
depending on the communication
latency and physical model of sensed
values (given as differential equations). 

Runtime Environment - The framework
is backed by jDEECo, an implementa-
tion of DEECo in Java. This runtime
environment includes scheduling of
component processes, dynamic
grouping of components into ensem-
bles, and distributed knowledge
exchange. Technically, jDEECo
employs gossip-style network commu-
nication to uniformly address IP-based,
as well as peer-to-peer broadcast-style
WPAN networks.

Case Studies and Evaluation
To date, DEECo has been a successful
part of the EU FP7 IP project ASCENS
and employed in a number of case

studies, including intelligent vehicle
navigation, emergency coordination,
and ad-hoc cloud deployment. Case
studies have confirmed that DEECo
represents a significant development
simplification while preserving robust-
ness and dependability properties of the
designed system.

Future Work
In the next research and development
steps, we intend to focus on enhancing
the framework of efficient communica-
tion means in situations of limited con-
nectivity, handling uncertainty of
knowledge, and verification in the pres-
ence of dynamicity.

Links:

http://www.d3s.mff.cuni.cz
https://github.com/d3scomp/JDEECo 

References:

[1] K. Beetz and W. Böhm:
“Challenges in Engineering for
Software-Intensive Embedded
Systems”, in Model-Based
Engineering of Embedded Systems,
Springer, 2012, 3–14
[2] T. Bures et al. “DEECo – an
Ensemble-Based Component System”,
in proc. of CBSE’13, ACM, 2013,
81–90
[3] J. Keznikl et al. “Design of
Ensemble-Based Component Systems
by Invariant Refinement,” in proc. of
CBSE’13, ACM, 2013, 91–100. 

Please contact:

Tomáš Bureš
Charles University in Prague, Czech
Republic
E-mail: bures@d3s.mff.cuni.cz 

ERCIM NEWS 97   April 201418

Special Theme: Cyber-Physical Systems

Computer networks, such as the
Internet, are playing an increasingly
important role in our society. Despite
this, they are too often designed and
managed using ad-hoc techniques that
are not as mature as other engineering
and scientific disciplines. This is largely
a consequence of the dependence on
proprietary technologies and lack of
open interfaces. Today’s networks con-
sist of various types of switches, routers
and packet-processing middleboxes.
Switches and routers are architecturally
composed of two components: a data
plane and a control plane. The data plane
handles line-rate forwarding of packets
that arrive at the device. The control
plane handles the logic needed to con-
figure the forwarding rules in the data
plane. Traditional switches and routers
have proprietary firmware and control
logic implementations. This not only
inhibits vendor interoperability, but also
hampers flexibility, as operators cannot
introduce new control plane function-
ality or protocol into a switch.

With the recent emergence of Software-
Defined Networking (SDN), the net-

working industry is on the verge of a
profound transformation. SDN is an
emerging paradigm that aims to alle-
viate these issues by decoupling the
data and control planes. SDN out-
sources the control of packet-for-
warding switches to a set of software
controllers running on a server cluster.
This enables operators to run third-party
software or create their own to build
networks that meet their specific, end-
to-end requirements, such as fine-
grained policy enforcement, Quality of
Service, and, of course, efficiency [2].
In SDN, control applications operate on
a global, logically-centralized view,
achieving a higher level of abstraction
for managing networks. This view
enables simplified programming
models to define a high-level policy
(i.e., the intended operational behaviour
of the network) that can be compiled
down to a collection of forwarding rules
and installed in the data plane. This is in
stark contrast to today’s manual, error-
prone, ad-hoc approaches.

As such, SDN promises to radically
change the way networks are managed

and operated. Indeed, for the first time
since the early days of computer net-
works, it is becoming possible to enable
network operators to design and imple-
ment their own network-controlling
software and develop new functionality
and services for end-users.  A pio-
neering initiative in this direction is the
OpenFlow protocol [3], which allows a
software controller to dynamically
manage the state and the behaviour of
network elements.

However, while offering unprecedented
potential, SDN is still in its infancy and
much research effort is needed to better
define its foundations: What are the
abstractions that promote a simple yet
expressive and efficient network-pro-
gramming model? How will these
abstractions yield efficient implementa-
tions that support rapid reactions to
unplanned network events? Is it practi-
cally feasible to devise efficient abstrac-
tions that may still lend themselves to
automated verification of integrated
network systems? For instance, is it
possible to prove that a network system
satisfies key properties that would

The Software-Defined Network Revolution

by Marco Canini and Raphaël Jungers

Thanks to the introduction of Software-Defined Networking (SDN) [1], it is becoming possible, for the

first time since the early days of computer networks, for operators to design and implement their

own software in order to operate and customize the network to specific needs. But this comes with

challenges involving many different disciplines.



ERCIM NEWS 97   April 2014 19

ensure smooth network operation? How
to design a logically centralized (i.e.,
physically distributed) control platform
that adequately and cost-effectively
provides the required levels of avail-
ability, responsiveness and scalability?
What control functionality can we keep
distributed, what should we centralize?
How can we achieve optimal dynamical
resource allocations and fairness among
users? Also, what methodologies can
we devise to troubleshoot these systems
when things in practice do not work
according to theory (e.g., due to hard-
ware malfunctioning)? Finally, what
strategies should we use to deploy SDN
into existing networks? We believe that
these questions require us to apply prin-
ciples and techniques from a large body
of different disciplines, including
Operations Research, Control Theory,
Distributed Systems, Programming
Languages, Software Engineering,
Security, and Embedded Systems.

As such, SDN systems share many chal-
lenging technical problems with other
Cyber-Physical Systems (CPS): (i) they
have to cope with human and unpre-
dictable demand, (ii) they are akin to a
Systems-of-Systems structure com-
prising a two-tier distributed system, in
which each node has heterogeneous
processing capabilities and a large part
of their computational resources are
embedded (e.g., router firmware, NPUs,
FPGAs), and (iii) constraints from the
physical world are strong and various
(e.g., link bandwidths and latencies, or

failures due to random errors or mali-
cious behaviours). On top of that, SDN
systems constitute an opportunity for
other CPS that might need to rely on a
programmable and modular network of
computing and forwarding resources.
Perhaps even more than for other CPS,
SDN seems to have only one limitation
to our ability to control them: our own
imagination.

At UCLouvain, we have built a team
centred on the new SDN paradigm in
order to leverage its possibilities and
develop the new generation of computer
networks. Our goal is to build a rigorous
and systematic methodology for
designing and operating SDN systems,
and we are convinced that the only fea-
sible approach is to combine advances
in Electrical Engineering, Computer
Science and Applied Mathematics,
ranging from computer networking to
software and requirements engineering,
optimization and control theory. Our
research group includes faculty, stu-
dents, and post-docs from various back-
grounds in these disciplines. More
details on this project are available at
our website: http://sites.uclouvain.be/
arc-sdn/. PhD and Post-doc positions
are available within our team.

Link:

http://sites.uclouvain.be/arc-sdn/

References:

[1]  N. Feamster, J. Rexford, E.
Zegura: “The road to SDN: An
intellectual history of programmable
networks,” ACM Queue 11, 12
(December 2013)

[2] “Ethane: taking control of the
enterprise,” in Proceedings of ACM
SIGCOMM, 2007

[3]  N. McKeown et al.: “OpenFlow:
enabling innovation in campus
networks,” ACM SIGCOMM Comput.
Commun. Rev. 38, 2 (March 2008),
69–74.

Please contact:

Marco Canini and Raphaël Jungers 
Université catholique de Louvain,
Belgium.
E-mail: marco.canini@uclouvain.be,
raphael.jungers@uclouvain.be

Figure 1: Example Software-defined

network architecture: the control plane is

separated from the data plane and control

applications operate on top of a global

(possibly virtualized) network view.


