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Further readings and sources 



Theoretical Computer Science 
For Cyber-Physical Systems 

1. Language theory 
 

2. Algorithmic complexity 
 
3. Hybrid automata 



What is an automaton or machine? 

wow 

asleep barking  

1. Set of states: 

wow, asleep, barking 

2. Set of actions: 
gets petted, sees squirrel 

3. Rules of changing the  
states after the actions 

squirrel 

squirrel 

petted 

petted 

petted 

squirrel 



Applications I :  
Search for a word in a document 

Knuth–Morris–Pratt algorithm 

States = the number of already 

matched symbols 

Matching “ABABAA” in a text stream 

Actions = letters of the document 

Matching ABABAA : ABABAB 



Applications II :  
Fast pattern matching 

Bioinformatics: motif search 

Micron Automata Processor 

Network Security: deep packet inspection,  

i.e. The Great Chinese Firewall or virus detection 

Finance: high-frequency trading  

Field-programmable automata on chip 



Applications III : Typo  
correction and voice recognition 

Weighted automaton 

Correct: I have seen a squirrel. 

Wrong: I have see a squirrel. 
H 

S SN 

see/0.0000001 

have/0.01 

seen/0.005 

Keyword: Language models 



Applications IV : Compilers design 

Pushdown automaton 

Grammar: 
E  →  E+E | E∗E | (E) | 0 |

 1 | 2 | ... 

Parse tree for the expression 4∗(3+17) 



The Unified Modeling Language (UML)  
state machine 

Applications V : Naive modelling 

A state diagram in the Unreal engine 



Applications VI : Verification 

Linear temporal formula to check: 
Microwave oven state chart: 

G (Heat ∧ ~Open)  

In any moment of time, we are  
heating a closed oven. 
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Language theory 

A language is complex 
Need for a complex machine 
to recognize him 

A machine is performant 
It can recognize complex 
languages 

Goal: understand the power of 
computers, thanks to a theory of 
languages 
 
… or, is it understand properties 
of language thanks to a ‘science 
of computation’? 

 
 

A Language is a set of words 



Chomsky’s hierarchy 

Grammar Languages Automaton 

Type-0 
Recursively 
enumerable 

Turing machine 

Type-1 Context-sensitive 
Linear-bounded 
non-deterministic 
Turing machine 

Type-2 Context-free 
Non-
deterministic push
down automaton 

Type-3 Regular 
Finite state 
automaton 

 
 

https://en.wikipedia.org/wiki/Recursively_enumerable_language
https://en.wikipedia.org/wiki/Recursively_enumerable_language
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Context-sensitive_grammar
https://en.wikipedia.org/wiki/Context-sensitive_grammar
https://en.wikipedia.org/wiki/Context-sensitive_grammar
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Linear_bounded_automaton
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Finite_state_automaton
https://en.wikipedia.org/wiki/Finite_state_automaton


Chomsky, Turing,  
and Schutzenberger 



Language theory 

 
 

  .  



Language theory 
  .  

The Turing Machine 

• A tape divided in cells  
• A head that can read and write symbols 
• A state register (storing the state of the machine) 
• A look-up table, which from any couple (state, symbol), returns 

• A new state 
• A move 
• A new character on the tape 

 
 



Turing machines 

  .  

Example 

Tape 
symb

ol 

Current state A Current state B Current state C 

Write 
symb
ol 

Move 
tape 

Next 
state 

Write 
symb
ol 

Move 
tape 

Next 
state 

Write 
symb
ol 

Move 
tape 

Next 
state 

0 1 R B 1 L A 1 L B 

1 1 L C 1 R B 1 R HALT 

The Busy beaver: 

 
 
 
 
 
 

 
 



Turing machines 
  .  

 
Definition: A language is recursively 
enumerable if there exists a Turing machine 
that accepts it (and not other words, of 
course!) 

Remarks 

An extremely tedious model! (why?) 
 
Example: 
 
Many different variants: several tapes,  
 
Are all languages recursively enumerable?  

 For us, a Turing Machine is a computer! 

Church-Turing’s Thesis: Turing machines 
are as powerful as any computer (in terms 
of the languages recognized, of course) 



Language theory 
  .  

Automata 

• A directed graph with rules to 
jump from one node to another one at 
each character read 
 
• A word is accepted if it ends at an accepting node 

 
 Again, a pretty tedious model, but… 



Language theory 
  .  

Theorem: all these languages 
Are strictly contained in each 

other 

Other models:  
• Nondeterministic automata, … 

• Pushdown automata 
• Linearly bounded turing 

machines 
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Algorithmic complexity 
  .  

Is my problem hard? 

Example: the shortest path 
problem 



Algorithmic complexity 
  .  

It’s all about languages! 
(if we agree to talk about decision 

problems) 

Example: the shortest path 
problem 





( ) 1  

( )> 1  Yes! 

No! 

NP-Hardness 
  .  

Decision problems 

hi 

Word 

We want to make our decisions “efficiently”  

 Paradigm: efficiently = in polynomial time 





( ) 1  

( )> 1  Yes! 

No! 

NP-Hardness 
  .  

Our dream: Theorem: there is no polynomial time 
algorithm for your problem 

Decision problems 

hi 

Word 

We want to make our decisions “efficiently”  

 Paradigm: efficiently = in polynomial time 



Cook’s Theorem 
  .  

P: Set of languages for which there exists a 
polynomial time Turing-Machine that recognises 
them 
 
NP: decision problems for which the instances 
where the answer is "yes" have a certificate which 
allows to verify in polynomial time by another 
deterministic Turing machine 
 
Lemma: P is in NP 
 
Examples: the shortest path, the hamiltonian cycle, 
the sat problem, … PRIMES 



Cook’s Theorem 
  .  

P: Set of languages for which there exists a 
polynomial time Turing-Machine that recognises 
them 
 
NP: decision problems for which the instances 
where the answer is "yes" have a certificate which 
allows to verify in polynomial time by a deterministic 
Turing machine 
 
Lemma: P is in NP 
 
Examples: the shortest path, the hamiltonian cycle, 
the sat problem, … PRIMES? 
 



NP-Hardness 
  .  

Cook’s Theorem (1971): The boolean Satisfiability 
problem is NP-Complete  

The boolean Satisfiability problem is 
hard: solving it efficiently allows to 
solve any NP-Problem efficiently! 

… but can we? 
Any NP-Problem to which we can 
reduce SAT is equally hard 

Example:  max-clique 

Proof idea: one can encode the existence of a certificate 
with a (large, but polynomial sat problem) 



Karp’s 21 problems (1972) 
  .  

0–1 integer programming (A variation 
in which only the restrictions must be 
satisfied, with no optimization) 
Clique (see also independent set problem) 

Set packing 
Vertex cover 

Set covering 
Feedback node set 
Feedback arc set 
Directed Hamilton 
circuit (Karp's name, now usually 
called Directed Hamiltonian 
cycle) 

Satisfiability with at most 3 literals 
per clause (equivalent to 3-SAT) 

Chromatic number (also called 
the Graph Coloring Problem) 

Clique cover 
Exact cover 

Hitting set 
Steiner tree 
3-dimensional matching 
Knapsack (Karp's definition 
of Knapsack is closer 
to Subset sum) 

Job sequencing 
Partition 

Max cut 

https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Clique_problem
https://en.wikipedia.org/wiki/Independent_set_problem
https://en.wikipedia.org/wiki/Set_packing
https://en.wikipedia.org/wiki/Vertex_cover_problem
https://en.wikipedia.org/wiki/Set_cover_problem
https://en.wikipedia.org/wiki/Feedback_vertex_set
https://en.wikipedia.org/wiki/Feedback_arc_set
https://en.wikipedia.org/wiki/Hamiltonian_path_problem
https://en.wikipedia.org/wiki/Hamiltonian_path_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#3-satisfiability
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#3-satisfiability
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Clique_cover
https://en.wikipedia.org/wiki/Exact_cover
https://en.wikipedia.org/wiki/Hitting_set
https://en.wikipedia.org/wiki/Steiner_tree
https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Subset_sum
https://en.wikipedia.org/wiki/Job_shop_scheduling
https://en.wikipedia.org/wiki/Partition_problem
https://en.wikipedia.org/wiki/Maximum_cut


Turing undecidability 
  .  

Question: Are all languages recognizable by a Turing 
machine? 

That would be nice: write it for the turing machine which 
stops for numbers that satisfy Syracuse’s conjecture 

The halting problem: given a description of a turing machine (say, 
a java code), decide whether it always stops (say, for any possible 
finite input) 

Theorem (Turing, 1936): There is no Turing 
machine that can decide the halting problem 

Mmmh, maybe we’re asking too 
much, but then… 



Turing undecidability 
  .  

Theorem: There is no turing machine that can decide 
the halting problem 

Theorem (Turing, 1936): There is no Turing 
machine that can decide the halting problem 

There are undecidable languages! 



Algorithmic complexity 
  .  



Algorithmic complexity 
  .  

The shortest path problem 

Post’s correspondence problem 

The equivalence of automata 

Max-cut 

Stability of a switching system 

Hilbert’s 10th 

PRIMES 



Theoretical Computer Science 
For Cyber-Physical Systems 

1. Language theory 
 

2. Algorithmic complexity 
 
3. Hybrid automata 



  .  

Hybrid automata 



  .  

Hybrid automata: 
One model to rule them all 



  .  

Hybrid automata: 
One model to rule them all 



  .  

Hybrid automata 



  .  

Hybrid automata: 
One model to rule them all 

Usefulness:  powerful (very general) model  
  Compositional approach 
Weakness:  very hard to analyse 
 

Goal:  -Simulation 
 -Verification 
 -Control?  
   

Example: a nuclear reactor  
   

Now, how to model a  
controller? 
   



  .  

Hybrid automata: 
One model to rule them all 



  .  

Zeno behavior 
And a glimpse at bisimulation 



Stability 



Stability 



Stability 



Example: piecewise affine systems 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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The S-procedure: a simple but efficient trick!  



  .  

Designing hybrid systems 

Fig 9.12 9.13 9.14 
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Conclusion 


