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• Wireless control networks and classical approaches 

 

 

• Packet dropouts as switching systems 

 

 

• Switching delays and switching systems 

 

 

• Conclusion and perspectives 



Sufficient conditions 



Goals: bounds on the MATI (Maximal Allowable 
Transmission Intervals) 
 Bounds on the MAD (Maximal Allowable Delay) 
 
For  Stability 
 Semi-global stability 
 Lp gains 

Sufficient conditions 



Sufficient conditions 



Markov Jump Linear Systems 



Markov Jump Linear Systems 



Markov Jump Linear Systems 



MJLS: the stability problem 



MJLS: the stability problem 



MJLS: the stability problem 



MJLS: the stability problem 

If     Is stable, then      is stable 

 

Definition: If     is stable, we say that the system is mean 
square stable  

 



MJLS: the stability problem 

If     Is stable, then      is stable 

 

Definition: If     is stable, we say that the system is mean 
square stable  

 

In this case: the expectancy is indeed bounded! 



MJLS: the stability problem 

Example: 

 Stable (rho = 17/18) 

 Unstable (rho = 1.61) 



MJLS: the stability problem 

Example: 

 Unstable (rho=2.125), while the 

matrices are stable!  (nothing 
surprising, in fact) 
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MJLS: the stability problem 

Example: 

 Stable (rho=0.4), while the 

matrices are unstable!  (still nothing 
surprising, in fact) 



MJLS: the stabilizability problem 

Perhaps not surprising 
(why?), but pretty cool yet! 



MJLS: the stabilizability problem 

Of course, similar results exist for the detectability problem 

 

Remark that the switching signal is assumed to be known.  In the 
opposite case, we can still have sufficient conditions for mean square 
stability 

 

Do not forget that mean square stability is not equivalent with almost 
sure stability! 
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Controllability with packet dropouts 
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A data loss signal determines the packet dropouts 
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Controllability with packet dropouts 

The delay is constant, but some packets are dropped 

A data loss signal determines the packet dropouts 
 
…this is a switching system! 

u(4) u(4) 

1 or 0 



The switching signal 

We are interested in the controllability of such a system 

Of course we need an assumption on the switching signal 
 
The switching signal is constrained by an automaton 
          Example: 
Bounded number of 
  consecutive dropouts (here, 3) 

The controllability problem: For any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 



The dual observability problem 

Observability under intermittent outputs is  algebraically 
equivalent  (and perhaps more meaningful) 

V(t) u(t) 

P Y(k) Network 
O 



Controllability with Packet Dropouts 
 

We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

 Theorem: Deciding controllability of switching systems is  
 undecidable in general (consequence of [Blondel Tsitsiklis, 97]) 



We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

Controllability with Packet Dropouts 

Proposition: The system is controllable iff the generalized controllability matrix  
 
 
 
is bound to become full rank at some time t   



We are given a pair (A,b) and an automaton 

The controllability problem: for any starting point x(0), and any target x*, 
does there exist, for any switching signal, a control signal u(.) and a time T  
such that    x(T)=x* ? 

 
 
 
  

 Theorem [Baabali Egerstedt 2005]: There exists some l such that : lf for all l<L, 
the pairs (A ,Bi) are controllable, then the system is controllable 

Baabali & Egerstedt’s framework (2005) 

l 

X(t+1)=Ax + Bi u(t) 
Here, the switching is on the 
input matrix Bi  

• Only a sufficient condition 
• The set of pairs to check can be huge (more than exponential) 

Controllability with Packet Dropouts 
 



A decision algorithm 

From this, we obtain an algorithm to decide controllability: 

Semi-algorithm 1: For every cycle of the automaton, check if it leads to an 
infinite uncontrollable signal 
Semi-algorithm 2: For every finite path, check whether it leads to a 
controllable signal ( i.e. a full rank controllability matrix). 
 
 
 
  

 Theorem: Given a matrix A and two vectors b,c, the set of paths such that 

 
 
is never full rank is either empty, or contains a cycle in the automaton. 
  

Thus, we have a purely algebraic problem: is it possible to find a path in the 
automaton such that the controllability matrix is never full rank? 



Proof 

Theorem ([Skolem 34]): Given a matrix A and two vectors b,c, the set of values 
n such that 
 
is eventually periodic. 
 
 
 
  

One can rewrite the controllability conditions in terms of a linear iteration 
 
 
 Theorem: Given a matrix A and two vectors b,c, the set of paths such that 

 
 
is never full rank is either empty, or contains a cycle in the automaton. 
 
 
 
  

Now, how to optimally chose the control signal, if one does not know the 
switching signal in advance?  
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WCNs are time-varying delay 
systems: 



 
LTIs with switched delays 

stability analysis 
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stability analysis 
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• Corollary   

 For both models there is a PTAS for the stability question: 

 for any required accuracy, there is a polynomial-time algorithm for checking 
stability up to this accuracy 

Previous sufficient conditions for stability in [Hetel Daafouz Iung 07, Zhang Shi Basin 08] 

 

 

• However: 

 Theorem the very stability problem is NP-hard 

 Theorem the boundedness problem is even Turing-undecidable! 

 

 

 

 

[J. D’Innocenzo Di Benedetto 12] 



Design of LTIs with switched delays 
The infinite look-ahead case 

 
 

 

 

• So, does a controllable system always remain controllable with delays? 

 

• No! when n>1, nastier things can happen… 

     Example: 

 

 

 

 

     

 

 The system is not stabilizable, even with infinite lookahead 

 

• Theorem for n=m=1, there is an explicit formula for a linear controller that 
achieves deadbeat stabilization 

• (based on a generalization of the Ackermann formula for delayed LTI) 



Design of LTIs with switched delays 
The infinite look-ahead case 

 
 

 

• A sufficient condition for uncontrollability (informal): if A,B can be put in 
the following form (under similarity transformation): 

 

 

 

 

        

 

 

Is it also necessary? 

Would be nice, because we can prove … 

 

• Theorem There is a polynomial time algorithm that decides whether such 
an adversary strategy is possible 

 

 

An adversary 
strategy can make 
this system 
uncontrollable: 

0 
0 0 

0 0 
0 0 

0 



Design of LTIs with switched delays 
The infinite look-ahead case 

 
 

• Answer: No!  There are more intricate examples 

 



 

 

• Theorem: Controllability is decidable (in exponential time) 

 

     Proof Split the problem into a nilpotent matrix and a regular matrix 

 

 

Design of LTIs with switched delays 
The infinite look-ahead case 

 

• Lemma: The nilpotent case is completely combinatorial 
 

• Lemma: The regular case can be decided thanks to a finite dimension argument 
 
  Algo: try every delay sequence of length smaller than some  
  bound  L and look for a ‘loop’ 
L= 

 
• Corollary: controllability with infinite look-ahead = controllability with 

arbitrarily large but finite look-ahead = stabilizability! 



 

 

 

 

 

The controller design problem: a 2D system with two possible delays 

 

 

 

LTIs with switched delays 
online control 

In the delay independent case, a linear controller is not always sufficient 

• Theorem: For the above system, there exist values of the parameters 
such that no linear controller can stabilize the system, but a nonlinear 
bang-bang controller does the job. [J. D’Innocenzo Di Benedetto 2014] 


