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4 avenue Georges Lemâıtre, B-1348 Louvain-la-Neuve, Belgium,

Email: vincent.blondel@uclouvain.be

Julien Cassaigne
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Abstract

We study the number uα(n) of α-power-free binary words of length n, and the
asymptotics of this number when n tends to infinity, for a fixed rational number
α in (2, 7/3]. For any such α, we prove a structure result that allows us to de-
scribe constructively the sequence uα(n) as a 2-regular sequence. This provides an
algorithm that computes the number uα(n) in logarithmic time, for fixed α. Then,
generalizing recent results on 2+-free words, we describe the asymptotic behaviour
of uα(n) in terms of joint spectral quantities of a pair of matrices that one can
efficiently construct, given a rational number α.

For α = 7/3, we compute the automaton and give sharp estimates for the asymp-
totic behaviour of uα(n).
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1 Introduction

In combinatorics on words, a square is the repetition of twice the same word,
as for instance the word baba. In the same way of thinking, the kth power
of a word (k ∈ N) consists in the concatenation of k times this word. This
notion is classically generalized as follows: Let w = w1 . . . wn ∈ A∗ be a non-
empty finite word, and n = |w| (see [11] for usual definitions and notations
of combinatorics on words). The period of w is the smallest positive integer p
such that wi = wi+p for all i such that 1 ≤ i ≤ i+p ≤ n. Note that 1 ≤ p ≤ n.
The period cycle of w is the prefix of w of length p. The exponent of w is the
rational number e(w) = n/p. As an example, e(abacabacab) = 10/4 = 5/2.

Since the beginning of the twentieth century, much research effort has been
devoted to the so-called α-power-free words. A word v ∈ A∗ ∪Aω is α-power-
free if every finite factor w of v satisfies e(w) < α. The word v is α+-power-free
if every finite factor w of v satisfies e(w) ≤ α. It is easily seen that there are
only finitely many binary square-free (i.e., 2-power-free) words. Indeed, every
word of length 4 has a square. On the other hand, the infinite Thue-Morse
word is overlap-free [11, 17] (i.e., 2+-power-free), and so, there is an infinite
number of overlap-free words.

More generally, on an alphabet with k letters, there is a threshold RT (k)
such that there are only finitely many α-power-free words for α < RT (k),
and infinitely many for α > RT (k). The value of RT (k) was conjectured by
Dejean in 1972: RT (2) = 2, RT (3) = 7/4, RT (4) = 7/5, RT (k) = k/(k − 1)
for k ≥ 5. Currently it is proved for k ≤ 14 [6, 12,17] and for k ≥ 30 [3, 5].

So, for binary words, the distinction between finite number of α-power-free
words and infinite number is well understood. But the question arises to know
how fast the number uα(n) of binary α-power-free words of length n grows as
a function of n.

Karhumäki and Shallit proved [9] that there are polynomially many 7/3-power-
free binary words, and exponentially many 7/3+-power-free binary words. The
main ingredient in the proof is the following structure lemma (generalizing a
result of [14] for overlaps):

Lemma 1 [9] Let A = {a, b}, 2 < α ≤ 7/3, and w ∈ A∗ be α-power-free.
Then there exist x, y ∈ {ε, a, b, aa, bb} and v ∈ A∗ such that v is α-power-free
and w = xθ(v)y, where θ is the Thue-Morse morphism: a 7→ ab, b 7→ ba.
Moreover, (x, v, y) is unique provided that |w| ≥ 7.
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This lemma fails for α > 7/3, for instance with w = abbabaabbaabaabbabaab.

Our goal is to compute exactly, or more precisely, the numbers uα(n). Namely,
we are interested in the following:

• if uα(n) is polynomial in n, find its degree;
• if uα(n) is exponential in n, find its basis;
• find recurrence relations to compute uα(n) efficiently.

A first idea is to iterate Lemma 1, producing a sequence of words (wi), such
that wn = w, wi = xiθ(wi−1)yi, and w0 is short. The short word w0 and the
sequence (x1, y1), . . . , (xn, yn) are enough to describe w. Unfortunately, not
all sequences ((xi, yi)) are admissible. For overlap-free words, Carpi proved in
1993 that admissible sequences form a regular language. As a consequence,
u2+(n) is a 2-regular sequence in the sense of [1]. However it is not easy to
compute an automaton explicitely.

In order to make this computation easier, a subtractive variant of Lemma 1
has been proposed for overlap-free words. In this variant, one has to take into
account some words that are not overlap-free, but that are almost overlap-free
words in the sense that they can be written as xy with x ∈ A such that y is
overlap-free. Let U be the set of overlap-free binary words, V the set of almost
overlap-free words, and S is the set of words in U ∪ V of length less than 8.
We also define the set E = {κ, δ, ι} of transformations acting on either end of
a word and defined as follows:

• κ does nothing;
• δ deletes the first (or last) letter of a word;
• ι inverts the first (or last) letter of a word.

Lemma 2 [4] Let w ∈ (U ∪V )\S. Then there exists a unique pair (γ1, γ2) ∈
E × E and v ∈ U ∪ V such that w = γ1.θ(v).γ2.

The advantage of this lemma is that given the first few and last few characters
of the word v, it is possible to determine which functions will produce 2+-free
words and which ones will produce almost 2+-free words. Moreover, since it
is also possible to compute the first few and last few characters of w, it is
possible to iterate the procedure.

The subtractive structure lemma allows one to derive the following Theorem:

Theorem 3 [4] Let (Yn) be the sequence of vectors in N30 defined by initial
terms and Y2n = F0Yn, Y2n+1 = F1Yn for n > 6, where F0 and F1 are specific
matrices. Then u2+(n) = RYn for some specific row vector R.

Let us mention that in the above theorem, the entries of R, F0, F1 are all in
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the set {0, 1, 2}. This theorem allows to compute u2+(n) very efficiently, using
the binary expansion of n to construct a product of the matrices F0 and F1.

A surprising corollary is that, although u2+(n) grows polynomially, it does

not have a fixed degree. Let r− = lim inf
log u2+ (n)

logn
and r+ = lim sup

log u2+ (n)

logn
.

Then, considering subsequences u2+(2m) and u2+(4m−1
3

), we get

r− ≤ log2 ρ(F0) < log4 ρ(F0F1) ≤ r+,

where ρ(F ) denotes the spectral radius of the matrix F . Also, one can be
interested in the function s(n) =

∑
m<n

u2+(m), which is easier to compute.

Indeed, it satisfies the relation s(n) = Θ(nr) with

r = log2

3

2
+
√

3 +

√
5

4
+
√

3

 = 2 log2 ρ(M) ' 2.3100,

where M = F0 + F1.

Based on Theorem 3, it is possible to show that the quantities r+ and r−

can be expressed in terms of joint spectral quantities of two matrices of size
20× 20. For a given set of matrices Σ = {A1, . . . , Am} we denote by ρ̌ and ρ̂
its lower spectral radius and its joint spectral radius:

ρ̌(Σ) = lim
k→∞

min
d1,...,dk∈{1,...,m}

‖Ad1 · · ·Adk‖1/k, (1)

ρ̂(Σ) = lim
k→∞

max
d1,...,dk∈{1,...,m}

‖Ad1 · · ·Adk‖1/k.

Both limits are well-defined and do not depend on the chosen norm. Moreover,
for any product Ad1 · · ·Adk we have

ρ̌ ≤ ρ(Ad1 · · ·Adk)1/k ≤ ρ̂ (2)

(see [2, 7, 13] for surveys on these notions). We have the following result:

Theorem 4 [8] There exist two matrices A0, A1 ∈ {0, 1, 2}20×20 such that

r+ = log2 ρ̂({A0, A1}).

r− = log2 ρ̌({A0, A1}).

The proof of this theorem is based on numerical properties of the matrices
F0, F1 in Theorem 3. Thanks to this result, the following accurate estimates
appear in [8]:

1.2690 < r− < 1.2736 < 1.3322 < r+ < 1.3326.
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2 Construction of automata

In this section, we show how to adapt the above described techniques to α-
power-free words, for arbitrary rational α ∈ (2, 7/3]. Again, the idea is to
provide a structure result that is subtractive rather than additive. It expresses
any α-power-free word w as the image of a shorter word v that is “almost” α-
power-free under a function taken from a particular set. This result enables us
to construct an automaton that describes the construction of all α-power-free
words.

Let α ∈ Q, 2 < α ≤ 7/3. We denote by U the set of α-power-free binary
words.

2.1 Some properties of α-powers

We start with a few useful lemmas.

A word w will be called an α-power if e(w) ≥ α (note that the exponent need
not be exactly α). This is consistent with the definition of α-power-free words:
a word is α-power-free if and only if it contains no α-power.

The following lemma is essentially due to Shur [15]. A more detailled proof
can be found in [9].

Lemma 5 [9, 15] If θ(v) contains an α-power z of period p, then p is even
and v contains an α-power y of period p/2, such that θ(y) contains z. In
particular, if θ(v) is an α-power, then so is v, with half period.

PROOF. If p is odd, then we find aa or bb at two positions of different parities
in θ(v), which is impossible. So p is even. If |z| is even and z occurs at an even
position (counting from 0), then it can be decoded and we find y such that
θ(y) = z. If |z| is odd, or z occurs at an odd position, or both, then z can be
extended on one or both sides to get a longer α-power of period p to which
the previous case can be applied. 2

An α-power is said to be minimal if it contains no shorter α-power. It turns
out that minimal α-powers are very constrained.

Lemma 6 Let x be the period cycle of a minimal α-power z. Then x is either
a letter (then |z| = 3), or conjugated to aba or bab (then |z| = 7), or has
even length and is conjugated to θ(x′), where x′ is the period cycle of another
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minimal α-power. Therefore x is conjugated to one of the words θk(a), θk(b),
θk(aba), θk(bab), with k ∈ N.

PROOF. Consider all positions in w where aa or bb occur. Assume first that
these positions do not all have the same parity. We can then find two successive
such positions of different parities, i.e., a factor aa(ba)ka or bb(ab)kb. If k = 0,
then w contains aaa or bbb, contradicting the minimality (except if w itself is
aaa or bbb). If k ≥ 2, then w contains an internal factor ababa or babab, again
contradicting the minimality. If k = 1, then w contains aabaa or bbabb (say the
former). If it is an internal factor, then we get aaa or baabaab, depending on
the surrounding letters, contradicting the minimality except if w = baabaab.
If it is a prefix, then either w = aabaaba or |x| ≥ 4 and aabaa occurs again as
an internal factor of w at position |x|, which we have seen is a contradiction.
If it is a suffix, a similar argument gives w = abaabaa.

If |x| is odd, then either aa or bb occurs in x, or x is (ab)ka or (ba)kb and aa or
bb occurs at position |x| − 1 in w. In both cases, it occurs again |x| positions
further, therefore the above argument applies.

If |x| is even, and all occurrences of aa and bb are at odd positions, then x
can be factored on {ab, ba}, i.e., x = θ(x′). After possibly extending z by one
letter y at the end to make its length even, we find an α-power z′ with period
cycle x′ such that z = θ(z′) or zy = θ(z′). Then Lemma 5 ensures that z′ is
minimal.

If |x| is even, and all occurrences of aa and bb are at even positions, then let
y be the last letter of x and y′ the last letter of z. The word yzy′−1 is again a
minimal α-power, with period cycle conjugated to x, but now aa and bb occur
at odd positions and the previous case can be applied.

Finally, the last statement is obtained by iteration. 2

This lemma has an interesting corollary:

Corollary 7 Let 2 < α < 7/3 be a real number. There exist α+-power-free
words that are not α-power-free if and only if α = r/2k or α = r/(3.2k), with
integer r and k.

PROOF. Suppose that w is α+-power-free but not α-power-free. Let z be the
shortest α-power contained in w. By construction, it is a minimal α-power, so
by Lemma 6 its period p is 2k or 3.2k. But as w is α+-power-free, the exponent
of z cannot exceed α, so it has to be exactly α. Hence α = e(z) = |z|/p.
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Conversely, if α = r/2k ≥ 2, let x = θk(a); if α = r/(3.2k) ≥ 2, let x = θk(aba).
Let then w be any factor of length r of x4. The word w is not α-power-free,
as e(w) ≥ |w|/|x| = α. Assume that w contains an α+-power z′. Then the
period of z′ is p′ = |z′|/e(z′) < |w|/α = |x|. Applying k times Lemma 5, we
find that a4 or (aba)4 contains an α+-power of period p′/2k < |x|/2k. This is
clearly impossible if |x| = 2k; if |x| = 3.2k, then it means that (aba)4 contains
an α+-power of period 1 or 2, a contradiction. So w is α+-power-free. 2

Lemma 8 Let w ∈ AUA be a word that does not contain α-powers as internal
factors. Let z and z′ be two distinct prefixes of w that are α-powers, with
respective periods p and p′. Then p = p′, the longer word in {z, z′} is w itself,
and the other one is shorter by just one letter.

PROOF. Assume first that p < p′. Let x and x′ be the respective period
cycles of z and z′, and write z = xxy, z′ = x′x′y′. Recall that α > 2, so
y and y′ are not empty. Note that |z| > |z′| is impossible, as the internal
factor of length |z| − 2 of z would then be an α-power (its exponent being
at least (|z′| − 1)/(p′ − 1), which is larger than |z′|/p′ ≥ α). Then |z| < |z′|,
and z is a proper prefix of w. As a consequence, |z| < αp + 1, otherwise
z could be shortened to get an internal α-power. In turn, this implies that
|xy| < (α− 1)p+ 1 ≤ (α− 1)(p′ − 1) + 1 < (α− 1)p′ ≤ |x′y′|.

If |z| < |x′y′|, then z is a proper prefix of x′y′ as x′y′ is also a prefix of w.
Then z occurs as an internal factor of w, a contradiction.

If |z| ≥ |x′y′|, then xy is a proper prefix of x′y′ and occurs at positions p and p′

in w. We have (α−1)(2p+1) = (α−2)(p+1)+αp+1, where (α−2)(p+1) > 0
and αp + 1 > |z| ≥ |x′y′| = |z′| − p′ ≥ (α − 1)p′. Consequently 2p + 1 > p′,
i.e., p′ − p ≤ p. Let s be the suffix of length p′ − p of x, so that the word sxy
occurs at positions 2p − p′ and p in w. Then sxy is an internal factor of w
with exponent e(sxy) ≥ |sxy|/|s| = 1 + |xy|/(p′ − p) ≥ 1 + |xy|/p ≥ α, again
a contradiction.

Assume now that p = p′, and that |z| < |z′|. Any factor of length |z| of z′ is
an α-power, and we can find one that is an internal factor of w except in one
case, when z′ = w and |z| = |z′| − 1. 2

2.2 Subtractive structure lemma

Lemma 1 (the structure lemma of Karhumäki and Shallit) is an additive struc-
ture lemma, as letters are added on both sides of θ(v) to get w. Instead, we
will use a subtractive structure lemma similar to Lemma 2, in which letters
can be deleted from both sides of θ(v) (and then also added).
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We also consider a larger set of words, AUA. Its elements are almost α-power-
free words: they may contain an α-power, but only as a prefix or as a suffix. The
number w(n) of words of length n in AUA satisfies uα(n) ≤ w(n) = 4uα(n−2),
and can therefore be used instead of uα(n) for computing asymptotic quantities
such as r+

α = lim sup log uα(n)/ log n.

We define a set of five transformations E = {δ, κ, ι, σ, τ}, extending the three
transformations used in Lemma 2. Each element of E acts to the left of a
non-empty word as follows:

• δ.xw = w,
• κ.xw = xw,
• ι.xw = x̄w,
• σ.xw = xx̄w,
• τ.xw = x̄x̄w,

where x ∈ A, and x̄ denotes the other letter (so that A = {x, x̄}). Each γ ∈ E
also acts to the right: w.γ is the mirror image of γ.w̃, where w̃ denotes the
mirror image of w.

Lemma 9 If w ∈ AUA and |w| ≥ 9, then there exists a unique triple (γ1, γ2, v) ∈
E × E × (AUA) such that w = γ1.θ(v).γ2.

PROOF. Let w = x′w′y′, with x′, y′ ∈ A and w′ ∈ U . Note that |w′| ≥ 7.
By Lemma 1, there exist r1, r2 ∈ {ε, a, b, aa, bb} and v′ ∈ U such that w′ =
r1θ(v

′)r2.

Let y be the first letter of r2y
′. Then, by construction, r2y

′ is one of y,
yȳ, yy, yyȳ, yyy. Defining γ2 as respectively δ, κ, ι, σ, τ , we get r2y

′ =
θ(y).γ2. Similarly, let x be such that x̄ is the last letter of x′r1. Then x′r1 ∈
{x̄, xx̄, x̄x̄, xx̄x̄, x̄x̄x̄} so that x′r1 = γ1.θ(x) for an adequate γ1. Let v = xv′y ∈
AUA: we then have w = γ1.θ(v).γ2.

Conversely, assume that w = γ1.θ(v).γ2 with v ∈ AUA. Let w = x′w′y′ and
v = xv′y (note that |v| must be at least 4, since |w| ≥ 9, each transfor-
mation increases the length at most by 1, and θ doubles the length). Then
w = r1θ(v

′)r2 where r1 = (x′)−1γ1.θ(x) and r2 = θ(y).γ2(y
′)−1. Note that

v′ ∈ U and r1, r2 ∈ {ε, a, b, aa, bb}, and that the map between (x′, y′, r1, r2)
and (x, y, γ1, γ2) is one-to-one. Therefore uniqueness of (r1, r2, v

′) guarantees
uniqueness of (γ1, γ2, v). 2

The bound 9 in Lemma 9 is the best possible: indeed, the word w = aaababba,
for instance, has two decompositions, aaababba = τ.θ(bbb).σ = ι.θ(baab).κ.
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We define a map Φ: AA+ × (E ×E)∗ inductively as follows: Φ(u, ε) = u, and
Φ(u, (γ1, γ2)ξ) = Φ(γ1.θ(u).γ2, ξ), for any u ∈ AA+ (a word of length at least
2), (γ1, γ2) ∈ E×E (a pair of transformations), and ξ ∈ (E×E)∗ (a sequence
of pairs of transformations). This allows to iterate Lemma 9 and to represent
elements of AUA as images, under a repeated application of θ alternated with
transformations from E on both sides, of an initial short word.

2.3 One-sided control

The converse of Lemma 9 does not hold: given (γ1, γ2, v) ∈ E×E×(AUA), w =
γ1.θ(v).γ2 need not be in AUA, as internal α-powers may appear. Lemma 5
ensures that the morphism θ itself does not create α-powers, but the transfor-
mations γ1 and γ2 may do so.

Let v = xv′y: as v′ ∈ U , by Lemma 5 also θ(v′) ∈ U . If w contains an internal
α-power, then it has to touch either the prefix γ1.θ(x), or the suffix θ(y).γ2,
or both. We first restrict to α-powers that do not touch θ(y).γ2, and for this
we may as well assume that γ2 = δ.

Lemma 10 Let γ1 ∈ E and v = xv′y ∈ AUA, with x, y ∈ A and |v| ≥ 5.
Then w = γ1.θ(v).δ contains an internal α-power z if and only if one of the
following situations occur:

• γ1 is σ or τ , and v starts with ab or ba (then z is aaa or bbb);
• γ1 is σ or τ , and v starts with aabb or bbaa (then z is aabaaba or bbabbab);
• γ1 is other than δ, and v has a proper prefix which is an α-power z′ of period
p, with e(z′) ≥ α + 1/2p (then z = δ.θ(z′)).

PROOF. First note that, as α ≤ 7/3 < 5/2 < 3, the words aaa, ababa,
aabaaba, abaabaa, baabaab and their complements are α-powers whatever the
value of α. Moreover, they are the only minimal α-powers of period up to 3.

In each of the three situations, it is clear that w contains an internal α-power.

Conversely, assume that w contains an internal α-power z, which can be taken
minimal. As we saw above, z has to touch either the prefix γ1.θ(x) or the suffix
θ(y).δ = y, and the latter is impossible since z is internal. So γ1 6= δ; if γ1

is κ or ι, then z starts at position 1 in w (counting from 0), so it is a prefix
of δ.θ(xv′) = x̄θ(v′); if γ1 is σ or τ , then either z starts at position 2 and
is again a prefix of δ.θ(xv′), or z starts at position 1 and it is a prefix of
ι.θ(xv′) = x̄x̄θ(v′).

If z has odd period, then by Lemma 6 its period is 1 or 3, and it is easily
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checked that the only possibilities are aaa and aabaaba, and complements,
occuring as prefixes of ι.θ(xv′), which correspond to the first two cases.

If z has even period 2p, then it cannot be a prefix of ι.θ(xv′), or x̄x̄ would
occur at an even position in θ(v′). So it is a prefix of δ.θ(xv′), and by Lemma 5
we get an α-power z′ of period p in v (that must be a proper prefix) such that
θ(z′) contains z. Actually z is a prefix of δ.θ(z′), so we have 2|z′| − 1 ≥ 2pα
and e(z′) ≥ α + 1/2p. 2

Note that, unlike for the first two cases, the conditions in which the third case
occurs are rather sensitive to the value of α. For instance, if v = ababaab, then
w = κ.abbaabbaababba.δ = abbaabbaababb contains bbaabbaab as an internal
α-power if α ≤ 9/4.

To control the first two cases (as well as the subcase p = 2 of the third
one), we define the prefix type of a word w of length at least 4 as t1 ∈
{aaa, aaba, aabb, aba, abb} such that w starts with t1 or t1.

Lemma 11 Let v ∈ AUA, |v| ≥ 4, and γ1, γ2 ∈ E. Assume that w =
γ1.θ(v).γ2 ∈ AUA. Then the prefix type of w is determined by γ1 and the
prefix type of v, according to Table 1 below, where the columns correspond to
the prefix type of v and the rows correspond to the function γ1. An X in the
table means that w cannot be in AUA.

aaa aaba aabb aba abb

δ aba aba aba aabb aaba

κ X aba aba abb abb

ι X aaba aaba aaa aaa

σ X abb X X X

τ X aaa X X X

Table 1
Relations between the type of v and the type of w = γ1.θ(v).γ2. X means that
w 6∈ AUA

PROOF. Since |v| ≥ 4, the prefix of length 5 of θ(v).γ2 is not affected by
γ2, and depends only on the prefix type of v. Therefore the prefix type of w
depends only on the prefix type of v and γ1, and is easy to compute.

It remains to explain the X in the table. If the prefix type of v is aabb, aba,
or abb, and γ1 ∈ {σ, τ}, then w contains an internal α-power by the first two
cases of Lemma 10. If the prefix type of v is aaa, and γ1 6= δ, then w contains
an internal α-power (ababa or babab) by the third case of Lemma 10. 2
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We now turn to the third case. We define the prefix excess of a word w as
the maximal value f1 of |z| − pα, where z is a proper prefix of w of period
p = |z|/e(z). If w ∈ UA, then its prefix excess is negative (and its actual
value does not matter); if w ∈ AUA \ UA, then its prefix excess is in [0, 1).
The condition e(z) ≥ α + 1/2p in the third case of Lemma 10 translates to
f1 ≥ 1/2.

Lemma 12 Let v ∈ AUA, |v| ≥ 5, and γ1, γ2 ∈ E. Assume that w =
γ1.θ(v).γ2 ∈ AUA. Let t1 be the prefix type and f1 the prefix excess of v.
Assume also, if γ1 is δ or κ, that v is not itself an α-power. Then the prefix
excess f ′1 of w is as follows:

• if f1 < 1/2:
· if γ1 = δ, then f ′1 < 0;
· if γ1 = κ, then f ′1 = 2f1 if f1 ≥ 0 and f ′1 < 0 otherwise;
· if γ1 = ι, then f ′1 < 0 if t1 = aaba, f ′1 = 7−3α if t1 = aabb, and f ′1 = 3−α

if t1 = aba or t1 = abb;
· if γ1 = σ, then f ′1 = 7− 3α;
· if γ1 = τ , then f ′1 = 3− α;
• if f1 ≥ 1/2:
· if γ1 = δ, then f ′1 = 2f1 − 1;
· otherwise, w 6∈ AUA.

PROOF. Let z be a proper prefix of v such that f1 = |z|(1 − α/e(z)) (by
Lemma 8, z is unique when f1 ≥ 0). If γ1 = κ, then θ(z) is a proper prefix of
w, and e(θ(z)) ≥ e(z), so that f ′1 ≥ |θ(z)|(1−α/e(θ(z))) ≥ 2f1. If γ1 = δ, then
δ.θ(z) is a proper prefix of w, with the same period as θ(z), so that f ′1 ≥ 2f1−1.
If γ1 = σ, then the only possibility is t1 = aaba, and then abbabba or baabaab
is a proper prefix of w, so that f ′1 ≥ 7− 3α. If γ1 = τ , then w is of prefix type
aaa, so that f ′1 ≥ 3 − α. If γ1 = ι and t1 = aabb, then bbabbab or aabaaba is
a proper prefix of w, so that f ′1 ≥ 7− 3α. If γ1 = ι and t1 = aba or t1 = abb,
then w is of prefix type aaa, so that f ′1 ≥ 3−α. Therefore the values given in
the lemma are lower bounds.

By Lemma 8, in the cases where we have found an α-power of length 3 or 7
as a prefix of w, no other prefix can be an α-power (note that γ1 6= δ in those
cases so that |w| ≥ 9 as |v| ≥ 5).

For the other cases, it remains to show that f ′1 cannot be higher than the values
given. Assume the contrary. Then an α-power z′ such that f ′1 = |z′|(1−α/e(z′))
occurs as a proper prefix of w. Let x′ be its period cycle, so that x′x′ is a proper
prefix of w. Note that z′ cannot touch the suffix of w affected by γ2 (i.e., the
second from last letter in w when γ2 is σ or τ), because z′ would then end
in aaa, bbb, aabaa, bbabb which would then have another occurrence in the
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middle of θ(v).

If γ1 = κ, then by Lemma 5 there is a prefix z of v of period |x′|/2 and
exponent at least e(z′), and it is a proper prefix since we assumed that v is
not an α-power in this case. Therefore f1 ≥ f ′1/2.

If γ1 = δ, then z can be extended to the left to get an α-power as a proper
prefix of θ(v), and then by the previous argument we get f1 ≥ (f ′1 + 1)/2.

The only remaining case is when γ1 = ι and t1 = aaba. Then w starts with
bbabbaa. It is clear that |x′| cannot be less than 7, but then bbabbaa has to
occur a second time, a contradiction. 2

Lemma 12 requires in some cases that v is not an α-power. The following
lemma ensures that this property propagates to w.

Lemma 13 Let v ∈ AUA, with |v| ≥ 5, and γ1, γ2 ∈ E. Assume that w =
γ1.θ(v).γ2 ∈ AUA. If v is not an α-power, then w is not an α-power either.

PROOF. Assume that w is an α-power. If γ1 is ι, σ or τ , then w contains at
position 0 or 1 one of aaa, bbb, aabaa, bbabb, which must then have another
occurrence in the middle of θ(v), a contradiction (|v| ≥ 5 is needed here). The
same argument applies to γ2. So both γ1 and γ2 are κ or δ, and then Lemma 5
implies that v is an α-power. 2

With Lemmas 11 and 12, we can keep track of t1 and f1 when Lemma 9 is
iterated (excluding α-powers for the moment).

When α is rational, f1 takes finitely many useful values, so that this can
be done with a deterministic finite automaton Aα. Assume that α = r/q,
with r and q coprime. The states of Aα are labelled (t1, f̂1), where t1 ∈
{aaa, aaba, aabb, aba, abb} is the prefix type and f̂1 ∈ {−, 0, 1, . . . , q − 1} is
− if the prefix excess is negative, and f̂1 = qf1 if f1 ≥ 0 (indeed, this is an in-
teger between 0 and q− 1). Accepting states (for UA) are states with f̂1 = −.

Transitions of Aα are labelled by E, and (t′1, f̂1

′
) = γ1.(t1, f̂1) is defined as

follows:

• t′1 is given by Table 1 (if the table has an X, there is no transition);

• f̂1

′
is given by Lemma 12 (if f̂1 ≥ q/2 and γ1 6= δ, there is no transition).

12



2.4 Two-sided control

We define the suffix type t2 and the suffix excess f2 of v as the prefix type
and prefix excess of ṽ. However, it is not enough to consider both ends of the
word independently: we need a special treatment for α-powers that touch both
γ1.θ(x) and θ(y).γ2.

Let the global excess g of v be |v| − pα, where p is the period of v: it is non-
negative when v is an α-power, and g < 2. By Lemma 8, if 0 ≤ g < 1 then f1

and f2 are both negative, and if 1 ≤ g < 2 then f1 = f2 = g − 1.

Lemma 14 Let γ1, γ2 ∈ E and v = xv′y ∈ AUA, with x, y ∈ A and |v| ≥ 5.
Let t1, t2, f1, f2, and g be the types and excesses associated with v. Then w =
γ1.θ(v).γ2 contains an internal α-power z if and only if one of the following
situations occur:

• (γ1, v) satisfies one of the three conditions in Lemma 10;
• (γ2, ṽ) satisfies one of the three conditions in Lemma 10;
• g ≥ 1, γ1 6= δ, and γ2 6= δ (then z = δ.θ(v).δ).

PROOF. In each of the three situations, it is clear that w contains an internal
α-power.

Conversely, assume that w contains an internal α-power z, which can be taken
minimal. We can also assume that Lemma 10 does not apply on either side.
Then z touches both γ1.θ(x) and θ(y).γ2, so neither γ1 nor γ2 is equal to δ,
and z contains δ.θ(v).δ, which implies that |z| ≥ 2|v| − 2 ≥ 8. In particular,
by Lemma 6, z has even period 2p ≥ 4.

If γ1 is σ or τ and z starts at position 1 in w, then z starts with x̄x̄, which
then occurs at position 2p in θ(v), a contradiction. Similarly it is impossible
to have γ2 equal to σ or τ and z ending only one letter before the end of w. In
all cases that remain, z = δ.θ(v).δ, which implies by Lemma 5 that xzy = θ(v)
is an (α+ 1/p)-power, and so is v, with period p. Therefore g ≥ 1 and we are
in the third case. 2

The following lemma describes how global excess evolves, as well as how it
influences prefix and suffix excesses in the cases not covered by Lemma 12.

Lemma 15 Let v ∈ AUA, |v| ≥ 5, and γ1, γ2 ∈ E. Let t1, t2, f1, f2, and g be
the types and excesses associated with v. Assume that w = γ1.θ(v).γ2 ∈ AUA.
Then the global excess g′ of w is determined by (γ1, γ2) and by g, according to
Table 2, where the columns correspond to intervals of values of g and the rows
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correspond to pairs (γ1, γ2). A ∗ in a row label stands for any of ι, σ, τ . An X
in the table means that w cannot be in AUA. Some values of the prefix excess
f ′1 and of the suffix excess f ′2 of w are also given in the table, when Lemma 12
does not apply.

g < 0 0 ≤ g < 1/2 1/2 ≤ g < 1 1 ≤ g < 3/2 3/2 ≤ g < 2

(δ, δ) g′ < 0
g′ < 0

f ′1 < 0, f ′2 < 0

g′ < 0

f ′1 < 0, f ′2 < 0

g′ = 2g − 2

f ′1 < 0, f ′2 < 0

g′ = 2g − 2

f ′1 = f ′2 = 2g − 3

(δ, κ)

(κ, δ)
g′ < 0

g′ < 0

f ′1 < 0, f ′2 < 0

g′ = 2g − 1

f ′1 < 0, f ′2 < 0

g′ = 2g − 1

f ′1 = f ′2 = 2g − 2
X

(κ, κ) g′ < 0
g′ = 2g

f ′1 < 0, f ′2 < 0

g′ = 2g

f ′1 = f ′2 = 2g − 1
X X

(δ, ∗) g′ < 0
g′ < 0

f ′1 < 0

g′ < 0

f ′1 < 0

g′ < 0

f ′1 = 2g − 2
X

(∗, δ) g′ < 0
g′ < 0

f ′2 < 0

g′ < 0

f ′2 < 0

g′ < 0

f ′2 = 2g − 2
X

(κ, ∗) g′ < 0
g′ < 0

f ′1 < 0

g′ < 0

f ′1 = 2g − 1
X X

(∗, κ) g′ < 0
g′ < 0

f ′2 < 0

g′ < 0

f ′2 = 2g − 1
X X

(∗, ∗) g′ < 0 g′ < 0 g′ < 0 X X

Table 2
Relations between the global excess g of v and the global excess g′ of w = γ1.θ(v).γ2.
The symbol ∗ means any of ι, σ, τ , and X means that w 6∈ AUA

We now have all the elements to state our main structure result.

Theorem 16 Let 2 < α ≤ 7/3 be a rational number. There exist finite sets
of words S and U0, and a regular language L ⊂ S × (E × E)∗, recognized by
an explicit automaton Bα, such that Φ induces a one-to-one map from L to
U \ U0, where U is the language of α-power-free binary words.

PROOF. Let U0 be the set of α-power-free binary words of length up to 4.
This set has 23 elements and does not depend on α.

Recall that α = q/r. We construct an automaton Bα with states (t1, f̂1, t2, f̂2, ĝ),
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where f̂2 ∈ {−, 0, 1, . . . , q − 1} and ĝ ∈ {−, 0, 1, . . . , 2q − 1} are defined as f̂1.
There are 25.(q+1)2.(2q+1) such tuples, but most of them are not used since,
for instance, t1 = aaa implies f̂1 = 3q−r, or ĝ 6= − determines f̂1 and f̂2. Tran-

sitions are labelled by E × E, and (t′1, f̂1

′
, t′2, f̂2

′
, ĝ′) = (γ1, γ2).(t1, f̂1, t2, f̂2, ĝ)

is defined as follows:

• t′1 is given by Table 1 applied to γ1 and t1;
• t′2 is given by Table 1 applied to γ2 and t2;

• f̂1

′
is given by Lemma 12, except when g ≥ 0 and γ1 ∈ {δ, κ} where it is

given by Table 2;

• f̂2

′
is given symmetrically;

• ĝ′ is given by Table 2.

If an impossibility occurs at any of these steps, then the transition does not
exist.

Let S be the set of elements of AUA of length 5 to 7, as well as those elements
of AUA of length 8 to 10 that cannot be obtained from a shorter element of
S. We add to the automaton an extra state i, which will be the initial state,
with for each v in S a transition labelled by v from i to the state describing
v. Accepting states are states with f̂1 = f̂2 = ĝ = −. Finally, the automaton
can be trimmed of all unreachable states.

Let L = L(Bα). According to the previous lemmas, Φ(u, ξ) ∈ U \ U0 for any
(u, ξ) in L. The choice of S and Lemma 9 ensure that the map is one-to-one.

3 Counting α-power-free binary words

We now study the consequences of Theorem 16 on uα(n).

3.1 A 2-regular sequence

Theorem 17 The sequence uα(n) is 2-regular in the sense of [1]: there exists
integers m and d, matrices F0 and F1 in Nd×d, vectors Y0, . . . , Y2m−1 in Nd,
and a row vector R in N1×d such that, if the sequence of vectors (Yn) is defined
inductively by Y2n = F0Yn and Y2n+1 = F1Yn for n ≥ 2m−1, then uα(n) = RYn
for all n ≥ 0.

PROOF. We first get recurrence relations X2n = G−2Xn+1+G0Xn+G2Xn−1

and X2n+1 = G−1Xn+1+G1Xn, where Xn is the vector that counts the number
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of words of length n that fall in each state, and the Gj are the matrices
corresponding to transitions (γ1, γ2) such that |γ1.θ(v).γ2| = 2|v|+ j.

Multiplying the dimension by four, we can turn them into Y2n = F0Yn, Y2n+1 =
F1Yn where

Yn=



Xn−1

Xn

Xn+1

Xn+2


, F0 =



G1 G−1 0 0

G2 G0 G−2 0

0 G1 G−1 0

0 G2 G0 G−2


, F1 =



G2 G0 G−2 0

0 G1 G−1 0

0 G2 G0 G−2

0 0 G1 G−1


.

2

Theorem 17 provides a fast algorithm for computing values of uα(n):

Corollary 18 The number uα(n) of α-power-free words of length n ≥ 2m

can be obtained by first computing the binary expansion dk−1 · · · d0 of n, i.e.,
n =

∑k−1
j=0 dj2

j, with dj ∈ {0, 1}, dk−1 = 1, and then defining

uα(n) = RFd0 · · ·Fdk−m−1
Yn0

where n0 =
m−1∑
j=0

dk−m+j2
j.

3.2 r+
α and r−α as joint spectral quantities

Let r−α = lim inf log uα(n)
logn

and r+
α = lim sup log uα(n)

logn
.

In this section we prove that r+
α and r−α are related to the joint spectral radius

and the joint spectral subradius of the matrices F0 and F1. This had already
been proved in [8] for α = 2+, but this result came from a precise numerical
analysis of the matrices, and could not be applied to an arbitrary pair {F0, F1}.
Here we adopt a more abstract approach, based on the knowledge of the
structure of the automaton.

Let |.| denote some norm on Rd, and ‖.‖ some norm on Rd×d.

Lemma 19 With the notations of Theorem 17, if there is a sequence of vectors
Yni, for increasing ni such that limi→∞ log |Yni|/ log ni ≥ c, then

r+
α ≥ c.

16



PROOF. By construction, the sum of entries in Yn is the total number of
words of length n−1, n, n+1 or n+2 in AUA, that is 4u(n−3)+4u(n−2)+
4u(n−1)+4u(n), which is at most 60u(n−3), since u(n−3+k) ≤ 2ku(n−3).
As norms on Rd are equivalent, there exist a positive constant K such that
|Yn| ≤ Ku(n−3) for all n. If limi→∞ log |Yni |/ log ni ≥ c, this means that there
is a subsequence (n′i) of (ni−3) such that limi→∞ log u(n′i)/ log (n′i) ≥ c. Then
r+
α ≥ c. 2

Theorem 20 Let F0, F1 be given by Theorem 17 Then,

r+
α = log2 ρ̂({F0, F1}).

r−α ≤ log2 ρ̌({F0, F1}).

PROOF. First, it is clear that r+
α ≤ ρ̂({F0, F1}) and r−α ≤ ρ̌({F0, F1}). We

have seen in Corollary 18 that uα(n) can be written as

uα(n) = RFd0 · · ·Fdk−m−1
Yn0

with n0 < 2m. It follows that uα(n) = RYn ≤ |R| ‖Fd0 · · ·Fdk−m−1
‖ |Yn0| ≤

K‖Fd0 · · ·Fdk−m−1
‖, where K is a real constant. So,

r−α = lim inf
log uα(n)

log n
≤ lim inf

log2 ‖Fd1 · · ·Fdk−4
‖

log2 n
= log2 ρ̌({F0, F1})

and

r+
α = lim sup

log uα(n)

log n
≤ lim sup

log2 ‖Fd1 · · ·Fdk−4
‖

log2 n
= log2 ρ̂({F0, F1}).

We now prove the converse for the joint spectral radius. It is well known
(see [7]) that there exists an infinite product . . . Fd2Fd1 such that

lim
k→∞
‖Fdk . . . Fd1‖1/k = ρ̂.

So, there is an index j such that

lim sup
k→∞

|Fdk . . . Fd1ej|1/k = ρ̂,

where ej is the jth vector of the canonical basis. Moreover it is clear from the
construction of Bα that for any index j, there is an h such that the vector Yh
has the jth entry larger than zero. Defining ni = 2kh+d12

k−1 +d22
k−2 + . . .+

dk−12 + dk, so that Yni = Fdk . . . Fd1Yh, we have that

lim sup
ni→∞

|Yni |1/k = ρ̂,
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and taking logarithms we can apply Lemma 19 to conclude that r+
α ≥ log2 ρ̂({F0, F1}).

2

The joint spectral radius and subradius have been the subject of intense re-
search during the last decade, and, even if they are notoriously difficult to
compute, accurate techniques exist to estimate their value. See [7] for a survey.
In the next section we apply some of these techniques to find good estimates
in the case α = 7/3.

4 The particular case α = 7/3

4.1 The automata

In the particular case of α = 7/3, we get an automaton A7/3 with 13 states:
(aaba,−), (aabb,−), (aba,−), (abb,−), (aaba, 0), (aba, 0), (abb, 0), (aaba, 1),
(aabb, 1), (aba, 1), (aaa, 2), (aba, 2), (abb, 2).

The automaton B7/3 has 141 states, among which 10 are accepting. Four states
are transient and can be ignored for asymptotic study, so we get incidence
matrices of dimension 137.

4.2 Numerical analysis

Theorem 17 provides a matrix expression for u7/3(n), involving two matrices
F0 and F1 of dimension 548. In this section we briefly describe the result of
numerical analysis of this pair of matrices. Figure 1 represents the evolution of
(a) u7/3(n) and (b,c) (1 + log u7/3(n))/ log n for the first few n, where 1/ log n
has been added to accelerate convergence. The graph (b) seems to indicate
convergence to 2, but zooming it (c) reveals that the exponent oscillates.

As for overlap-free words, one could wonder whether for asymptotic study, the
dimension of the matrices can be reduced. It appears that there is a permu-
tation of the coordinates that puts F0 and F1 under block triangular form.
This means that there are several seperate strongly connected components
in the automaton. The largest connected component has dimension 227 and
moreover, it is the only connected component whose submatrices have a norm
larger than 2. Since we know that for any increasing sequence of natural num-
bers n, u7/3(n) grows superlinearly, then the asymptotics is completely ruled
by this component.
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(a)

(b) (c)

Fig. 1. (a) The values of u7/3(n) for 1 ≤ n ≤ 1000; (b) (1+log u7/3(n))/ log n against
log n; (c) (1 + log u7/3(n))/ log n against n, zoomed around the apparent limit.

By analysing the joint spectral quantities of this component, we get: r−7/3 <

2.0035 < 2.0121 < r+
7/3 < 2.1050. We were not able to find a better lower

bound for r−7/3 than the bound for overlap-free words from [8], 1.2690 < r−2+ ≤
r−7/3. If we knew that r−7/3 = log2 ρ̌({F0, F1}), then standard techniques for

approximating the joint spectral subradius would give 1.8874 < r−7/3.

For the sum, we get
∑
m<n

u7/3(n) = Θ(nr7/3) with r7/3 = 2 log2 ρ(F0 + F1) '
3.0053.

5 Conclusion and perspectives

In this paper we generalize recent results on overlap-free words to α-power-free
words for arbitrary rational α ∈ (2, 7/3]. The generalization is far from being
straightforward. As an example, it was known that for overlap-free words, the
quantities r+ and r− can be expressed in terms of joint spectral quantities
of a set of matrices. However, the proof of this result involved a precise and
numerical analysis of the matrices F0 and F1, so that it was not clear at all
that the result could be generalized for arbitrary α. The construction proposed
in this paper allows one to derive a proof for arbitrary α, at least for r+

α ; we
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only get an inequality for r−α .

For asymptotic behaviour (that is, the quantities r+
α and r−α ) it is possible

to simplify the matrices. For instance, for overlap-free words it was possible
to lower the dimension from 30 × 30 to 20 × 20. For 7/3-free words, it was
possible to lower it from 548 × 548 to 227 × 227. This large number for such
a “simple” value for α (the denominator is small) is a bit discouraging, and
it seems that the number of states for the automaton grows very rapidly with
the complexity of α. This is the minimal dimensions that one can reach by
applying permutations on the initial matrices. But we do not know whether it
is possible to still decrease the dimension with more complex transformations.
Also, is it possible to compute a priori the minimum number of states that
one needs?

The asymptotic behaviour of the sum sα(n) =
∑
m<n

uα(n) can be described pre-

cisely when α ∈ (2, 7/3] is rational, as we can compute rα = log2 ρ(F0 + f1).
The next step is to study how this quantity depends on α: is it strictly in-
creasing? What are the discontinuities? How to express rα if α is not rational?
We expect a devil-staircase-like behaviour.

Clearly, these questions also have interest for the limits r−α and r+
α . However,

they seem much more difficult, as even for overlap-free words only approxima-
tions are known.

Also very challenging is to adapt this study to a ternary or larger alphabet.
To do this, one has to find a replacement for the Thue-Morse morphism and
a new structure lemma. It is not obvious that this is even possible: indeed
it might be that RT ′(k) = RT (k) for k ≥ 3 (where the threshold RT ′(k),
introduced by Kobayashi [10], is such that the growth is polynomial when
RT (k) < α < RT ′(k), and not polynomial when α > RT ′(k); Lemma 1
states that RT ′(2) = 7/3) and there is no more polynomial growth. This is
conjectured by Shur [16], and supported by some numerical evidence.
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