 integer programming (A variation
in which only the restrictions must be
satisfied, with no optimization)
Clique (see also independent set problem)

Set packing
Vertex cover

Set covering
Feedback node set
Feedback arc set
Directed Hamilton
circuit (Karp's name, now usually
called Directed Hamiltonian
cycle)

Satisfiability with at most 3 literals
per clause (equivalent to 3-SAT)

Chromatic number (also called
the Graph Coloring Problem)

Clique cover
Exact cover

Hitting set
Steiner tree
3-dimensional matching
Knapsack (Karp's definition
of Knapsack is closer
to Subset sum)

Job sequencing
Partition

Max cut

https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Clique_problem
https://en.wikipedia.org/wiki/Independent_set_problem
https://en.wikipedia.org/wiki/Set_packing
https://en.wikipedia.org/wiki/Vertex_cover_problem
https://en.wikipedia.org/wiki/Set_cover_problem
https://en.wikipedia.org/wiki/Feedback_vertex_set
https://en.wikipedia.org/wiki/Feedback_arc_set
https://en.wikipedia.org/wiki/Hamiltonian_path_problem
https://en.wikipedia.org/wiki/Hamiltonian_path_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#3-satisfiability
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#3-satisfiability
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Clique_cover
https://en.wikipedia.org/wiki/Exact_cover
https://en.wikipedia.org/wiki/Hitting_set
https://en.wikipedia.org/wiki/Steiner_tree
https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Subset_sum
https://en.wikipedia.org/wiki/Job_shop_scheduling
https://en.wikipedia.org/wiki/Partition_problem
https://en.wikipedia.org/wiki/Maximum_cut

Turing undecidability
 .

Question: Are all languages recognizable by a Turing
machine?

That would be nice: write it for the turing machine which
stops for numbers that satisfy Syracuse’s conjecture

The halting problem: given a description of a turing machine (say,
a java code), decide whether it always stops (say, for any possible
finite input)

Theorem (Turing, 1936): There is no Turing
machine that can decide the halting problem

Mmmh, maybe we’re asking too
much, but then…

Turing undecidability
 .

Theorem: There is no turing machine that can decide
the halting problem

Theorem (Turing, 1936): There is no Turing
machine that can decide the halting problem

There are undecidable languages!

Algorithmic complexity
 .

Algorithmic complexity
 .

The shortest path problem

Post’s correspondence problem

The equivalence of automata

Max-cut

Stability of a switching system

Hilbert’s 10th

PRIMES

Theoretical Computer Science
For Cyber-Physical Systems

1. Language theory

2. Algorithmic complexity

3. Hybrid automata

 .

Hybrid automata

 .

Hybrid automata:
One model to rule them all

 .

Hybrid automata:
One model to rule them all

 .

Hybrid automata

 .

Hybrid automata:
One model to rule them all

Usefulness: powerful (very general) model
 Compositional approach
Weakness: very hard to analyse

Goal: -Simulation
 -Verification
 -Control?

Example: a nuclear reactor

Now, how to model a
controller?

 .

Hybrid automata:
One model to rule them all

 .

Zeno behavior
And a glimpse at bisimulation

Stability

Stability

Stability

Example: piecewise affine systems

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

The S-procedure: a simple but efficient trick!

 .

Designing hybrid systems

Fig 9.12 9.13 9.14

Computer
Science

Electrical
engineering

Mathematics

xt+1=

A0 xt

A1 xt
Cyber-
Physical
Systems

Conclusion

