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Abstract. We present new methods for computing the joint spectral radius of finite sets of
matrices. The methods build on two ideas that previously appeared in the literature: the polytope
norm iterative construction, and the lifting procedure. Moreover, the combination of these two ideas
allows us to introduce a pruning algorithm which can importantly reduce the computational burden.
We prove several theoretical properties of our methods, such as finiteness computational result which
extends a known result for unlifted sets of matrices, and provide numerical examples of their good
behavior.
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1. Introduction. Many mathematical and real-life problems lead to the study
of the stability of a discrete time linear switched system (LSS)

(1.1) x(k) = Aik x(k − 1), k = 1, 2, . . . ,

where x(0) ∈ Cn and Aik ∈ Cn×n are elements of a given bounded family of matrices

(1.2) M = {Ai}i∈I ,

and I is a set of indices. For recent surveys on stability criteria for switched (discrete
and continuous) linear systems, we refer the reader to [19, 24, 32].

In particular, it is important to find necessary and sufficient conditions on the
matrix family M ensuring that the LSS (1.1) is uniformly asymptotically stable in
the following sense.

Definition 1.1. The LSS (1.1) is said to be uniformly asymptotically stable if it
holds that

(1.3) lim
k→∞

x(k) = 0

for any initial condition x(0) ∈ Cn and for any possible sequence of matrices {Aik}k≥1

chosen in the family M.
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As is well known, the LSS (1.1) is uniformly asymptotically stable if and only if
the so-called joint spectral radius, or simply spectral radius, of the associated matrix
family M = {Ai}i∈I is smaller than one [19]. We now properly define this notion.

For each k = 1, 2, . . . , consider the set Pk(M) of all possible products of length k
whose factors are elements of M; that is, Pk(M) = {Ai1 . . . Aik | i1, . . . , ik ∈ I}, and
set

P(M) =
⋃
k≥1

Pk(M)

to be the multiplicative semigroup associated with M.
We recall two possible generalizations of the concept of spectral radius of a single

matrix to the case of a family of matrices M.
Definition 1.2 (joint spectral radius [31]). If ‖ ·‖ is any matrix norm on Cn×n,

consider ρ̂k(M) := supP∈Pk(M) ‖P‖1/k, k ∈ N, and define the joint spectral radius
(jsr) of M as

(1.4) ρ̂(M) = lim
k→∞

ρ̂k(M).

The jsr does not depend on the matrix norm chosen thanks to the equivalence between
matrix norms in finite dimensional spaces.

Definition 1.3 (generalized spectral radius [10]). Let ρ(·) denote the spectral
radius of an n×n-matrix, consider ρk(M) := supP∈Pk(M) ρ(P )1/k, k ∈ N, and define
the generalized spectral radius (gsr) of M as

(1.5) ρ(M) = lim sup
k→∞

ρk(M).

In the case of bounded sets M Daubechies and Lagarias conjectured the equality
of gsr and jsr, which was then proven by Berger and Wang [3]. From now on we shall
restrict ourselves to finite sets of matrices; that is, we assume I is finite and we call
the jsr of a finite set M the quantity

ρ(M) � ρ̂(M) = ρ(M).

It is not difficult to see that for any bounded set of matrices

(1.6) ∀k, ρk(M) ≤ ρ(M) ≤ ρ̂k(M).

A further important characterization of the jsr is the following.
Proposition 1.4 (see [11, 31]). The spectral radius of a bounded family M of

complex n× n-matrices is characterized by the equality

(1.7) ρ(M) = inf
‖·‖∈Op

‖M‖,

where Op is the set of operator norms and

‖M‖ = sup
i∈I

‖Ai‖ = ρ̂1(M).(1.8)

The jsr has found a great number of applications in several fields of engineering,
mathematics, and computer science. See [33] and [19] for diverse applications. It
is notoriously very hard to compute. Recently, several different methods have been
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proposed to provide approximations of this quantity [1, 9, 12, 23, 25]. In particular,
there has been growing interest in the study of the so-called extremal norms [7, 21,
26, 30, 35]. For sets of matrices with jsr equal to one, these are norms whose unit
ball is invariant under the action of the matrices in the set. This confers a practical
interest to the analysis of such sets: if one manages to generate a norm whose unit
ball is an invariant set, then this directly allows bounding the jsr: ρ ≤ 1. Methods
based on the generation of an invariant polytope have been proposed in [14, 17, 18].
A great advantage of these methods is that they can stop in finite time, and provide
an exact characterization of the jsr of the set of matrices. If, besides the knowledge
of an invariant polytope, one knows a product whose spectral radius is equal to one,
then (by (1.6)) one has a proof that the exact value of the jsr is one.

Along another line of research, methods have been proposed which base their
analysis on the existence of a common invariant cone for the set of matrices, or which
first transform the set of matrices so that the new matrices share an invariant cone
(see, e.g., [5,20,27,29]). In this paper, we show how to combine these two approaches,
and how this combination allows one to derive innovative efficient algorithms for
computing the jsr. Our work not only provides new efficient algorithms that can
outperform state-of-the-art methods available in the literature, but also provides an
improvement in our theoretical understanding of the jsr, as we exhibit novel algebraic
constructions which allow one in many cases to finitely describe and compute the jsr.
In the next section, we present in more detail these two ideas that are the basis of
our work.

2. Extremal norms and invariant cones. The definitions and results re-
ported in this section may be found in [14]. In the rest of the paper, we restrict
ourselves to the case ρ(M) > 0 since it can be efficiently decided whether ρ = 0 [19,
section 1.2.2.9]. Thus, we use the notation

M̂ =
M

ρ(M)
=⇒ ρ(M̂) = 1.

Given a family M, an important question is whether the infimum in (1.7) is a mini-
mum or not. In this respect, we have the following definition.

Definition 2.1 (extremal norm). We say that a norm ‖ · ‖∗ satisfying the
condition

(2.1) ‖M‖∗ = ρ(M)

is extremal for the family M.
Already for single matrices, in general extremal norms are not assured to exist.

A necessary and sufficient condition for the existence of an extremal norm is that the
family M is nondefective.

Definition 2.2 (see [15, 31]). A family of complex n× n-matrices M is said to

be nondefective if the multiplicative semigroup P(M̂) is a bounded set of matrices.
By a further characterization of defective families in terms of reducibility (recall

that a set is reducible if there exists a common nontrivial invariant subspace) it was
proved in [2, 35] that for a compact irreducible set M of matrices there exists an
extremal norm.

An extremal norm is a norm whose unit ball is invariant under the action of the
matrices in the normalized set. This confers a practical interest to the analysis of
such objects: if one manages to generate a norm whose unit ball is an invariant set,
then this directly allows one to bound the jsr: ρ(M) ≤ 1.
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To this aim we give the following definition.
Definition 2.3 (trajectory). Given a bounded family M of complex n × n-

matrices and a vector x ∈ Cn, we say that

T [M̂, x] = {x}
⋃

{Px | P ∈ P(M̂)}(2.2)

is the trajectory of M starting from x.
Recall [16] that, given X ⊂ Cn, the absco(X ) is the set of all the finite absolutely

convex linear combinations of vectors of X ; i.e., x ∈ absco(X ) if and only if there exist

x1, . . . , xk ∈ X with k ≥ 1 such that x =
∑k

i=1 λi xi with λi
′s ∈ C and

∑k
i=1 |λi| ≤ 1.

Theorem 2.4 (see [14,22]). Let M be a nondefective bounded family of complex

n × n-matrices and, given a vector x ∈ Cn, assume that the set T [M̂, x] spans Cn.
Then the closure of the absolutely convex hull of the trajectory,

S[M̂, x] = clos
(
absco

(
T [M̂, x]

))
(2.3)

is the unit ball of an extremal norm for M.
If the family M is real and has an invariant real cone K, then the above theorem

has been extended in [13].

2.1. Finite computation of the jsr by polytope extremal norms. The
recent methods proposed in [13, 14, 17, 18, 28] are all based on the computation of
a polytope extremal norm; that is, a norm whose unit ball is a balanced real (or
complex) polytope.

This kind of construction is often possible when the family M is finite and has
the so-called finiteness property, which we now define.

Definition 2.5 (spectrum-maximizing product and the finiteness property). If
M is a bounded family of complex n×n-matrices, any matrix P̄ ∈ Pk∗(M) satisfying

(2.4) ρ(P̄ )1/k
∗
= ρ̄k∗(M) = ρ(M)

for some k∗ ≥ 1 is called a spectrum-maximizing product (SMP) for M.
If M admits an SMP, then we say that it has the finiteness property.
Under some suitable further assumption on the family and a special choice of the

starting vector x (see, e.g., [14] and section 5), it is possible to construct an extremal
polytope norm by means of Theorem 2.4.

The trajectory, in fact, can be constructed recursively as

T (k+1)[M̂, x] = M̂T (k)[M̂, x].

with T (0)[M̂, x] = {x}. As a consequence, if T [M̂, x] spans the whole space and

T (k+1)[M̂, x] ⊆ S(k)[M̂, x],

then S(k)[M̂, x] provides an extremal polytope norm which allows for a finite compu-

tation of ρ(M), where S(k)[M̂, x] is given by replacing T with T (k) in (2.3).
Clearly, in order for the procedure (see [17] for more details) to be successful, it is

necessary that M be properly scaled by ρ(M), which means that an SMP has been
detected (the success of the procedure implies this a posteriori).
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2.2. Invariant cone and the semidefinite lifting. We recall that if V is a
finite dimensional real or complex vector space, a subset K ⊂ V is said to be a cone
if and only if x, y ∈ K, α, β ≥ 0 implies that αx + βy ∈ K. A cone K is said to be
pointed if and only if K ∩ (−K) = {0}. By cone we mean a convex, closed, pointed
cone with nonempty interior. Any such cone defines a partial order in Cn: we write
x �K y (x �K y) for x − y ∈ K (x − y ∈ intK) [6, section 2.4.1]. The cone K is an
invariant cone for the matrix A if AK ⊂ K. In this case we write A �K 0. If K is
invariant for all matrices of some set M, then it is said to be an invariant cone for
that set.

Recently Blondel and Nesterov [5] have introduced a lifting technique to compute
the jsr. We generalize this notion to complex matrices.

Definition 2.6. Given a vector v ∈ Cn, its semidefinite lifting is defined as

ṽ = v · v∗,

where v∗ is the conjugate transpose of v.
Also, the semidefinite lifting of a complex matrix A is the linear operator

Ã : Hn → Hn, X �→ AXA∗,

where Hn denotes the n(n+ 1)/2 dimensional vector space of Hermitian matrices.

The linear operator Ã can easily be represented by a matrix acting on Cn(n+1)/2

(see [5] for details). It is well known (see, e.g., [4]) that the set of n×n Hermitian pos-
itive semidefinite matrices defines a pointed cone inside the vector space of Hermitian
n× n-matrices. Such a cone plays an important role in the following discussion.

Definition 2.7. The cone of Hermitian positive semidefinite matrices is the set

Hn
+ = {H ∈ Cn×n : H∗ = H ∀x ∈ Cn, x∗Hx ≥ 0} = {H ∈ Cn×n : H � 0}.

In what follows we shall simply denote Hn
+ as H.

It follows that if X ∈ H, then trivially AXA∗ ∈ H. Therefore, the cone H is
invariant under such a linear operator Ã. Moreover, the following property is also
obvious.

Proposition 2.8. Let A be a complex matrix. For any complex vector v, we
have

Ã(ṽ) = Ãv.

We indicate by M̃ the lifted family. The following important result relates the
spectral radii of a family of matrices and the corresponding lifted set, and it is a
straightforward generalization of a theorem proved by Blondel and Nesterov.

Theorem 2.9 (see [5, Theorem 4]). For any bounded set of complex n × n-
matrices M it holds that

ρ(M̃) = ρ(M)2.

Thus, if one wants to compute the jsr of M, it is sufficient to compute it for the
transformed set M̃.

Our goal is to exploit the invariant cone property of the lifted set in order to
compute the jsr by determining an extremal norm for M̃. As we will see, it will be
sufficient to find an invariant set inside the invariant cone. Indeed, it will define the
unit ball of a norm on the cone, that is, a function which fulfills the classical properties
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of a vector norm when applied to vectors of that cone. Even though these functions
can be extended to regular norms on the whole state space, the properties they satisfy
on the cone might not hold on the full state space. Nevertheless, we will show that
verifying these properties on the sole cone will be sufficient for our purposes.

A convenient way of obtaining such an invariant set is given in the following
definition. It is reminiscent of the convex hull operation, but, besides being defined
by a set of points, it also depends on the geometry of an underlying cone.

Definition 2.10 (conical convex hull and conitope). Given a cone K and a
(possibly infinite) set of vectors U ⊂ K, its conical convex hull is defined as

coniconv(U) � {x ∈ K : ∃ y ∈ conv(U) : x �K y},

where conv denotes the usual convex hull of a set of vectors.
We say that a set S ⊂ K is a conitope if there is a finite set U = {uj}�j=1 such

that

(2.5) S = coniconv(U).

The following definition characterizes minimal sets of vertices defining a conitope.
Definition 2.11 (essential system). Let K be a cone. Given a set U ⊂ K, we

say that W ⊂ U is an essential system of vertices of coniconv(U) if coniconv(W)=
coniconv(U), and if for any W ′ ⊂ W, W ′ �= W, coniconv(W ′) �= coniconv(W ).

Conitopes can, in turn, define a norm on the corresponding cone as follows.
Definition 2.12. Given a set of vectors U inside a cone K such that conv(U)∩

intK �= ∅, one can define for x ∈ K

|x|U � inf{λ > 0 : x ∈ λ · coniconv(U)}.

Lemma 2.13 (conitope norm). Let K be a cone, and let U be a set of points
in K, such that conv(U) ∩ intK �= ∅. Then, the function | · |U defined on K satisfies
the properties of a norm.

We call such functions conitope norms when coniconv(U) has a finite essential
system of vertices.

The idea in the lemma above is equivalent to the concept of Minkowski norm,
except that we restrict our attention to vectors in the invariant cone (that is, the
function obtained verifies all the requirements of a norm, when applied to vectors in
the cone). The proof of the lemma is just standard computation, and goes by the same
way as for actual Minkowski norms. We remark that similar ideas have appeared in
the recent literature. If we restrict ourselves [13] to a set of real matrices M which
does not have any common invariant face of a cone K ⊂ Rn, M has a monotone
(that is, |x| > |y| if x >K y) extremal norm on K whose unit ball is obtained as

S[M̂, x] =
{
z ∈ K such that ∃ y ∈ conv

(
T [M̂, x]

)
: z �K y

}
.(2.6)

See also [30] for a similar existence theorem with K = Rn
+.

We finally note that thanks to modern optimization techniques like interior point
methods, the computation of both coniconv(U) and |x|U can be performed in poly-
nomial time in case K = Rn

+ (the positive orthant), K = S (the set of real symmetric
positive definite matrices), or K = H. See [29] and [6] for explicit formulations of
these problems as linear programs (resp., LMIs). As the reader will see, our methods
heavily rely on subroutines for performing these computations.
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3. The novel methods. We now show how to combine the two approaches
described in sections 2.1 and 2.2. Our goal is to find conitope norms which are
extremal for a given set of matrices. We will show that this combination allows
one to derive innovative efficient algorithms for computing the jsr. In this section,
we present the algorithms that unify the two approaches. Then, in sections 4 and 5
we provide the main theoretical results. Finally, in section 6 we give evidence for the
good performance of our methods on numerical examples.

3.1. Two algorithms. We present here two algorithms. They both generate an
upper and a lower bound which converge towards the jsr. We denote as L.E.(A) a
leading eigenvector of a matrix A.

Algorithm 1: The conitope method. We describe in Algorithm 1 the basic
method to compute an invariant conitope. Its main idea is to iteratively build an
invariant conitope by taking the successive images of a starting vector, and testing
at every step whether the new generated vectors belong to the conitope generated
by the previous ones. If an invariant set is reached, then it provides a proof that
ρ(M/C) ≤ 1.

Algorithm 1. Basic conitope algorithm.

Data: A set of complex matrices M of nonzero jsr
Result: An invariant conitope coniconv(U)
begin

1 Find a product A (denote its length t) such that ρ(A)1/t is as large as
possible (if needed, perform an exhaustive search until a fixed length t)

2 Set C := ρ(A)1/t

3 Set v0 := L.E.(A)
4 Set U0 := ṽ0
5 Set M := M/C (which implies that ρ(M) ≥ 1)
6 while conv(U0) ∩ intH = ∅

do

7 Let U0 be an essential system of vertices of coniconv(U0 ∪ M̃U0)

8 Set U := U0

9 Set t := 0
10 repeat

11 Set W := M̃Ut

12 t := t+ 1

13 Set Bt := max {|w̃|1/(2t)U0
: w̃ ∈ W}

14 Let Ut be an essential system of vertices of coniconv(Ut−1 ∪W )
15 Set D := |ṽ0|Ut , where | · |Ut is the conitope norm corresponding to Ut

16 if D < 1 then
A is not an SMP: restart the algorithm and look for a better
product

else
Proceed

until Bt = 1 or coniconv(Ut) = coniconv(Ut−1)
17 Set U =: Ut. Return coniconv(U) as an invariant conitope
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Algorithm 2: The dynamical procedure. In Algorithm 2 we describe a
modification of Algorithm 1 which is allowed by the fact that the matrices share a
common invariant cone. We exploit more the fact that the cone induces a partial
order relation between points, which allows us to discard some of them, if they are
dominated by another point.

This algorithm is an iterative version of the previous one: while trying to prove
that a certain product A is an SMP, at the same time it tries to find another, better
product A′. Once it finds such a product, the algorithm updates the lower bound
and simply continues its computation (note that one can rescale the vertices in Ut

by a common factor if they grow too much; this does not change the outcome of the
algorithm as the system is homogeneous).

Line 12 in the algorithm deserves an explanation: there, we update the lower
bound by computing the spectral radius of some products (averaged by their length).
We manage to prove below that one only has to look at a restricted set of products in
order to have a lower bound that converges towards the actual jsr: these are products
that generate the vertices of the conitope, as well as their subproducts. We direct the
reader to the fact that by subproducts, we mean all the consecutive matrix products in
a particular product (for instance, A2A2 is a subproduct of A1A2A2A1, but A1A2A1

is not).

Algorithm 2. Dynamical conitope algorithm.

Data: A set of complex matrices M of nonzero jsr
Result: Lower and upper bounds (C · L and C · Bt) converging towards ρ
begin

1 Find a product A (denote its length t) such that ρ(A)1/t is nonzero (if
needed, perform an exhaustive search for increasing t)

2 Set C := ρ(A)1/t

3 Set U0 := I
4 Set M := M/C (which implies that ρ(M) ≥ 1)
5 Set t := 0
6 Set L := 1
7 repeat

8 Set W := M̃Ut

9 Set t := t+ 1

10 Set Bt := max {|w̃|1/(2t)U0
: w̃ ∈ W}

11 Let Ut be an essential system of vertices of coniconv(Ut−1 ∪W )

12 Set L′ := max
˜A {ρ(Ã)1/(2l( ˜A)) : Ã ∈ f(z̃), z̃ ∈ W},

where f(z̃) is the set of all the possible subproducts of the product that

maps U0 on z̃, l(Ã) is the length of Ã
13 if L′ > L then

Set L := L′

else
Proceed

until Bt = L
14 Set U := Ut.
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Remark 1. The algorithms differ by two facts: first, in the initialization part,
the first one starts with a leading eigenvector of a candidate SMP (at the cost of
recomputing longer and longer products until it finds a better candidate SMP every
time it goes back to line 1), while the second one starts with the identity matrix;
second, in the first algorithm, one reinitializes the conitope, by restarting from the
new leading eigenvector, while the second algorithm keeps all the previous vertices
and continues with them. These two modifications are independent from each other,
but the main idea is that in the first algorithm, starting with a leading eigenvector is
a necessary condition in order to stop in finite time [14, small CPE theorem]. For
the second algorithm, we start with the identity matrix because we do not really hope
to converge in finite time, but we are more interested in obtaining rapidly converging
bounds than having a finite time termination. Note, finally, that the choice of the
identity matrix is arbitrary and one could choose any other starting point in the
interior of the cone.

Finally, in Algorithm 1 we do not search for a better spectral radius among all the
subproducts, like in Algorithm 2. However, one could perform this search as well in
Algorithm 1, which would allow one to potentially find a better SMP without having
to resort to an exhaustive search when coming back to the preprocessing phase.

4. Bounds and convergence results. In this section, we prove that our meth-
ods effectively provide lower and upper bounds on the jsr, and that, moreover, these
bounds converge towards the exact value asymptotically.

Proposition 4.1. Let M̃ be a set of lifted matrices that share an invariant
cone K. Let U be a set of points in K, such that convU ∩ intK �= ∅. Then, we have
the following upper bound on the jsr:

(4.1) ρ(M̃) ≤ ρ̂U (M̃) := sup
˜A∈ ˜M

sup
ũ∈U

|Ãũ|U .

Proof. By (1.5), for any ε > 0, there exists a t and a product Ã ∈ Pt(M̃) such

that ρ(Ã) ≥ (ρ(M̃) − ε)t. Since the matrices in M̃ share an invariant cone K, by
the generalized Perron–Frobenius theorem (see, for instance, [20, Theorem 1]), there

exists a vector ũ ∈ K such that Ãũ = (ρ(M̃)− ε′)tũ for some 0 < ε′ < ε. Let us take

such a vector ũ with |ũ|U = 1. Now, Ãũ ∈ coniconv(ρ̂U (M̃)tU) (as implied by (4.1))

together with Ãũ = (ρ− ε′)tũ imply

ρ̂U (M̃) ≥ ρ− ε′.

Since this must hold for any ε we obtain (4.1).
Since Algorithm 1 starts with a set of vectors U0, which are rank one matrices, the

set Ut actually contains only rank one matrices during the whole run of the algorithm.
Hence, it is not clear that one obtains for sure a norm (as defined by Lemma 2.13).
The next proposition shows how to deal with this problem.

Proposition 4.2. If the n× n-matrices in M do not have a nontrivial common
invariant complex subspace, then Algorithm 1 generates in finite time a set U such
that conv(U) ∩ intH �= ∅.

Proof. Recall that we start with v0 a leading eigenvector of A. If M does not
have any invariant subspace, we can find A1, . . . , An, which are products of matrices
in M of length at most n, such that {Aiv0}ni=1 spans Cn. Now, it is direct to prove
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that Q = 1
n

∑n
i=1 Aiv0v

∗
0A

∗
i ∈ conv(U) at step n, and the matrix Q has full rank; this

proves the result.
Remark 2. We observe that if the algorithm does not generate such a set U

after n iterations, then, given v0 leading eigenvector of the matrix A defined in Algo-
rithm 1, S = span (P(M)v0) is an invariant complex subspace, and one can project
the matrices on S and on S⊥ and iterate the algorithm.

In the proof of our main theorem below, we also need the following technical
proposition.

Proposition 4.3 (see [11]). Let || · || be a matrix norm in Cn induced by the
vector norm | · |. There exists a constant C(n) > 0 such that for all z ∈ Cn, |z| = 1,
and all A ∈ Cn×n, ||A|| ≤ 1, there is an eigenvalue λ of A such that

|1− λ| ≤ C|Az − z|1/n.

Theorem 4.4. If the matrices in M do not have a nontrivial common invariant
complex subspace, both Algorithms 1 and 2 provide an upper bound (CBt) and a lower
bound (resp., C and CL) which asymptotically converge towards the jsr.

Proof. In the following, ρ denotes ρ(M̃) = ρ(M)2. We also call M′ the scaled set
of matrices: M′ = M/C.

Lower bound. We want to prove that the lower bound converges towards the
exact value of the jsr. Thus, for Algorithm 1, it suffices to show that if ρ(M′) > 1
(i.e., if A is not an SMP), the main loop terminates in finite time, and the algorithm
will hence look for longer products by returning to the preprocessing phase. Since
we have the well-known alternative definition (1.5) for the jsr, the lower bound will
converge towards ρ.

Let us take a product A ∈ P(M′) such that ρ(A) > 1 and v its eigenvector: Av =
rv, r > 1. By the same reasoning as in Proposition 4.2, we can suppose that we have
n linearly independent vectors uj = Ajv0, and n others vi = Aiv, Ai, Aj ∈ P(M′),
1 ≤ i, j ≤ n. (Recall that v0 is the initial starting point in Algorithm 1.) Thus, there
exist λ1 such that λ1ṽ0 �

∑
ṽi/n, and λ2 such that λ2ṽ �

∑
ũi/n. Now, taking k

large enough so that rkλ2λ1 > 1, we have

ṽ0 �
∑

ṽi/(nλ1) ≺ rkλ2

∑
ṽi/n � λ2

∑
ÃiÃ

kṽ/n �
∑

ÃiÃ
k
(∑

Ãj ṽ0

)
/n2.

Hence, the algorithm will terminate because the last equation implies that ṽ0 finally
lies inside coniconv(Ut) at some time, which is exactly the termination condition in
Algorithm 1.

For Algorithm 2, recall from Proposition 4.1 that for any t ≥ 0 and any norm | · |,

(4.2) ρ(M̃)t ≤ sup
˜A∈Pt( ˜M)

sup
ũ:|ũ|=1

|Ãũ|.

Now, it is easy to show by induction that at every time t, every point of the type
Ãt . . . Ã1ũ0 belongs to coniconv(Ut) (where ũ0 is a point in U0). This is due to the

fact that if ṽ �
∑

λiũi, then Ãṽ �
∑

λiÃũi.

For each time t, there is a point ṽ ∈ Pt(M̃)ṽ0, ṽ �
∑

λiũi : ũi ∈ Ut whose norm is
larger than ρt. We can suppose that our norm is monotone, and thus |v| ≤ |

∑
λiui|.

By convexity of the norm, it implies that there is at least one vertex ũi ∈ Ut with this
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property. That is, at each time t there is a vertex ũ ∈ U whose norm is larger than ρt.
We conclude that there exists an infinite product . . . Ãt . . . Ã1 such that Ãt . . . Ã1ũ0 is
in Ut at time t, and a sequence t1, t2, . . . such that ∀i, |Ãti . . . Ã1U0| ≥ ρti . (This latter
step is a rather classical application of Konig’s infinity lemma (see, e.g., [11, Lemma
3]).)

The end of the proof follows the same line of reasoning as in the main theorem
of [11]. Let us now consider the normalized sequence ũ′

ti = Ãti . . . Ã1U0/|Ãti . . . Ã1U0|.
This is an infinite sequence on the boundary of the unit ball of the norm. By com-
pactness of the boundary, there exists a subsequence si such that the ũ′

si converge to
a vector ỹ : |ỹ| = 1. So for any ε, there must exist sj such that for all si > sj ,

|ũ′
sj − ũ′

si | < ε.

Setting z̃ = ũ′
sj , B̃i = Ãsi . . . Ãsj+1(|ũsj |/|ũsi |), we get matrices B̃i such that

|B̃iz̃ − z̃| < ε,

and we can conclude by Proposition 4.3 that B̃i has an eigenvalue λ such that |1−λ| =
O(ε1/n). Thus, since (|ũsi |/|ũsj |)1/(si−sj) tends to ρ,

ρ(Ãsi . . . Ãsj+1)
1/(si−sj) → ρ.

As a conclusion, Algorithm 2, which checks the spectral radius of all the products
of the type Ãti . . . Ãtj (that is, all the subproducts of the products corresponding to
vertices of the conitope), will find a candidate SMP whose averaged spectral radius
tends to ρ.

Upper bound. Recall that for any norm on the cone, the right-hand side of
(4.1) (to the power 1/t) forms a sequence of approximations for ρ:

(4.3) Ft = sup
˜A∈Pt( ˜M)

(
sup

ũ:|ũ|=1

|Ãũ|
1/t

)
.

From Definition 1.2 and (4.1) it follows that ρ(M̃) ≤ Ft ≤ ρ̂t(M̃); hence Ft tends

to ρ as t → ∞. Also, we have shown above that at time t, for any Ã ∈ Pt(M̃′), and
any ũ ∈ U0, Ãũ ∈ coniconv(Ut).

This implies by convexity of the norm that

ρ((̃M′))t ≤ max
w̃∈Ut

|w̃|U0 := B2t
t .

Thus, we have a sequence of upper bounds Yt = C2B2
t on ρ. Observe that

(4.4) Yt ≤ max
t′≤t

F
(t′/t)
t′ .

This is because the vertices of Ut are part of the images of vectors in U0 (under
products of diverse lengths t′ ≤ t). It is straightforward to show that since Ft → ρ =
ρ(M)2, (4.4) implies that so does Yt = C2B2

t .
Remark 3. If the set M is not irreducible, i.e., if there exists a nontrivial common

invariant subspace, then we can still use the algorithms, and Theorem 4.4 remains
valid, except for Algorithm 1, if we were not able to generate a full dimensional set
U0. In this case, we can detect the invariant subspace by Proposition 4.2, and apply
the algorithm on the sets of smaller matrices.
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5. Finiteness results.

5.1. Preliminary results. We recall that M̂ is the normalized family M
ρ(M) .

Now we report the existence results proved in [14], which involve the normalized
trajectories (2.2). First we observe that all the cyclic permutations of a product P̄
have the same eigenvalues with the same multiplicities. Thus, if P̄ = Aik′ . . . Ai1 is
an SMP for a family M, then each of its cyclic permutations

Ais . . . Ai1Aik′ . . . Ais+1 , s = 1, . . . , k′ − 1,

are still an SMP for M.
Definition 5.1 (asymptotically simple set). A nondefective bounded family M

of complex n× n-matrices is called asymptotically simple if it has a minimal SMP P̄
with only one leading eigenvector (modulo scalar nonzero factors) such that the set X
of the leading eigenvectors of M is equal to the set of the leading eigenvectors of P̄
and of its cyclic permutations.

We remark that the asymptotic simplicity of M means that the set X of the
leading eigenvectors of M is M-cyclic, i.e., for any pair (x, y) ∈ X×X there exist
α, β ∈ C with

|α| · |β| = 1

and two normalized products P̂ , Q̂ ∈ P(M̂) such that

y = αP̂x and x = βQ̂y.

Theorem 5.2 (see [14]). Assume that a finite family M of complex n × n-
matrices is nondefective and asymptotically simple. Moreover, let x �= 0 be a leading
eigenvector of M and assume that span

(
T [M̂, x]

)
= Cn. Then the set

(5.1) ∂S[M̂, x]
⋂

T [M̂, x]

is finite (modulo scalar factors of unitary modulus). As a consequence, there exist a

finite number of normalized products P̂1, . . . , P̂s ∈ P(M̂) such that

(5.2) S[M̂, x] = absco
(
{x, P̂1x, . . . , P̂sx}

)
,

so that S[M̂, x] is an invariant balanced complex polytope [16].

5.2. Asymptotic simplicity and extremal conitopes. In the following, by
conv(U) we mean the convex hull of the adherence, that is, the closure points, of U.

Lemma 5.3. If a sequence of vectors si ∈ Cn converges to zero, then the set
coniconv({s̃i}) is a conitope.

Proof. Define W = span({si}i>0), k = dim(W ), and take a set {r1, . . . , rk} ⊂
{si}i>0 of full rank. Then, all the si can be written as

∑k
j=1 λjrj .

Now take a vector si with i large enough such that

(5.3) {r1, . . . , rk} ⊂ {s1, . . . , si−1},
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and such that, denoting si =
∑k

j=1 λjrj , |λj | < 1/k2. We claim that

(5.4) sis
∗
i�H

k∑
j=1

(rjr
∗
j )/k.

Indeed, taking an arbitrary vector x ∈ Cn, we have

x∗sis∗i x =

k∑
j1,j2=1

(λj1λj2)(x
∗rj1r

∗
j2x) ≤

k∑
j1,j2=1

|λj1 ||λj2 ||r∗j1x||r
∗
j2x|

≤ k2(1/k2)2 max
j

|r∗jx|2 ≤ x∗

⎛⎝ k∑
j=1

(rjr
∗
j )/k

⎞⎠x.

Since it is true for any x ∈ Cn, (5.4) follows by Definition 2.7.
As usual we indicate s̃ = s · s∗. Equations (5.3) and (5.4) together imply that

s̃i ∈ coniconv({s̃1, . . . , s̃i−1}),

and then,

coniconv({s̃1, . . . , s̃i}) = coniconv({s̃1, . . . , s̃i−1}).

Now, take i such that

∀l > i, ∃λ1, . . . , λk : |λj | < 1/k2, sl =

k∑
j=1

λjrj .

Thus, for i large enough we have that for all l > i,

coniconv({s̃1, . . . , s̃l}) = coniconv({s̃1, . . . , s̃i−1}),

which implies that the limit of this set actually is a conitope, since the limit is reached
for a finite number of vertices.

Theorem 5.4. If a finite set of matrices M is irreducible and asymptotically
simple, then its lifted set M̃ admits an invariant conitope. Moreover, there exists
such an invariant conitope with vertices that are all rank one matrices.

Proof. The structure of the proof is analogous to that of Theorem 5.18 in [14].

We assume without loss of generality that ρ(M) = ρ(M̃) = 1. Let us denote by
X the finite set of leading eigenvectors (modulo scalar nonzero factors) of M. Take
a particular v ∈ X and denote by V the union of trajectories starting at ṽ = v · v∗
under arbitrary products of matrices in M̃:

V = {Ãit . . . Ãi1 ṽ : Ãij ∈ M̃ ∀j}.

We now define

(5.5) S = coniconv(V ).

Since M̃ is irreducible, again by [19, Theorem 2.1], the set V is bounded, and S is

an invariant set for M̃. The last follows by the fact that if U is an invariant set, then
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coniconv(U) is also an invariant set. We will prove that there exist a finite number of
vectors ṽ1, . . . , ṽl ∈ V such that S = coniconv({ṽ1, . . . , ṽl}), and so S is an invariant

conitope for M̃.
Suppose the contrary. Then, there must be an infinite set of vectors V ′ ⊂ V such

that

(5.6) ∀ ṽi ∈ V ′, ṽi �∈ coniconv(V ′ \ ṽi).

Moreover, by compactness of the set S we can suppose that V ′ is a subset of a single
trajectory of ṽ, that is, there exist indices i1, i2, . . . such that the set

V ′ = {Ãit . . . Ãi1 ṽ : t ≥ 0}

contains an infinite set satisfying (5.6). (For a detailed proof of this fact, see, for
instance, [14, Lemma 5.19].)

We note ṽt = Ãit . . . Ãi1 ṽ, and correspondingly vt = Ait . . . Ai1v. Since this set is
infinite, there must be an index t0 such that vt0 ∈ X, vt0+1 �∈ X. Now, by compactness
of coniconv(V ′), there must exist a subsequence of ṽt that converges to a vector w̃.
This vector w̃ is different from zero because, by (5.6) and Lemma 5.3, the sequence

Ãit . . . Ãi1 ṽ is bounded away from zero. Then, since

ṽt = vt · v∗t ,

this must be the case also for the original (unlifted) matrices: hence

∃ t0 < t1 < t2 < · · · tk · · · : Aitk
. . . Ait0+2vt0+1 → w,

and then w ∈ X. Now, by asymptotic simplicity, there exists a matrix P ∈ P(M)
such that Pw = vt0 . This implies that PAitk

. . . Ait0+2vt0+1 → vt0 , and hence, pre-
multiplying the above equation by Ait0+1 , we obtain that

Ait0+1PAitk
. . . Ait0+2vt0+1 → vt0+1,

and vt0+1 is in X, which gives a contradiction.
Remark 4. Note that if one applies the polytope algorithm in [14, 18] and then

lifts the vertices {vi} and considers the corresponding conitope, one does not obtain,
in general, an invariant set for the lifted set of matrices. This is a key point in order
to understand that the two algorithms are fundamentally different (see the following
Example 3 in section 6).

6. Examples and numerical tests.

6.1. Illustrative examples. We provide here some illustrative examples show-
ing advantages of the methods proposed in this paper.

Example 1. Consider the set of matrices

M =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0 −1 1 1
1 0 0 0
0 −1 0 0
1 −1 −1 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 −1 1 0

−1 −1 1 1
−1 0 0 0
−1 −1 0 −1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

This set of matrices has a jsr

ρ(M) = ρ(A2) ≈ 1.7779,
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where A2 has two complex and conjugate leading eigenvalues. The classical balanced
complex polytope (BCP) algorithm terminates in 4 steps and finds a BCP which is
the convex hull of 16 vertices. Algorithm 1 terminates after two steps and finds an
invariant conitope with only seven vertices.

Example 2. Our next example presents a set of complex matrices

M =

⎧⎨
⎩

⎛
⎝

−1 + i −i −1 + i
0 1 −1− i

1 + i −i −1− i

⎞
⎠ ,

⎛
⎝

i −1− i −1
1− i −1 + i i

−1 + i 1 + i 1 + i

⎞
⎠
⎫⎬
⎭ .

In this case ρ(M) = ρ(A2
1A2A1A2) ≈ 2.2401.

The classical BCP algorithm requires 20 steps to find a BCP with 65 essential
vertices. Algorithm 1 terminates after eight steps and the invariant conitope has only
ten essential vertices.

Example 3. A set of matrices for which conv({vi}) is invariant, but for which

coniconv({ṽi}) is not invariant for M̃ is given by the set M = {A1, A2} with

A1 =

⎛⎝ 0 1 1
1 0 0
0 −1 0

⎞⎠ , A2 =

⎛⎝ 0 1 0
−1 0 1
−1 0 0

⎞⎠ .

The SMP is P = A1A2 and has a real leading eigenvector. An extremal real centrally
symmetric polytope has been computed by the algorithm described in [17] and gives
six vertices:

v1 = x, v2 = A′
1v1, v3 = A′

2v1, v4 = A′
2v2, v5 = A′

2v3, v6 = A′
1v5,

where A′
i = Ai/ρ(P ), i = 1, 2.

The simple algebraic test that w̃ = Ã′
2ṽ2 does not belong to the conitope shows

that computing the set of lifted vertices yields a conitope which is not invariant.

6.2. Extensive tests. In this section we provide an extensive test in order to
compare our algorithms to those based on classical polytope norms.

These tests have been done with MATLAB 7.14.0.739 (R2012a) on a two AMD
Quad-Core Opteron 2354 2.2 GHz server with 15.5 GB RAM and 64 bit Red Hat
Linux 4.4.6 (kernel 2.6.32).

We used MATLAB function randn to generate real and complex families of two
matrices. We scaled each matrix to have spectral radius 1.

For every family we first identified a candidate SMP applying the algorithm pre-
sented in [8] and then we produced the unit ball of a polytope extremal norm by
means of the algorithm presented in [17] and the unit ball of a conitope extremal
norm using Algorithm 1 described in section 3.1.

We organize results by length of the SMP and we consider only lengths corre-
sponding to 20 or more experiences. For each length we plot the 2.5th and 97.5th
percentiles (blue (in the electronic version) bars for polytopes and red (in the elec-
tronic version) bars for conitopes) and medians (blue (in the electronic version) crosses
and red (in the electronic version) stars for polytopes and conitopes, respectively).

In Figure 1 we show results obtained from 12334 tests on randomly generated real
families of two matrices 3 × 3 with real leading eigenvalue in the SMP. Figure 1(a)
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Fig. 1. Families of two real matrices 3×3 (12334 families tested). (a) Time for the computation
of extremal conitope and polytope norms. (b) Number of vertices in the unit ball of extremal conitope
and polytope norms.

contains the computational time required by the polytope method and conitope Al-
gorithm 1 in order to generate the unit ball of an extremal norm. Figure 1(b) reports
statistics on the number of vertices of unit balls of extremal polytope and conitope
norms. In case of real matrices the two techniques produce unit balls that contain
most of the time the same number of vertices; see Figure 1(b). However, the polytope
algorithm for real families checks the polytope norm of new vertices through linear
programming while the proposed technique uses semidefinite programming to make
the same computation. Hence the polytope algorithm performs better than the pro-
posed technique from a computational time point of view in case of families of real
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Fig. 2. Families of two complex matrices 3×3 (8413 families tested). (a) Time for the compu-
tation of extremal conitope and polytope norms. (b) Number of vertices in the unit ball of extremal
conitope and polytope norms.

matrices with real leading eigenvectors; see Figure 1(a). In fact the mean computa-
tional time out of all the 12334 tests is around 17 seconds for conitope Algorithm 1
and 2 seconds for the polytope method.

Figure 2 instead contains the results of 8413 tests on randomly generated complex
families of two matrices 3 × 3. Figure 2(a) displays the computational time required
by the two techniques to generate extremal norms, Figure 2(b) shows statistics on the
number of vertices of unit balls of extremal polytope and conitope norms.

What we conclude is that, in case of complex families of matrices, Algorithm 1 re-
quires less computational time than the polytope algorithm. The mean computational
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time out of all the 8413 tests is around 11 seconds for our conitope Algorithm 1 and 43
seconds for the polytope method. We observe that the number of vertices in the unit
ball of an extremal conitope norm is, in general, smaller than the one in the unit ball
of an extremal polytope norm; see Figure 2(b). This is related to the partial ordering
induced by the invariant cone which allows us to discard products of matrices.

We have also conducted numerical tests on real families of two matrices 3× 3 and
6 × 6 with complex and conjugate leading eigenvalues in the SMP, but the number
of cases we were able to test is small, the length of the SMP we produced is no more
than two, and there is no evidence from these tests that one of the two methods
performs better than the other one from a statistical point of view. We finally report
that for a randomly generated real family (at least for families of two matrices), it
seems that the probability of having a real leading eigenvalue is much higher than
the one of a complex conjugate pair. We have no rigorous explanation for this but
we think that it could lead to interesting research questions. In the same vein, we
observe that complex conjugate cases are often associated to a very small length of
the SMP (typically no more than 2).

7. Conclusion. In this paper we introduced a new method for analyzing the
asymptotic behavior of semigroups of matrices. By combining the lifting technique
and the extremal polytope technique, we have shown that one can, in the case of
complex families of matrices, outperform the other algorithms in the literature. We
have also provided a sufficient condition for the existence of an extremal norm for the
lifted matrices (“an extremal conitope”).

A huge advantage of our algorithms is that they allow one to discard in a sys-
tematic way many products in the semigroup, thanks to the partial order relation
induced by the semidefinite cone. This can greatly reduce the computation time in
some situations. Another advantage is that the algorithm can terminate in finite
time, and provide a proof that a particular product is actually an SMP, by exhibiting
a convex set (the extremal conitope) which is an extremal norm. The same ideas
can be applied for the joint spectral subradius, giving potentially a first method for
computing the joint spectral subradius of an arbitrary family. We leave this fact for
further publication.

The main computational burden, at every step, is in the computation of the
quantity |Av|V , i.e., the semidefinite program allowing one to compute the conitope
norm of the new vertices. We leave it as an open question whether it is possible to
apply similar ideas to general matrices with a simpler cone, on which the computations
are less expensive.
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