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Vladimir Y. Protasov†, Raphaël M. Jungers,Vincent D. Blondel‡

Abstract

We propose a new approach to estimate the joint spectral radius
and the joint spectral subradius of an arbitrary set of matrices. We
first restrict our attention to matrices that leave a cone invariant.
The accuracy of the algorithms, depending on geometric properties of
the invariant cone, is estimated. Our algorithms generalize previously
known methods which were elaborated for certain particular classes
of invariant cones. Then, making use of a lifting procedure, we ex-
tend our approach to any set of linear operators, without the common
invariant cone assumption. In order to show the good properties of
our methods, we consider applications to problems in combinatorics,
number theory and discrete mathematics, and improve the state of
the art for these problems.

1 Introduction

The joint spectral radius ρ̂(M) of a set of matrices M is the expo-
nent of the maximal asymptotic growth of a product of matrices taken
from this set, when the length of the product grows. The joint spec-
tral subradius ρ̌(M) (also called in the literature the lower spectral
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radius) is the minimal growth counterpart. They are formally defined
as follows:

ρ̂(M) = lim
k→∞

max {‖Ad1 · · ·Adk‖
1/k : Ai ∈M}, (1)

ρ̌(M) = lim
k→∞

min {‖Ad1 · · ·Adk‖
1/k : Ai ∈M}.

Both these limits exist for all sets of matrices and do not depend on
the norm in Rn. In the simplest case, when the set M consists of
one operator A, both the joint spectral quantities become the usual
spectral radius ρ(A), which is the largest modulus of eigenvalues of A.
This follows from Gelfand’s formula ρ(A) = limk→∞ ‖Ak‖1/k.

The joint spectral radius appeared in [42], the joint spectral subra-
dius in [24]. They have found numerous applications in various areas:
in the control of switched systems [3, 28], in subdivision algorithms
for approximation and curve design (see [20] for many references), in
the study of wavelets and of refinement equations [15,39], in probabil-
ity theory [36], and in many problems of discrete mathematics, graph
theory and combinatorics. See [25] for a survey on these quantities.

The issue of computing the joint spectral radius has also been stud-
ied in many works. Several negative results exist, showing the diffi-
culty of this problem. We recall them in Theorems 1 and 2 below.
Nevertheless, due to its practical importance, many authors have pro-
posed and analyzed different methods of computation or approxima-
tion of the joint spectral radius. The first algorithms that appeared
were based on exhaustion of matrix products in a special way [15,22].
For some sets of matrices they can work fast, but no theoretical esti-
mate of the rate of convergence is available. Afterwards several algo-
rithms with theoretically guaranteed rate of convergence were elabo-
rated. Most of them construct a common Lyapunov function in order
to approximate the joint spectral radius of the matrices. This func-
tion can be constructed with polytopes [23, 33], ellipsoids [2, 10], or
”sums of squares” [32]. Also, lifting techniques have been proposed
to improve these results [9, 34, 43]. The computational complexity of
these methods grows dramatically with the dimension of the matrices.
For large dimensions they cannot provide us with good approximation
of the joint spectral radius within a reasonable computation time, al-
though they can work fast in many special cases. This is not a surprise
because of the negative results detailed below. These results, however,
leave us the opportunity, at least theoretical, to come up with algo-
rithms which work efficiently not for all matrices but for some classes.

On the other hand, all the algorithms we mentioned only deal with
the joint spectral radius ρ̂. As for the subradius ρ̌, to the best of our
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knowledge, no algorithm is known, although this notion is also very
important in applications. In this paper we consider sets of matrices
that have a common invariant cone. These sets of matrices are impor-
tant for several reasons.
First, special properties of such operators are well known (such as
Perron-Frobenius theory; see also [27] for properties related to joint
spectral quantities).
Moreover, this case appears very often in applications. For instance,
the trackability of sensor networks, the capacity of codes [8, 31], or
the analysis of repetition-free languages in combinatorics on words
[6, 26] involve nonnegative matrices (for which the positive orthant
Rn

+ = {x ∈ Rn | x1, . . . , xn ≥ 0} is a common invariant cone).
Finally as we will see, a simple lifting procedure allows to obtain a
set of matrices that leaves a cone invariant, given an arbitrary set of
matrices. In view of this, there is no loss of generality to analyze such
sets.

For any cone and any set of matrices leaving this cone invariant we
introduce the notions of joint conic radius and joint conic subradius.
We show that, first, these notions are both efficiently computable in
the framework of conic programming, and, second, they can be used
to approximate the joint spectral radius and subradius respectively.
This idea was inspired by recent works where the joint conic radius
was proposed as an approximation for the joint spectral radius in the
special case where the invariant cone is the positive orthant [13,26].

Outline. In this paper we extend the notion of joint conic ra-
dius to an arbitrary cone and introduce its analogue for the subradius
(Section 3). Then we prove the main relations between the spectral
and conic radii (Theorems 4 and 7), and study their dual analogues
(Subsection 3.3). Iterating these relations we come to approximation
algorithms for the joint spectral radius and subradius. These results
are presented in Section 4, where theoretical estimates of the rate of
convergence of the algorithms are also derived. Moreover, applying
the lifting procedure we extend our approach to all matrices, possi-
bly without invariant cone. (Note, however, that for the subradius
an additional condition will be necessary, so that no nontrivial rate
of convergence will be available for arbitrary matrices.) In particular,
we shall see that the “best ellipsoidal norm algorithm” (see [10]) can
be viewed as a particular case of this general framework. Finally, in
section 5 we apply our algorithms to well-known problems in differ-
ent areas of number theory or combinatorics, namely the asymptotics
of the overlap-free language, the density of ones in Pascal’s rhombus,
and the analysis of Euler’s partition function. The dimension of the
matrices are from 5 to 20. We shall see that for such sizes, our meth-
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ods provide a satisfying accuracy. The proof of some technical, or
not fundamental results presented in this paper are to be found in an
appendix.

2 Notation and auxiliary results

Let us recall some important results on the joint spectral quantities.
For any k ∈ N we denote by Mk the set of all products of length k of
matrices taken in M :

Mk =
{
Ad1 · · ·Adk

∣∣∣ Adj ∈M, j = 1, · · · , k
}
.

The two following facts are well-known:

Proposition 1. With the notations above, for any set of matrices M
and any k ∈ N,

ρ̂(M) = [ρ̂(Mk)]1/k , ρ̌(M) = [ρ̌(Mk)]1/k.

Proposition 2. With the notations above, for any submultiplicative
norm || · || one has

max {ρ(A) : A ∈Mk} ≤ ρ̂(M)k ≤ max {||A|| : A ∈Mk} ,

and

ρ̌(M)k ≤ min {ρ(A) : A ∈Mk} ≤ min {||A|| : A ∈Mk}.

For the joint spectral radius an equivalent definition exists, which
is very convenient in practice.

Proposition 3. [4] For any bounded set M such that ρ̂(M) 6= 0, the
joint spectral radius can be defined as

ρ̂(M) = inf
||·||

sup
A∈M

{||A||}.

The joint spectral quantities of the setM, have motivated intense
research over the past decades (see [25] for a survey). We have the
following negative results:

Theorem 1. [5,12] The problem of determining, given a set of matri-
ces Σ, if the semigroup generated by Σ is bounded is Turing-undecidable.
The problem of determining, given a set of matrices Σ, if ρ̂(Σ) ≤ 1 is
Turing-undecidable.
These two results remain true even if Σ contains only nonnegative
rational entries.
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Theorem 2. [11, Theorem 2] Fix any K > 0 and 0 < L < 1. An
algorithm providing the value ρ̃ as an approximation of the joint spec-
tral subradius ρ̌ of a given set is said to be a (K,L)-approximation
algorithm if |ρ̃− ρ̌| < K + Lρ̌.

• There exists no (K,L)-approximation algorithm for computing
the joint spectral subradius of an arbitrary set Σ.

• For the special cases where Σ consists of two integer matri-
ces with binary entries, there exists no polynomial time (K,L)-
approximation algorithm for computing the subradius unless P =
NP .

Despite these discouraging facts, many researchers have proposed
approximation algorithms for the joint spectral radius, because of its
growing interest in practical applications. Some recent papers ap-
plied semidefinite programming techniques to get approximations of
the joint spectral radius. It has been shown independently by several
authors [2, 10] that computing the best ellipsoidal norm for a set of
matrices can be done efficiently, and it provides an effective upper
bound for the joint spectral radius. By ”best ellipsoidal norm” we
mean the minimal γ > 0 such that the following SDP program has a
solution:

ATi PAi � γ2P ∀Ai ∈M (2)
P � 0.

Indeed, it is equivalent to say that

γ = max {||A|| : A ∈M},

where || · || is the matrix norm induced by the vector norm |x| =√
xTPx. These norms are precisely the norms whose unit balls are

ellipsoids. So, the above equation, together with Proposition 2 yield
ρ̂(M) ≤ γ. The next theorem tells us how tight this bound is:

Theorem 3. [2, 10] For an arbitrary set of m matrices M ⊂ Rn×n,
the best ellipsoidal norm approximation ρ̂∗ of its joint spectral radius
ρ̂ satisfies

max
{

1√
n
,

1√
m

}
ρ̂∗ ≤ ρ̂ ≤ ρ̂∗ .

Moreover, due to Proposition 1 this procedure can be iterated in
such a way that one obtains an algorithm providing an arbitrary ac-
curacy within a computation time that can be computed a priori.
Indeed, if ρ̂∗ is the ellipsoidal norm approximation for Mk, then

1
n1/2k

ρ̂∗1/k ≤ ρ̂ ≤ ρ̂∗1/k .
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More recently these techniques were generalized in the framework
of Sum-of-Squares computation [32], improving the accuracy of the
estimate. Finally, [26] proposes similar semidefinite methods to get
approximations of the joint spectral subradius. However, no bound
on the accuracy of these methods have been provided.

3 Main results

Let K ⊂ Rn be a convex cone. In the following by ”cone” we mean a
closed, pointed, nondegenerate cone (possessing a nonempty interior)
and with the apex at the origin. Any cone defines a corresponding
order in Rn: we write x ≥ y (x > y) for x − y ∈ K (respectively
x− y ∈ intK). A matrix A possesses an invariant cone K if AK ⊂ K.
In this case we say that A is nonnegative and write A ≥ 0. If K is
invariant for all matrices of some setM, then it is called an invariant
cone of that set.

Definition 1. For a given compact set M with an invariant cone K
we consider the values

σ̂K(M) = inf
{
λ ≥ 0

∣∣ ∃ v > 0 Av ≤ λv ∀A ∈M
}
,

σ̌K(M) = sup
{
λ ≥ 0

∣∣ ∃ v ≥ 0, v 6= 0 Av ≥ λv ∀A ∈M
}

(3)
and call them the joint conic radius and the joint conic subradius
respectively.

These values depend not only on the set M, but also on the cone
K ⊂ Rn. In the sequel we assume the cone K to be fixed, and use the
short notation σ̂(M), σ̌(M) or just σ̂, σ̌, if it is clear which set M is
considered.

These quantities are defined only if the setM admits an invariant
cone. However, if this is not the case a simple procedure allows one
to obtain a set of matrices that admits an invariant cone, without
changing fundamentally the joint spectral quantities:

Proposition 4. [9] Let M be a set of matrices. The semidefinite
lifting M̃ of M :

M̃ = {Ã : Rn2 → Rn2
X → ATXA} (4)

leaves the cone Kn of symmetric positive semidefinite matrices invari-
ant. Moreover it satisfies ρ̂(M̃) = ρ̂(M)2, ρ̌(M̃) = ρ̌(M)2.
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Figure 1: The constant α. For the positive orthant in R2, α = 1/2. That is,
for an arbitrary convex set in R2

+, one is ensured that there exists a point
v ∈ G such that for all x ∈ G, 2v ≥ x.

3.1 The joint spectral radius

In this section we find a relation between the joint spectral radius and
the joint conic radius. We start with two simple lemmas. Let us have
a compact set M of matrices in Rn. In the following we call convex
body a convex compact set with a nonempty interior. To estimate the
joint spectral quantities we use the following simple fact.

Lemma 1. [38] If there exists a convex body P ⊂ Rn such that AP ⊂
λP for all A ∈M, then ρ̂(M) ≤ λ. If there exists a closed set Q ⊂ Rn

such that 0 /∈ Q and AQ ⊂ λQ for all A ∈M, then ρ̌(M) ≥ λ.

As a corollary we obtain

Lemma 2. Let a set M possess an invariant cone K. If for some
v ∈ intK we have Av ≤ λv for all A ∈ M, then ρ̂ ≤ λ. If for some
v ∈ K \ {0} we have Av ≥ λv for all A ∈M, then ρ̌ ≥ λ.

Proof. For the first assertion we apply Lemma 1 for the body P =
(v −K) ∩ (−v +K). The second one follows from the same Lemma 1
for the set Q = v +K.

In order to find an approximation relation between ρ̂ and σ̂ we
introduce the following geometrical characteristic of convex cones:

Definition 2. For a given cone K ⊂ Rn the value α(K) is the largest
number such that for any convex compact set G ⊂ K there exists
v ∈ G, for which 1

α v ≥ G .

In other words, for any γ < α(K) and for any convex compact
set G ≥ 0 there is u ≥ G such that γu ∈ G. Clearly, α is an affine
invariant of a cone.
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Theorem 4. For any set M of operators with an invariant cone K
we have

α σ̂ ≤ ρ̂ ≤ σ̂,

where α = α(K), σ̂ = σ̂(M), ρ̂ = ρ̂(M).

Proof. The inequality ρ̂ ≤ σ̂ follows directly from Lemma 2. To prove
the inequality ασ̂ ≤ ρ̂ recall (Proposition 3) that for any q > ρ̂ there is
a norm in Rn such that the corresponding matrix norm of each matrix
in M is smaller than q. Denote by G the intersection of the unit ball
of that norm with the cone K; then AG ⊂ qG for any A ∈ M. On
the other hand, for any γ < α there is u ≥ G such that γu ∈ G.
Observe that in this case intG 6= ∅, hence u > 0. It follows that
A(γu) ∈ AG ⊂ qG, and so Au ∈ q

γG ≤
q
γu. Thus, Au ≤ q

γu for all
A ∈ M. Whence σ̂ ≤ q

γ . This holds for arbitrary q > ρ̂ and γ < α,

therefore σ̂ ≤ ρ̂
α , which concludes the proof.

Let us add that this theorem had already been proved in the par-
ticular case of nonnegative matrices [13].

Theorem 5. For any cone K ⊂ Rn we have α(K) ≥ 1
n .

In the proof we use several facts of convex geometry. For a given
convex body G ⊂ Rd and for any point z ∈ intG we consider the
Minkowski-Radon constant

τz(G) = inf
{
t > 0

∣∣∣ ∃ x, y ∈ ∂G , z = tx+ (1− t)y
}
.

In other words, τz(G) is the minimal possible ratio |z−y||z−x| , where x, y are
the points of intersection of a line passing through z with the boundary
of G. By τ(G) we denote the value τz(G) for the point z = grG =

1
VolG

∫
G xdx (the center of gravity of G), where VolG =

∫
G dx is the

volume of G. The well-known Minkowski-Radon theorem [40] states
that τ(G) ≥ 1

d for any convex body G. For d-dimensional simplices
∆ one has τz(∆) = 1

d for z = gr∆ and τz(∆) < 1
d for all other points

z ∈ ∆. Another well-known fact will be formulated in the following
Lemma. We call a hyperplane H a plane of support for the convex
set G if H ∩ ∂G 6= ∅ and G lies in one of the closed half-spaces with
respect to H.

Lemma 3. If a convex compact set G lies in a cone K ⊂ Rn and
contains at least one interior point of K, then there is a hyperplane of
support H for G such that

1) H does not separate the set G from 0;
2) the cross-section H ∩K is bounded and has its center of gravity

in G.
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For the proof it suffices to consider the set G′ = Conv{G, 0} and
to choose a hyperplane H that cuts from the cone K a convex body
that contains G′ and has the smallest possible volume. See [1, p. 229]
for details.

Proof. of Theorem 5. Let G be an arbitrary convex subset of a cone
K. If it does not intersect the interior of K, then it lies on a face of
that cone, which is also a cone of a smaller dimension. Invoking the
induction argument, we get α(K) ≥ 1

n−1 >
1
n . Assume now that G ∩

intK 6= ∅. Applying Lemma 3, we obtain a hyperplane of support H,
which does not separate G from the origin. Let us denote S = K ∩H
and v = grS ∈ G. Let u = nv. The set S′ = (u − K) ∩ H is
homothetic to S with respect to its center of gravity v with the factor
−(n−1), i.e., S′ = v−(n−1)(S−v). By the Minkowski-Radon theorem
τ(S′) ≥ 1

n−1 , therefore S ⊂ S′. Since the hyperplane H separates u
from G, it follows that for any x ∈ G the segment [x, u] intersects H,
i.e., it intersects the set S. Thus, for any x ∈ G the segment [x, u]
also intersects S′. This means that G ⊂ (u−K), and so u ≥ G. Since
1
n u = v ∈ G , it now follows that α(K) ≥ 1

n .

Thus, to estimate the joint spectral radius by the value σ̂(M)
one needs to compute α(K) for the invariant cone of M. Theorem 5
guarantees that α ≥ 1

n for any cone in Rn. Therefore, we always have

1
n
σ̂ ≤ ρ̂ ≤ σ̂ .

For some cones we have better bounds. In the following theorem we
find precise values of α for three important cases: for n-hedral cones
(cones bounded by n hyperplanes passing through the origin) for the
cone Kn of symmetric positive semidefinite n×n-matrices, and for the
Lorentzian (or Euclidean, of right spherical) cone.

Theorem 6. For any n-hedral cone in Rn we have α = 1
n ; for the

Lorentzian cone α = 1
2 ; for the cone Kn of positive semidefinite

n× n-matrices we have α = 1
n .

The proof is to be found in Appendix A.

3.2 The joint spectral subradius

A straightforward application of Lemma 2 yields the inequality σ̌ ≤ ρ̌.
However, in contrast to Theorem 4, there is no inverse estimate. More
precisely, there is no positive function of the cone C(K) such that
ρ̌(M) ≤ C(K)σ̌(M) for any set of matricesM that leavesK invariant.
We give an example for the case K = Rn

+, and the reader will easily
generalize this construction for an arbitrary cone.
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Example 1. Let M = {A1, . . . , An} ⊂ Rn, where Aj is a matrix
whose entries of the jth row are all zeros, and all other entries are
ones. Since AiAj = (n− 1)Ai for all i, j, it follows that Ad1 · · ·Adm =
(n − 1)m−1Ad1 for any product of length m. Hence ρ̌ = n − 1. On
the other hand, σ̌(M) = 0. Indeed, any nonnegative vector v 6= 0
has at least one positive coordinate vj , while (Ajv)j = 0. Hence the
inequality Ajv ≥ λv implies λ = 0.

Thus, to obtain an inverse inequality for the subradii we need to
impose some extra conditions for the matrices. This situation can
actually not be avoided, since Theorem 2 tells us that in general there
is no approximation algorithm for the subradius. Example 1 shows
that an invariant cone does not suffice. It appears, however, that
the existence of a second invariant cone does the job. We start with
introducing some more notation. Let us have a cone K ⊂ Rn. We say
that a convex closed cone K ′ is embedded in K if (K ′ \{0}) ⊂ intK. In
this case we call {K,K ′} an embedded pair. Note that the embedded
cone K ′ may be degenerate, i.e., may have an empty interior. An
embedded pair {K,K ′} is called an invariant pair for a matrix A if
the cones K and K ′ are both invariant for A. The same is for invariant
pairs of a set M.

Definition 3. For a given embedded pair {K,K ′} the value β(K,K ′)
is the smallest number such that for any line intersecting K and K ′ by
segments [x, y] and [x′, y′] respectively (with [x, x′] ⊂ [x, y′]) one has
1 ≤ |x−y

′|
|x−x′| ≤ β.

Lemma 4. Let M be a set of matrices with an invariant embedded
pair (K,K ′) such that ρ̌(M) > 0. For any p ∈ [0, ρ̌] there is a closed
convex set Q ⊂ K ′ (that may be unbounded) not containing the origin,
such that AQ ⊂ pQ for any A ∈M.

Proof. We suppose without loss of generality that ρ̌(M) = 1. If this
is not the case we can just scale the matrices by dividing by ρ̌. Take
v0 ∈ K ′. We define the set

Q = Conv{λAv0 : A ∈Mk, k ∈ N, λ ≥ 1}.

Since the cone K ′ is invariant, Q ⊂ K ′, and obviously AQ ⊂ Q. Hence,
for all p < 1, AQ ⊂ pQ. It remains to show that Q does not contain
the origin. If this were the case, we could define a series of matrices
Ak ∈ Mk : k ∈ N such that Akv0 → 0. However, since v0 ∈ intK, this
implies that ||Ak|| → 0, and so ρ̌(M) < 1, which is in contradiction
with the assumptions.
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Theorem 7. For any set M with an invariant pair {K,K ′} we have

σ̌ ≤ ρ̌ ≤ βσ̌,

where β = β(K,K ′), σ̌ = σ̌K(M), ρ̌ = ρ̌(M).

Proof. The inequality σ̌ ≤ ρ̌ follows from Lemma 2. To prove that
ρ̌ ≤ βσ̌ we apply Lemma 4 and get a set Q such that AQ ⊂ pQ∀A ∈
M.

Draw any hyperplane of support for Q that separates Q from the
origin and makes a bounded cross-section of the cone K. Denote this
hyperplane by H, let S = H ∩K,S′ = H ∩K ′, and v ∈ H ∩Q. Let us
show that v ≤ βQ (the order is with respect to the cone K). For any
ray on H starting at the point v and meeting the boundaries of K ′

and K at points x′ and x respectively one has |x−v||x−x′| ≤ β. Hence the
set homothetic to S with the factor

(
1− 1

β

)
with respect to v contains

the set S′. This yields that S′ ⊂
(

1
β v +K

)
, therefore Q ⊂

(
1
β v +K

)
,

which means 1
β v ≤ Q and hence v ≤ βQ. Since AQ ⊂ pQ, it follows

that 1
β v ≤

1
pAQ. On the other hand, v ∈ Q, whence 1

β v ≤
1
pAv for

any A ∈ M. This means that σ̌ ≥ p
β . Taking a limit p → ρ̌, we get

βσ̌ ≥ ρ̌, from which the theorem follows.

Remark 1. A simple compactness argument shows that β < ∞ for
any embedded pair. If the cone K is fixed, then the value β(K,K ′) is
nondecreasing in the second variable, i.e., ifK ′1 ⊂ K ′2, then β(K,K ′1) ≤
β(K,K ′2). The smallest possible value β = 1 is attained precisely when
dimK ′ = 1, i.e., when K ′ is a ray. If, on the other hand, a sequence
of cones {K ′j}j∈N approaches the boundary of K, that is there are
xj ∈ K ′j and x ∈ ∂K, x 6= 0 such that xj → x as j → ∞, then
β(K,K ′j)→ +∞.

Now we compute the values β(K,K ′) for several important cases
of embedded pairs. For a given point x = (x1, . . . , xn) ∈ Rn

+ we
denote by xmin and xmax its smallest and greatest entries respectively.
Similarly, for X ∈ Kn, λmin and λmax denote the smallest and greatest
eigenvalues. Let us recall that λmax = max|u|=1(Xu, u) and λmin =
min|u|=1(Xu, u). We write Kϕ for the Lorentzian cone of angle ϕ < π

2 .

Proposition 5. If Rn
+,c =

{
x ∈ Rn

+

∣∣ xmax ≤ cxmin

}
, then

β(Rn
+,Rn

+,c) = c2;

if Kn,c =
{
X ∈ Kn

∣∣ λmax ≤ cλmin

}
, then

β(Kn,Kn,c) = c2;
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for two coaxial Lorentzian cones Kϕ and Kψ (ϕ > ψ) we have

β(Kϕ,Kψ) =
( sinϕ

sin(ϕ− ψ)
)2
.

The proof is to be found in appendix B.
Note that if all entries of a matrix A are positive and in each

column the ratio between the greatest and the smallest elements does
not exceed c, then A(Rn

+) ⊂ Rn
+,c. This yields, in particular, that A

possesses an invariant cone K ′ = A(Rn
+) contained in Rn

+,c.

Corollary 1. If all matrices of a set M are positive and in each
column of any matrix the ratio between the greatest and the smallest
elements does not exceed c, then M has an invariant pair, for which
β ≤ c2. This pair is K = Rn

+,K
′ = conv

{
A(Rn

+)
∣∣ A ∈M}.

We say that a matrix A with an invariant cone is positive and
write A > 0 if the cone AK is embedded in K. In this case {K,AK}
is an invariant pair for A, for which β < ∞. A set M is positive if
it consists of positive matrices. Since M is compact, we see that the
cone K ′ = conv

{
AK

∣∣ A ∈ M} is embedded in K, and so all sets of
positive matrices admit a constant β <∞ :

Corollary 2. If a set of matrices M has an invariant cone K such
that for all A ∈M, AK ⊂ intK, then it has an embedded pair (K,K ′)
such that β(K,K ′) <∞.

3.3 Dual families for improving the accuracy

For a given setM we denote byM∗ the dual set, which consists of the
adjoint matrices. It is well known that the families M and M∗ have
the same joint spectral radius ρ̂ [25], whereas their conic radii σ̂(M)
and σ̂(M∗) are a priori different. Consider the following example:

Example 2. Denote e the column vector whose all entries are equal
to one, ei the column vector whose all entries are equal to zero, except
for the ith one which is equal to one, and denote Ai the matrix whose
all entries are equal to zero, except the ith row, whose entries are all
equal to one:

Ai = eie
T .

The setM = {Ai} has a joint spectral radius equal to one. Indeed, the
maximum column-sum is a norm, and is equal to one for all matrices
in M. Moreover, the conic radius σ̂(M) is equal to n. In conclusion,
the lower bound

σ̂(M)/n ≤ ρ̂

12



is tight in this case.
However, σ̂(MT ) = 1 = ρ̂(M), and the estimate gives the exact

value of the joint spectral radius.

Therefore, combining both values σ̂(M) and σ̂(M∗) to estimate
the joint spectral radius by Theorem 4, we can obtain better results.
That is, one could hope that the following equation holds:

(1/f(n)) min {σ̂(M), σ̂(MT )} ≤ ρ̂(M), (5)

where f(n) < n. Unfortunately, it appears that the growth f(n) ≈ n
cannot be avoided, as shown in the next example:

Example 3. Denote e, ei and {Ai} as in Example 2. The set

M′ =
{(

Ai 0
0 ATj

)
∈ R2n×2n : 1 ≤ i, j ≤ n

}
has joint spectral radius equal to one. Indeed, the matrices are block
diagonal, and so obviously

ρ̂(M′) = max {ρ̂({Ai}), ρ̂({ATj })} = 1.

Moreover,
min {σ̂(M′), σ̂(M′T )} = n.

The previous example proves the following proposition:

Proposition 6. The function f(n) giving the accuracy of the joint
conic radius in (5) cannot be chosen smaller than n/2, where n is the
dimension of the matrices, even if one computes the joint conic radius
of both the matrices and their transposed.

The same is for the subradii ρ̌ and σ̌ : For some setsM taking the
transpose helps improving the estimates significantly. As an example,
consider once more the set from Example 1 we have ρ̌ = n − 1 and
σ̌(M) = 0. So, the inequality giving the upper bound ρ̌ ≤ βσ̌(M)
holds only for β = +∞. However, taking the transposes of the ma-
trices, we immediately get σ̌(M∗) = n − 1, hence in this case we
have the best possible situation: the upper bound ρ̌ ≤ βσ̌(M∗) holds
for β = 1. To see this we observe that the set M∗ has an invari-
ant pair with K = Rn

+ and K ′ is the one-dimensional cone spanned
by the vector of ones e. For this pair β(K,K ′) = 1, and by Theo-
rem 7 ρ̌ = σ̌. However, a construction similar to Example 3 shows
that in general one cannot hope to improve the bounds by considering
max {σ̌(M), σ̌(M∗)}.

13



Also, one could ask the same questions for other invariant cones.
For instance, by applying the semidefinite lifting (4) to the matrices
inM one gets a set of matrices M̃ that leaves Kn invariant. Thus, we
could as well apply the lifting to M∗ to get another estimate. Even
though the obtained matrices are not the transposed of the initial ones,
this estimate will not be better, as shown by the next proposition.

Proposition 7. Let M ⊂ Rn×n be a set of matrices, and M̃ ⊂
Kn(n−1)/2 be the semidefinite lifting of M. Then σ̂(M̃) = σ̂(M̃∗),
that is, applying the semidefinite lifting to M or M∗ does not change
the quality of approximation of σ̂.

The proof is to be found in Appendix C.

4 Computing the joint spectral quan-

tities

In this section we analyse the following approximation problem: for a
given setM we need to find numbers ρ̂∗ and ρ̌∗ such that

∣∣ρ̂∗−ρ̂∣∣/ρ̂ ≤ ε
and

∣∣ρ̌∗− ρ̌∣∣/ρ̌ ≤ ε. IfM has an invariant cone with a parameter α (or
an invariant pair with a parameter β), thenMk has the same cone (or
the same invariant pair). Applying now Theorem 4 and Theorem 7
for the set Mk we obtain

Corollary 3. If a set M has an invariant cone K with parameter α,
then for any k ∈ N

α1/k
[
σ̂(Mk)

]1/k ≤ ρ̂(M) ≤
[
σ̂(Mk)

]1/k
. (6)

If, in addition,M has another invariant cone K ′ embedded in K, then[
σ̌(Mk)

]1/k ≤ ρ̌(M) ≤ β1/k
[
σ̌(Mk)

]1/k
, (7)

where β = β(K,K ′).

This result ensures that ρ̂∗ = [σ̂(Mk)]1/k gives the desired accuracy

ε, whenever k ≥ ln 1
α
ε . Moreover, by Theorem 5 α ≥ 1

n for any cone,
and hence for any set with an invariant cone it suffices to take k ≥ lnn

ε .

For the joint spectral subradius we take ρ̌∗ = [σ̌(Mk)]1/k. This gives
the desired approximation for k ≥ lnβ

− ln(1−ε) . Note that this value does

not exceed lnβ
ε . Therefore, to compute the joint spectral subradius

it suffices to take k ≥ lnβ
ε . Let us remember that the parameter

β depends on the cones and, in contrast to α, cannot be uniformly
estimated for all cones in Rn.
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Thus, the problem is reduced to finding the values σ̂(Mk) and
σ̌(Mk) for a given set of matricesM. We describe the computational
issue for finite sets of matrices. Moreover, for the sake of simplicity we
restrict ourselves to the case of two matrices M = {A0, A1}. All the
results can easily be generalized to arbitrary finite sets of matrices.
We consider separately the joint spectral radius and subradius, and
distinct the cases of sets with invariant cones and arbitrary sets.

4.1 Matrices with an invariant cone

We describe practical implementations of our algorithms in two cases:
polyhedral cones K (given by systems of homogeneous linear inequali-
ties), and the positive semidefinite cone Kn in the n(n+1)

2 -dimensional
space Sn of symmetric n× n-matrices.

The joint spectral radius. Let a set M = {A0, A1} have
an invariant cone K. Let this cone be polyhedral, i.e. K =

{
x ∈

Rn
∣∣ (aj , x) ≥ 0, j = 1, . . . ,m

}
. In this case both values σ̂(Mk)

and σ̌(Mk) can be found by a routine linear programming procedure.
For the sake of simplicity we describe it in the case m = n, when
aj = ej (the basis vectors), and K becomes the positive orthant Rn

+.
So, both matrices A0, A1 have nonnegative entries. Consider the fol-
lowing problem:

min r
s.t.
x ≥ e,
Ax ≤ rx, ∀A ∈Mk.

(8)

For each r the feasibility can be checked by solving an LP problem with
n variables and n(2k+1)+1 constraints. The minimal r̄ can be found
by a bisection technique within logarithmic time (with respect to the
accuracy), and satisfies r̄ = σ̂(Mk). Thus, solving the minimization
problem (8) we get the desired approximation of the joint spectral
radius.

A very similar algorithm can be used to compute the joint spectral
radius for a set of matrices M = {A0,A1} acting in the space Sn
of symmetric n × n-matrices with the invariant cone Kn. The value
σ̂n(Mk) can be found by solving the following SDP program:

min r
s.t.
X � I,
AX � rX, A ∈Mk.

(9)

For each r the feasibility is checked by solving an SDP problem in
the dimension n. The minimal r again can be found by bisection tech-
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niques. Since by Theorem 6 α(Kn) = 1
n , the number k needed to

approximate the joint spectral radius with a given relative precision
is the same as for the previous case of nonnegative matrices in Rn.

The joint spectral subradius. We again consider a set of two
matricesM = {A0, A1} with an invariant polyhedral cone K, and for
the sake of simplicity we describe it in the case of the positive orthant
Rn

+. To use Theorem 7 we need to impose an extra assumption that
there is an embedded invariant cone K ′. This will be the case, for
example, if the matrices A0 and A1 have positive entries (Corollary 1).
The value σ̌(Mk) is a solution of the following problem:

max r
s. t.
x ≥ 0,
Ax ≥ rx, A ∈Mk,
(x, e) = 1.

(10)

Note that in the definition of σ̌ the vector x does not have to be
strictly positive, hence the first constraint is just x ≥ 0. The reason of
the last constraint is to avoid the trivial zero solution. For each r the
feasibility is checked by solving an LP problem. The maximal r can
be found by bisection.

If a set of linear operators M acting on Sn leaves the cone Kn
invariant we can approximate its joint spectral subradius by solving
the following program:

max r
s. t.
X � 0,
AX � rX, A ∈Mk,
trX = 1.

(11)

For each r the feasibility is checked by solving an SDP problem in the
dimension n. Let us add that in many practical cases our method of
approximation of spectral radii works far faster than predicted by the
theoretical results (see Section 5).

4.2 Arbitrary matrices

If one does not know of any common invariant cone for the set of
matrices M, he could apply Proposition 4 in order to obtain a set
that leaves Kn invariant. Applying the lifting to an arbitrary set
M = {A0, A1} we come to the special case of algorithm (9) for the
cone Kn, when AiX = ATi XAi, i = 0, 1.
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The joint spectral radius. Solving the problem

min r
s.t.
X � I,
ATXA � rX, A ∈Mk ,

(12)

we find r̄ = σ̂(M̃k). Since ρ̂(M̃) =
[
ρ̂(M)

]2
, invoking Corollary 3

and taking into account that α(Kn) = 1
n (Theorem 6), we obtain

(r̄)
1
2kn−

1
2k ≤ ρ̂(M̃) ≤ (r̄)

1
2k . Hence, the value (r̄)

1
2k approximates

ρ̂(M) with the relative precision ε ≤ lnn
2k . This is nothing else but

the method of the ellipsoidal norm for computing the joint spectral
radius, presented in [2, 10]. In this sense, the ellipsoid method is
an important special case of algorithm (9) in the space Sn. We have
deduced the main inequality and the estimate of the accuracy using
the conic radius, which is a totally different way than in [2, 10].

The joint spectral subradius. In contrast to the case of the
joint spectral radius, the lifting has never been implemented in the
literature to compute the joint spectral subradius until very recently
[26]. Applying Corollary 3 to the set M̃, we come to the following
method. Solving the problem

max r
s. t.
X � 0,
ATXA � rX, A ∈Mk,
trX = 1,

(13)

we find r̄ = σ̌(M̃k). Since ρ̌(M̃) =
[
ρ̌(M)

]2
, we see that (r̄)

1
2k ≤

ρ̌(M) ≤ (r̄)
1
2kβ

1
2k . Hence, the value (r̄)

1
2k approximates ρ̌(M) with

the relative precision ε ≤ 1− β−1/2k ≤ lnβ
2k .

4.3 Exact computation of the joint spectral
quantities in special cases

Theorems 4 and 7 make it possible not only to estimate the joint spec-
tral quantities, but also to find their precise values in some favorable
cases. To formulate the next result we need some further notation.
Let us recall that by the well-known Perron-Frobenius theorem any
linear operator A in Rn that has an invariant cone K ⊂ Rn possesses
an eigenvector v ∈ K such that Av = ρ(A) v. Any such eigenvector
(it may not be unique) is called a Perron-Frobenius eigenvector of the
operator A.
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Proposition 8. Let a set M possess an invariant cone K, let also
k ∈ N, A ∈Mk, and v ∈ K be the Perron-Frobenius eigenvector of the
matrix A; then

a) if v ∈ intK and there is m ∈ N such that C(A − B)v ∈ K for
all B ∈Mk, C ∈Mm, then ρ̂(M) = [ρ(A)]1/k;

b) if there is m ∈ N such that C(B−A)v ∈ K for any B ∈Mk, C ∈
Mm, then ρ̌(M) = [ρ(A)]1/k.

Remark 2. Note that in the special case m = 0 the proposition only
requires that rv ≥ Bv ∀B ∈Mk (resp. rv ≤ Bv).

Proof. With possible multiplication by a constant it can be assumed
that ρ(A) = 1, and hence Av = v. Let Km be the closure of the set{
x ∈ Rn \ {0}

∣∣Cx ∈ K ∀C ∈Mm

}
. Clearly, Km is an invariant cone

of M containing K. Define the order in Rn by the cone Km and the
constants σ̂ and σ̌ by formulas (3) with respect to this cone. Since
(A−B)v = v−Bv ∈ Km, it follows that Bv ≤ v for all B ∈Mk, and
therefore σ̂(Mk) ≤ 1. Theorem 4 now implies that ρ̂(Mk) ≤ 1. Since
ρ̂(M) = [ρ̂(Mk)]1/k ≥ [ρ(A)]1/k = 1, we have ρ̂(M) = 1, from which
the assertion (a) follows. Furthermore, if (B − A)v = Bv − v ≥ 0
for all B ∈ Mk, then σ̌(Mk) ≥ 1. Hence by Theorem 7 ρ̌(Mk) ≥ 1.
Thus, 1 = ρ(A) ≥ min

B∈Mk

ρ(B) ≥ ρ̌(Mk) ≥ 1. Thus, ρ̌(Mk) = 1 and

so ρ̌(M) = 1, which proves (b).

Remark 3. This proposition provides sufficient conditions for the
joint spectral radius to attain its value at some finite product A ∈Mk.
For each m, starting with m = 0, we verify that C(A − B)v ∈ K for
all B ∈ Mk, C ∈ Mm. If we succeed in finding such m, then the
conjecture is approved and ρ̂(M) = [ρ(A)]1/k. For instance, in case of
nonnegative matrices, when K = Rn

+, one needs to check that all the
vectors C(A − B)v are nonnegative. Note that if v is not the Perron
eigenvector of A, the equation C(A − B)v = C(rI − B)v ∈ K (resp.
C(B − A)v = C(B − rI)v ∈ K ) still proves that ρ̂ ≤ r1/k, (resp.
ρ̌ ≥ r1/k) and can then be useful in its own right (see Section 5.2 for
an application).

5 Applications

5.1 Overlap-free words

In this section we briefly describe applications where techniques de-
veloped in this paper prove useful. We have chosen applications in
number theory, because this field has provided many sets of matrices
that can be used as test benches nowadays. We start with a recent
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application: the computation of the asymptotics of overlap-free words.
This problem arises in combinatorics on words (for an introduction to
combinatorics on words, see [29]), where one is interested in the num-
ber ul of binary overlap-free words of length l. An overlap is a word
on the alphabet {a, b} of the form xuxux, where x is a or b, and u is a
word that can be empty. For instance, the word baabaab is an overlap.
An overlap-free word is a word that does not contain any overlap. Let
r− = lim inf log un

logn and r+ = lim sup log un
logn . The following result ( [26],

see also [7,14]) allows to express the asymptotics of ul in terms of the
joint spectral quantities.

Theorem 8. There exist two nonnegative matrices A0, A1 ∈ {0, 1, 2}20×20

such that
r+ = log2 ρ̂({A0, A1}),

r− = log2 ρ̌({A0, A1}).

Thanks to this result, the following accurate estimates appear in
[26]:

1.2690 < r− < 1.2736 and 1.3322 < r+ < 1.3326.

The inequality 1.2690 < r− was obtained from Theorem 7. Unfortu-
nately, no embedded invariant pair is known for F0 and F1, and so
it is not possible to obtain an upper bound on r− with this result.
However, it appears that the product F 10

1 F0 satisfies:

r− ≤ log2

[
(ρ(A10

1 A0)1/11
]

= 1.2735...

One can verify numerically that this product gives the best possible
upper bound among all the matrix products of length less than 14. The
upper bound on r+ can be found by solving the semidefinite program
(12) with k = 14, while the lower bound is obtained from the simple
inequality

ρ̂ ≥
[
ρ(A0A1)

]1/2 = 2.5179... (14)

Remark that the accuracy of this estimate is 0.0003. As we have seen
in Section 4.2, in order to ensure such an accuracy, one has to solve
the semidefinite program 12 with k = ln(n)/(2 ·0.0003) ≈ 5000, which
is, of course, enormous. However, Equation (14) shows that the actual
cost for obtaining such an accuracy is much lower.

5.2 Pascal’s rhombus

Recently, the question of the density of ones in Pascal’s rhombus arose
in number theory [21]. Pascal’s rhombus is a variation of the well-
known Pascal’s triangle in which each term is equal to the sum of four
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earlier terms, rather than two. The coefficients in Pascal’s rhombus
arise from a linear recurrence relation on polynomials: Define p0(x) =
1, p1(x) = 1 + x+ x2, and

pn(x) = (1 + x+ x2)pn−1(x) + x2pn−2(x).

In [19] the authors show that this leads to a recurrence relation for
the value v(n) of the number of odd coefficients in pn(x). In turn, it is
shown that the asymptotic growth of v(n) is in relation with the joint
spectral quantities of the following set of matrices:

Σ =




0 1 0 0 0
1 0 2 0 0
0 0 0 0 0
0 1 0 0 1
0 0 0 2 1

 ,


1 0 2 0 0
0 0 0 2 1
1 1 0 0 0
0 0 0 0 0
0 1 0 0 0


 . (15)

More precisely,

lim sup
log vn
log n

= log2 ρ̂({A0, A1}),

lim inf
log vn
log n

= log2 ρ̌({A0, A1}).

In [19], the authors mention the difficulty to have any kind of estimate
for ρ̌(Σ). It has been conjectured later [18] that ρ̌(Σ) = (1 +

√
5)/2 =

1.61803 . . . These matrices leave the positive orthant K = R5
+ invari-

ant, and so, it is possible to apply the program (10) to obtain a lower
bound on ρ̌. It appears, however, that this algorithm does not pro-
vide a better lower bound than the trivial value 1. Nevertheless, when
applied to the transposed matrices, the algorithm works very well:
We obtained the vector x = (0.196, 0.229, 0.190, 0.190, 0.196), which is
such that C(B − (1.618)12I)x ∈ R+ for any B ∈ M12, C ∈ M6. This
implies (see Remark 3) that ρ̌(M) ≥ 1.618, which is extremely close
to the conjectured value. Note that a good upper bound on ρ̌ can be
obtained as follows: ρ̌ ≤ ρ(A3

0A
3
1)(1/6) = 1.6376. This is the smallest

averaged spectral radius among all products of length less or equal to
18.

Concerning the joint spectral radius of these matrices, the methods
developed in this paper are not necessary, as it is easy to prove that
ρ̂(Σ) = 2.
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5.3 Euler’s binary partition function and gen-
eralizations

The binary partition function is a longstanding research topic in num-
ber theory. For a given d ∈ N ∪ {∞} the binary partition func-
tion b2,d(k) is defined as the total number of different binary ex-
pansions k =

∑∞
j=0 dj2

j , where the ”digits” dj take values from the
set {0, 1, . . . , d − 1}. For d = 2, obviously, b(k) ≡ 1. For d ≥ 3 the
value b2,d(k) grows as k →∞, and the problem is to find the exponents
of this asymptotic growth. For various d this problem was studied by
L.Euler [17], K.Mahler [30], N.G. de Bruijn [16], B.Reznick [41], and
others. There are certain relations of this problem with the theory of
refinement equations and subdivision algorithms [37].

The generalized partition function bm,d(k) is defined similarly as
the total number of different m-adic expansions k =

∑∞
j=0 djm

j , dj ∈
{0, 1, . . . , d− 1}.

Recently, it has been shown [35] that the asymptotic behavior of
bm,d(k) as k → ∞ is ruled by the joint spectral quantities of certain
sets of matrices Σm,d, with binary (0 or 1) entries. More precisely, for
all pairs (m, d) ∈ N2, there exist constants C1, C2, λ1, λ2 such that the
following holds:

C1 k
λ1 ≤ bm,d (k) ≤ C2 k

λ2 . (16)

Denoting ρ̂m,d and ρ̌m,d respectively the joint spectral radius and sub-
radius of Σm,d, we have the relations

λ1 = logm ρ̂m,d,

λ2 = logm ρ̌m,d.

In [35], these joint spectral quantities are deeply analysed for m = 2
and for some small values of d. To the best of our knowledge no
numerical analysis has been done for other d and for m ≥ 3. Since
the set Σm,d consists of binary matrices it has an invariant cone (the
positive orthant), hence we can apply algorithms from Section 4. Take,
for example, m = 3, d = 14. It follows from [35] that

Σ3,14 =





1 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 1 1 1 1 1
0 0 1 1 1 1 1


,



1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 1 1 1 1 1


,



1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 0




.
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The set Σ3,14 leaves the cone Rn
+,2 =

{
x ∈ Rn

+

∣∣ xmax ≤ 2xmin

}
,

invariant, and thus, combining Proposition 5 with Corollary 3, we have
the following bounds on the accuracy of the subradius approximation:[

σ̌(Mk)
]1/k ≤ ρ̌(M) ≤ 41/k

[
σ̌(Mk)

]1/k
. (17)

For k = 9 the ratio between the upper and lower bound is 41/9 =
1.1665... The algorithm with k = 9 provides

4.525 ≤ ρ̌.

Note that ρ̌ ≤ ρ(A0A1)1/2 = 4.6105, and so the actual ratio with k = 9
is at most 4.6105/4.525 = 1.02, which is already quite sharp and much
better than the predicted 1.1665.

For the joint spectral radius, applying the algorithm with k = 9, we
find an upper bound equal to 4.8. Note that ρ ≥ ρ(A1A2)1/2 = 4.72.
Hence, the approximation ratio is actually equal to 4.8/4.72 = 1.02,
which is once again far better than the theoretical ratio 71/9 = 1.24
provided by Corollary 3. Thus, for m = 3, d = 14 we have

4.525 ≤ ρ̌(Σ3,14) ≤ 4.6105 ; 4.72 ≤ ρ̂(Σ3,14) ≤ 4.8

Let us consider two other examples of pairs (m, d).
For m = 3, d = 7 we have three 3× 3-matrices. Our method with

k = 6 gives:
2.4142 ≤ ρ̂(Σ3,7) ≤ 2.416 .

The joint spectral subradius is known to be equal to 2 in this case.
For m = 4, d = 15 we have four 5× 5-matrices. Our method with

k = 6 gives:

3.7 ≤ ρ̌(Σ4,15) ≤ 3.7321 ; 3.791287 ≤ ρ̂(Σ4,15) ≤ 3.791288 .

6 Conclusion

In this paper we have pursued several goals:
First, if the joint spectral radius has received much attention in

the last decades, and if several algorithms have been proposed that
approximate this quantity, to the best of our knowledge we provided
here the first approximation algorithm for the joint spectral subradius,
which allows moreover for a certified accuracy for certain classes of
matrices.
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Second, we proposed a framework (conic optimization) that presents
many of the known algorithms for the joint spectral radius, and pro-
vides simple proofs of their convergence rate. This framework also
sheds interesting light on the previously known methods.

Third, we presented these algorithms on several examples, in or-
der to show some empirical facts that seem important: the algorithms
performs usually far better than predicted, and some tricks are some-
times determinant to make the difference between computability and
impossibility of getting an approximation. A good example of such a
trick is the transposition of the matrices: the example in Section 5.2
shows that effect. About this transposition trick, we showed moreover
(Section 3.3) that it does not provide a better general accuracy for our
algorithms. In practice, our results allow to find accurate estimates
very rapidly. As some parameters can be tuned, this allows for ”trial
and error” approaches, that prove very useful in practice.

We leave some open questions: We have shown on the examples
that the accuracy is always far better than the predicted one. Why
is it so? Can one prove better convergence rates for some families of
matrices? How to find an embedded pair? Is there a weaker condition
than the presence of an embedded pair, which seems a bit restrictive?
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A Proof of Theorem 6

Proof. Any n-hedral cone is affinely equivalent to the positive or-
thant Rn

+, so we take K = Rn
+. Theorem 5 yields α(K) ≥ 1

n , it remains
to establish the opposite inequality. Let G =

{
x ∈ Rn

+

∣∣(e, x) ≤ 1
}
,

where e ∈ Rn
+ is the vector of ones. If v ≥ G, then each coordinate

of the point v is at least 1, hence (e, v) ≥ n. Since αv ∈ G, it follows
that (αv, e) ≤ 1, and hence α ≤ 1

n .
For the Lorentzian cone we repeat the proof of Theorem 5 and

note that any bounded cross-section S in this case is an ellipsoid, for
which τ(S) = 1. Taking now v = 2z, where z = grS, we show in the
same way that v ≥ G and therefore α(K) ≥ 1

2 . It remains to prove
that α(K) ≤ 1

2 . This inequality holds for any cone, not necessarily for
Lorentzian one. Indeed, let G be a bounded intersection of K with a
hyperplane H. If for some point v ≥ G and a number γ > 1

2 we have
z = γv ∈ G, then |v−z|

|z| < 1. Therefore the set S′ = (v − K) ∩ H is
homothetic to the set S = K ∩ H with respect to the point z with
a coefficient smaller than 1. Hence there exists a point x ∈ S \ S′.
Clearly, x ∈ G and x /∈ (v−K), which violates the assumption v ≥ G.
Similarly, for the cone Kn it will suffice to show that τ = 1

n−1 for any
of its bounded cross-sections. Let us take such a cross-section S, made
by a hyperplane H =

{
X ∈ Kn |

〈
X,B

〉
= n

}
, where B ∈ Kn and

by definition
〈
X,B

〉
= tr(XB). Since S is bounded, it follows that

B is positive definite. Otherwise there is a matrix V ∈ Kn such that〈
V,B

〉
= 0 (this is seen easily if we diagonalize B in an orthonomal

basis), in this case X + tV ∈ Kn ∩H and so S is not bounded.
Consider any matrix C, for which CCT = B. Since B is positive
definite, it follows that C is nondegenerate. Therefore the map X 7→
CTXC is an affine isomorphism of the cone Kn taking that hyperplane
to H =

{
X ∈ Kn |

〈
X, I

〉
= n

}
, where I is the identity matrix in Rn.

Indeed,〈
X,B

〉
= tr(XB) = tr(XCCT ) = tr(CTXC) =

〈
CTXC , I

〉
.

Therefore, 〈
X,B

〉
= n ⇔

〈
CTXC , I

〉
= n.

Thus, all cross-sections of the cone Kn are affinely equivalent to the set
S =

{
X ∈ Kn

∣∣ tr(X) = n
}
, for which grS = I. Let I = tX+ (1− t)Y

for some X,Y ∈ ∂Kn and t ∈ [0, 1]. There is an orthogonal basis,
in which the matrix X has a diagonal form X = diag

(
x1, . . . , xn

)
.

Whence in that basis Y = diag
(
y1, . . . , yn

)
. Let x = (x1, . . . , xn), y =

(y1, . . . , yn) be the corresponding points in Rn
+. Since tr(X) = tr(Y ) =

n, we see that x and y are both from the (n− 1)-dimensional simplex
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∆ =
{
u ∈ Rn

+

∣∣ (e, u) = n
}

with the center e. If X,Y ∈ ∂Kn, then
x, y ∈ ∂∆. Since e = tx + (1 − t)y and τ(∆) = 1

n−1 , it follows that
t ≥ 1

n−1 . Thus, τ(S) ≥ 1
n−1 , from which the theorem follows.
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B Proof of Proposition 5

Proof. Consider first the case of positive orthant Rn
+. Let a line in-

tersect this cone by a segment [x, y] and the cone Rn
+,c by a segment

[x′, y′]. Since the points x, y lie on the boundary of Rn
+, it follows that

each of them has at least one zero coordinate. Without loss of gen-
erality it can be assumed that x1 = 0. In this case y1 6= 0, otherwise
the segment [x, y] does not intersect the cone Rn

+,c. Hence, without
loss of generality we assume y2 = 0. Since [x′, y′] ⊂ [x, y], we have
x′2 > y′2. Furthermore, x′2

x′1
≤ c and y′1

y′2
≤ c, because x′ and y′ are in

Rn
+,c. Therefore

|x− y′|
|x− x′|

=
y′1
x′1

=
y′1
y′2

y′2
x′1

<
y′1
y′2

x′2
x′1
≤ c2,

which implies β ≤ c2.
This upper bound is sharp. Indeed, for the points x = (0, c, . . . , c), x′ =

(1, c, . . . , c), y′ = (c2, c, . . . , c) we have |x−y
′|

|x−x′| = c2. Take now a sequence
of points yk ∈ ∂Rn

+, for which the direction of the vector yk − x con-
verges to the direction of x′ − x = (1, 0, . . . , 0) as k → ∞. For the
segments [x, yk] the corresponding ratio tends to c2 as k →∞.

The proof for the pair Kn,Kn,c is similar. Let a line intersect
Kn by a segment [X,Y ] and the cone Kn,c by a segment [X ′, Y ′].
Since the matrices X,Y belong to the boundary of the cone Kn, it
follows that there are vectors a, b ∈ Rn, |a| = |b| = 1, such that
(Xa, a) = (Y b, b) = 0. Note that a 6= b, otherwise (X ′a, a) = 0,
which is impossible, because X ′ ∈ intKn. We have (X ′b, b) > (Y ′b, b),
and therefore

|X − Y ′|
|X −X ′|

=
(Y ′a, a)
(X ′a, a)

=
(Y ′a, a)
(Y ′b, b)

(Y ′b, b)
(X ′a, a)

<
(Y ′a, a)
(Y ′b, b)

(X ′b, b)
(X ′a, a)

≤ c2,

from which we deduce β ≤ c2. This bound is sharp. To see this we
take the matrices X = diag(0, c, . . . , c), X ′ = diag(1, c, . . . , c), Y ′ =
diag(c2, c, . . . , c) and applying the same argument as above for the
cone Rn

+ prove that β(Rn
+,Rn

+,c) = c2.
The case of the Lorentzian cone is elementary. For the dimension

n = 2 the inequality x−y′
x−x′ ≤

( sinϕ
sin(ϕ−ψ)

)2 is a simple consequence of
the sine law. In case n > 2 we consider the restriction to the two-
dimensional plane spanned by the vectors x and y. The cross-sections
of the cones Kϕ and Kψ by this plane are also coaxial Lorentzian cones
of some angles ϕ′ and ψ′, for which, moreover, sinϕ′

sin(ϕ′−ψ′) ≤
sinϕ

sin(ϕ−ψ) .
Hence the general case follows from the case n = 2.
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C Proof of Proposition 7

Proof. Recall that
√
σ̂(M̃) can be interpreted as the solution of this

optimization problem

min
||·||

γ (18)

||A|| ≤ γ ∀A ∈M,

where the minimum is taken over all the ellipsoidal norms. Let | · |
and || · || be the corresponding vector and matrix norms:

|x| = (xTSx)
1/2
, σ̂(M̃) = max {||A|| : A ∈M},

for a positive definite matrix S. The corresponding dual norm is still an
ellipsoidal norm, defined by the inverse of the positive definite matrix
S :

|y|∗ = max
xTSx=1

yTx = (yTS−1y)1/2.

Now, the induced matrix norm || · ||∗ satisfies the relation:

max
A∈M∗

{||A||∗} ≤ max
A∈M

{||A||}. (19)

Indeed,

||A∗||∗ = max
|y|∗=1

|A∗y|∗ (20)

= max
|y|∗=1

max
|x|=1

yTAx (21)

≤ max
|y|∗=1

max
|x|=1

|Ax|.yT (Ax/|Ax|) (22)

≤ |Ax|. (23)

Since the same reasoning holds by inverting the roles of | · | and | · |∗,
the result is proved.
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