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Examples and typical
properties

e | east square optimization

e The Chebyshev approximation
problem

e Ellipsoidal classification . /\ -



What do I want
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Function

Linear?

Quadratic?

Convex?

Nonlinear?




I. Unconstrained
optimization



Let’s start simple

Typical assumptions

« Convex
 Twice differentiable
 Bounds on the hessian



Let’s start simple




The descent methods

given a starting point r € dom f.
repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. © := = + tAwx.
until stopping criterion is satisfied.
1. Determine luc

descent direction

_ 2. Line search
« Gradient method

« Newton’s method

« Quasi-Newton methods

/ e

\‘\\‘f(-.r:) +tV f(x)T Az f(z)+ atVf(z)T Az

«  Subgradient methods t=0 | o

t



The gradient method




Newton’s method

given a starting point z € dom f, tolerance € > 0.

repeat
1. Compute the Newton step and decrement.
Azw = —V2f(2) 'V i(z); A = Vi)V (@) 'V @),
2. Stopping criterion. quit if A2/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. z := o + tAxy.



Trust region methods




II. Constrained
optimization

Duality






A key tool: Lagrangian
relaxation

Steps

« Convex sets, cones, duality

« Convex problems

« The separating hyperplanes theorem
« The dual optimization problem



II. Constrained
optimization

Linear programming



Convex optimization

Linear
programming

minimize ¢

subject to  A;z <b;
Az =0,

[pic from Boyd, Vandenberghe, 2004]

In practice: a hundred thousand variables and constraints can be
handled



Convex optimization

Linear
programming

minimize ¢

subject to  A;z <b;

Az =0,

Example: computing minimal ¢
representation of polytopic o N
Crucial in reachability

sets of the form :
) . algorithms, Model
S={eeR":Ha <l c e<l} Predictive Control,...!




II. Constrained
optimization

Semidefinite
programming



Semidefinite programming

Definition: The set of real, symmetric, n-
by-n matrices is denoted gn

Definition: A symmetric matrix is positive

semidefinite if 7T Ap >0 for all z € R™

Theorem: the following properties are

equivalent
(nonstrict) (strict)
The matriz A € 8" is positive semidefinite (A = 0). The matriz A € 8" is positive definite (A~ 0).
For allz € B™. 27 Az > 0. For all nonzero r € B®, v Az > 0.

: : All eigenvalues of A are strictly positive.
All eigenvalues of A are nonnegative. 9 f yp

o _ _ All n leading principal minors of A are positive.
All 2" — 1 principal minors of A are nonnegative.
- There erists a factorization A = BT B, with B
There exists a factorization A = B B. square and nonsingular.



Semidefinite programming

Figure 2.12 Boundary of positive semidefinite cone in SZ.






Semidefinite programming

Semidefinite
programming

PSD cone

minimize ¢

n
subject to ZLU%'F@' >0

1=1

Ar=b

where F; are positive definite matrices

0

[pic from Parrilo presentation, 2006]

The feasible set is the intersection of the cone of positive
semidefinite matrices with an affine space

In practice: a few tens of thousands variables and constraints can
be handled



Semidefinite programming

Semidefinite Example: Common quadratic Lyapunov
programming functions for switching systems
o - Tpr] = Ag(t):zzt 0() N {1123 JN}
mimimize ¢ T V(m) _ ITPI ./4 _ {Al,AQ, ..,AN}

n
subject to inFz- >0

1=1

Ar=b

where F; are positive definite matrices

MINIMize e, 7

subject to ATPA<r*P, YAe A
P>

AKA Linear Matrix
Inequalities




II. Constrained
optimization

Sum-0Of-Squares



The Lyapunov theorem (direct method)

Theorem (Lyapunov). Let xz. = 0 be an equilibrium point for the system & = f(x(t))
V' :R"™ — R be a positive definite continuously differentiable function.

IfV:R* > Ris negative semi-definite, then z, is stable.

If V is negative definite, then z, is asymptotically stable.

Bad news: we need to guess the function V... X

Good news: we have converse results (we know the function V) for ¢
certain classes of systems



Sum-0Of-Squares

—x+{1+x}y
(1 +x)x

"
¥

log(B x -2 x y+B y -2 yo+3 148 37 y+3 v}




Sum-0Of-Squares

Theorem (Parrilo 2000, Lasserre 2000): Sum-0Of-Squares
are SDP-representable!

Sum-of-squares

programming
A polynomial f(z) is a sum of squares if and only if we can find a matrix @) such’thht

Q=0
fle)=2"TQz

z 18 a vector of monomials of degree less or equal

A sublevel set of a sos
polynomial:

L1 = Aa(t)mt
Example : Common sos Lyapunov functions for switching o():N= {1,2,.,N)

systems
A= {Ala AQ: "aAN}



Sum-0f-Squares

Theorem (Parrilo 2000, Lasserre 2000): Sum-Of-Squares
are SDP-representable!

Sum-of-squares

programming
A polynomial f(z) is a sum of squares if and only if we can find a matrix () such that

Q=0
fle)=2"TQz

z 18 a vector of monomials of degree less or equal to d

N2 4 6 8

1 |yes yes yes yes
2 |yes yes no no
3 |yes no no no
4 |yes no no no

Question: Finally, are all nonnegative polynomials Sum-Of-
Squares?




How does it work?

Theorem: e
Interior point algorithm find the optimal value of =
Semidefinite Programs in polynomial time ‘ P4

Interior point
methods (Karmarkar,

1984) K,

Idea:

eNewton’s method

eBut apply Lagrangian relaxation
to get rid of the constraints
eProvably works in overall
polynomial time

Today, only efficient for LP, SOCP, SDP!



II. Constrained
optimization

Non-convex problems



Non-linear differentiable

min flax)
S.t.

gi(r) = 0
hi(z) = 0O

Theorem (Karush-Kuhn-Tucker): Supposing that the
fﬁnctions are continuously differentiable at the optimum X,
then

Vi) = > NVgi(x)+> ~v;Vh;(x)
gi(x) = 0
hi(x) > 0
vihi(x) = 0

Only necessary conditions!



Non-linear

Nelder-mead: Another simplex!




Algebraic varieties and semi-
algebraic sets

Grobner bases: an algebraic representation of the
solution set of p(x,y,z)=0

O\ 4
3




Quantified expressions

Theorem (Tarski-Seidenberg): For every first-
order formula over the real field there exists an
equivalent quantifier-free formula. Furthermore, there
IS an explicit algorithm to compute this quanitfier-free
formula

Extremely powerful! ... and totally
useless at the same time! ®

The S-procedure: a simple but efficient trick!

vz : p(Ar) < p(x) + gi(x)

{

p(Ax) < p(z) Vr:gi(z)<0



Integer programming

Example: Maximum flow in a graph

NP-hard problem! We'll see that tomorrow...




Take-home messages

Convexity is the key! (or, at least, a key)

Even better if one has a linear/sdp representation (is it?)

We often assume C2

A common trick: Lagrangian relaxation (Lagrange multipliers,
KKT-conditions), only necessary conditions except if the

problem is convex =» duality theory

Often, one has to look inside the problem, to find the right
structure to make it tractable...



