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COUNTEREXAMPLES TO THE COMPLEX POLYTOPE
EXTREMALITY CONJECTURE∗

R. M. JUNGERS† AND V. Y. PROTASOV‡

Abstract. We disprove a recent conjecture of Guglielmi, Wirth, and Zennaro, stating that any
nondefective set of matrices having the finiteness property has an extremal complex polytope norm.
We give two counterexamples that show that the conjecture is false even if the set of matrices is
supposed to admit the positive orthant as an invariant cone, or even if the set of matrices is assumed
to be irreducible.
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1. Introduction. The joint spectral radius of a finite set of matrices Σ ⊂ Rn×n

characterizes the maximal asymptotic rate of growth of products of matrices taken
from Σ. Let ‖ · ‖ be any submultiplicative matrix norm. For a given natural t, we
denote ρ̂t(Σ) = max {‖A1 . . . At‖1/t : Ai ∈ Σ}. The joint spectral radius of the set Σ
is defined as

ρ(Σ) � lim
t→∞ ρ̂t(Σ).(1.1)

It is well known that the limit exists and that this quantity does not depend on the
norm chosen. Moreover, it can also be defined as the asymptotic rate of growth
of the maximal spectral radius of products of matrices from Σ: Define ρt(Σ) =
max {ρ(A1 . . . At)1/t : Ai ∈ Σ}, where ρ(A) = limt→∞ ‖At‖1/t is the spectral radius of
the matrix A, that is, the largest modulus of its eigenvalues, one has an alternative
definition of the joint spectral radius:

ρ(Σ) � lim sup
t→∞

ρt(Σ)(1.2)

(see [2] for the proof). The joint spectral radius has many applications in functional
analysis, probability, approximation theory, discrete mathematics, linear switching
systems, etc. (see [13,21] for many references). The importance of this notion can be
illustrated, for instance, by the following theorem from the theory of linear dynamical
systems.

Theorem 1 (see [13]). Let Σ ⊂ Rn×n be a set of matrices. The dynamical system

xt+1 = Atxt : At ∈ Σ,(1.3)
Sx0 ∈ Rn

is stable if and only if ρ(Σ) < 1.
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The joint spectral radius is notoriously hard to compute. It is known that the
problem of determining, given a set of matrices Σ, if ρ(Σ) ≤ 1 is Turing-undecidable,
and this result remains true even if Σ contains only nonnegative rational entries [3,7].
Moreover, unless P = NP, there is no algorithm for approximating the joint spectral
radius of arbitrary sets of matrices Σ, whose execution time is polynomial in the size
of Σ and in the required accuracy [6].

In some cases, however, a set of matrices can have special properties that might
make easier the joint spectral radius computation. If, for a set Σ, the function ρt(Σ)
converges in finite time, we say that Σ has the finiteness property. In what follows,
we denote by Σt the set of products of length t of matrices from Σ.

Definition 1. A set of matrices is said to possess the finiteness property if there
exists t ∈ N and a product A ∈ Σt such that ρ(Σ) = ρ(A)1/t.

It has been shown [5,8,16] that, unfortunately, not all families of matrices possess
this property. As an example, we cite the following result.

Theorem 2 (see [5]). Let

(1.4) Σ(α) =
{(

1 1
0 1

)
, α

(
1 0
1 1

)}
.

There is an uncountable number of values of the parameter α ∈ (0, 1) such that Σ(α)
does not satisfy the finiteness property.

In other words, define ρα = ρ(Σ(α)), and

(1.5) B0 =
1
ρα

(
1 1
0 1

)
, B1 =

α

ρα

(
1 0
1 1

)
.

Then for an uncountable number of values α ∈ (0, 1), the set Σ = {B0, B1} has joint
spectral radius equal to one, even though all finite products of matrices in Σ have
spectral radius smaller than one.

An efficient way to prove that ρ(Σ) ≤ r for a real number r is to find a convex
body P (convex compact with a nonempty interior), centrally symmetric around the
origin such that

(1.6) ∀A ∈ Σ ∀x ∈ P Ax ∈ r P.

Indeed, such a convex body represents the unit ball of the corresponding Minkowski
norm ‖x‖P = inf{λ > 0 | λ−1x ∈ P}. For the corresponding induced matrix norm,
one has

(1.7) ∀A ∈ Σ ‖A‖ ≤ r.

This, in turn, implies that ρ(Σ) ≤ r by submultiplicativity [1, 18, 19]. If, moreover,
ρ(Σ) = r, we say that P is the unit ball of an extremal norm, since r is the smallest
value such that (1.6) is possible. Finally, if P is a complex polytope, we say that
Σ admits a complex polytope extremal norm. Recall that a complex polytope with
vertices p1, . . . , pk ∈ Cn is defined as

P =

{
x =

k∑
i=1

λipi : λi ∈ C,

k∑
i=1

|λi| ≤ 1

}
.

In what follows, we assume that any complex polytope has at least two different
vertices, i.e., contains more than one point. We call a polytope nondegenerate if
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it possesses a nonempty interior, or, which is the same, it is not contained in a
hyperplane. We have the following result.

Theorem 3 (see [9]). If a set of matrices Σ admits a complex polytope extremal
norm, then it satisfies the finiteness property.

Let us remark that this result for real polytope extremal norms was proved earlier
in [12]. We say that a set of matrices Σ is nondefective if (1/ρ)Σ generates a bounded
semigroup, that is, if there exists a real number K such that

(1.8) ∀t ∈ N, ∀A ∈ Σt ‖A‖ ≤ Kρt.

It is known that if a family is irreducible (i.e., the matrices do not have a common
nontrivial invariant subspace), then it is nondefective [2,18]. In particular, the family
Σ(α) defined in (1.4) is nondefective for any α ∈ (0, 1). Moreover, reducible fami-
lies can be nondefective as well (if the so-called valency equals to one [21]). Clearly,
if Σ has an extremal norm, it is nondefective. Indeed, the induced matrix norm is
such that for all A ∈ Σ one has ‖A‖ ≤ ρ, and since all induced norms are submul-
tiplicative, condition (1.8) is satisfied. In [9] the authors conjecture that under the
nondefectiveness assumption the converse to Theorem 3 holds.

Conjecture 1 (see [9]). Every nondefective finite family of complex matrices
that possesses the finiteness property has a complex polytope extremal norm.

It is known (see [14]) that for sets of matrices satisfying the finiteness property,
the question ρ < 1 is decidable. This question is of high importance in practice, and,
for that reason, it is needed to have a good understanding of the finiteness property
and to characterize sets of matrices that have this property. If the conjecture was
true, we would have a characterization of such (nondefective) sets in terms of the
existence of a complex polytope extremal norm.

It is not difficult to show that Conjecture 1 holds for families consisting of one
matrix: if a matrix A is nondefective (its powers Ak are bounded uniformly over all
k ∈ N), then it has an invariant complex polytope. Furthermore, the authors of [9]
introduce the notion of asymptotic simplicity of a set of matrices and prove that
Conjecture 1 is true for asymptotically simple sets. Roughly speaking, asymptotic
simplicity means that there is only one product reaching the joint spectral radius
(up to cyclic permutations and taking powers of that product) and that maximizing
product has only one leading eigenvector. Algorithmic aspects of that result for
computing the joint spectral radius were studied in [10]. More recently, these results
were partially generalized to the case where the maximizing product has two leading
eigenvectors [11].

In this paper we show that Conjecture 1 is false, in general, if one relaxes the
asymptotic simplicity hypothesis.

2. The counterexamples. The following theorem disproving Conjecture 1 is
the main result of this paper.

Theorem 4. There exists an irreducible pair of 3× 3 orthogonal matrices A0, A1

for which there is no complex polytope P ⊂ C3 such that AiP ⊂ P , i = 0, 1.
Also there exists a nondefective pair of 3 × 3 matrices A0, A1 with nonnegative

entries for which ρ({A0, A1}) = ρ(A0) = ρ(A1) = 1, but there is no nondegenerate
complex polytope P ⊂ C3 such that AiP ⊂ P , i = 0, 1.

Note that for orthogonal matrices ρ({A0, A1}) = ρ(A0) = ρ(A1) = 1, and this
pair of matrices is nondefective. So, the pairs of matrices from Theorem 4 are both
nondefective and satisfy the finiteness property already for t = 1.

Proof. The corresponding examples are given in Propositions 1 and 2.
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Let us first introduce the example with irreducible matrices.
Proposition 1. Let 0 ≤ αi ≤ 2π, αi

π /∈ Q, i = 0, 1, and denote by Ai the
operator of rotation of the space R3 by the angle αi with respect to an axis ai, i = 0, 1.
Assume the axes a0 and a1 are orthogonal. Then the family {A0, A1} does not have
an invariant complex polytope.

Since these matrices are orthogonal, the family {A0, A1} is clearly nondefective,
and its joint spectral radius, which is equal to 1, is attained at every product of these
matrices. Therefore, Theorem 4 disproves Conjecture 1. To give a proof we first
describe the structure of real parts of complex polytopes. For a given set M ⊂ Cd,
we denote by ReM = {Re z | z ∈ M} the real part of M . By an ellipse we mean two-
dimensional ellipse centered at the origin, including the degenerate case of a segment.
This is an easy exercise to show that a set E ⊂ Rd is an ellipse if and only if there is
a vector z ∈ Cd such that E = {Re(eiαz)| α ∈ T}. We denote this ellipse by Ez.

Lemma 1 (see [17]). A subset of Rd is the real part of a complex polytope if
and only if it is the convex hull of several ellipses. If all the ellipses degenerate to
segments, then it is a convex real polytope.

Proof. Let P = {∑N
k=1 λkzk|

∑N
k=1 |λk| ≤ 1} be a complex polytope zk ∈ Cd, k =

1, . . . , N . Using the short notation Ezk
= Ek, |λk| = tk, we get

Re P =
{∑N

k=1 tkxk

∣∣ xk ∈ Ek , tk ≥ 0,
∑N

k=1 tk ≤ 1
}

= Conv {Ek, k = 1, . . . , N} .

Now the convex hull of the ellipses {Ek} is the real part of a complex polytope with
the corresponding vertices {zk}.

We are now able to prove Proposition 1.
Proof of Proposition 1. Let us show that the pair {Ao, A1} has no invariant

complex polytope. Assume the contrary: there is a complex polytope P such that
AiP ⊂ P, i = 0, 1. Then its real part P ′ = Re P possesses the same property:
AiP

′ ⊂ P ′, i = 0, 1. Let b ∈ P ′ be the most distant point from the origin. We show
that P ′ is actually a Euclidean ball of radius |b|: P ′ = {x ∈ R3 | |x| ≤ |b|}. Since
the angle α0 is irrational, it follows that the points {Ak

0 b , k ∈ N} fill everywhere
densely the circle γ centered on the line a0 contained on the plane orthogonal to a0

and passing through the point b. Hence, γ ⊂ P ′. Taking an element c ∈ γ, which is
orthogonal to a1, we see that the points {Ak

1 c , k ∈ N} fill everywhere densely the
circle of radius |b| centered at the origin and contained on the plane orthogonal to
a1. Applying iterations of the matrix A0 to this circle, we fill everywhere densely
the sphere of radius |b| centered at the origin. Since P ′ is convex and closed, we see
that it contains the corresponding ball. However, by the assumption, P ′ does not
have points outside this ball. So, P ′ is a ball. This contradicts Lemma 1, because a
Euclidean ball in R3 is not a convex hull of finitely many ellipses.

One could assume that Conjecture 1, while false in general, is true for nonnegative
matrices. Indeed, these matrices admit an invariant cone (the positive orthant), and,
for this reason among others, sets of nonnegative matrices allow one to derive much
stronger results (see, for instance, [4,15,20]). Our second counterexample shows that
Conjecture 1 does not hold, even if the matrices are supposed to have nonnegative
entries. We start with the following simple observation.

Lemma 2. Let Σ ⊂ Rn×n be a set of m block diagonal matrices:

Σ =
{(

Ai 0
0 Bi

)
, 1 ≤ i ≤ m

}
,
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where Σ′ = {Bi} ⊂ Rn′×n′
, n′ < n. If Σ admits a nondegenerate invariant complex

polytope, so does Σ′.
Proof. Let

P =

{
x =

k∑
i=1

λi pi ,

k∑
i=1

|λi| ≤ 1

}

be a complex polytope generated by k points, pi that is invariant under the matrices
in Σ. Denoting p′i the projection of the vectors pi on their last n′ coordinates, for all
p′i and for all B ∈ Σ′ there exist λ1 . . . λk :

∑ |λi| ≤ 1 such that

B p′i =
k∑

i=1

λi p′i .

Hence, the complex polytope generated by p′i is clearly nondegenerate and is invariant
with respect to Σ′.

Note that the set of projected vectors p′i might well not be an essential system of
vertices for the complex polytope (see [11]). That is, some p′i might be redundant in
a description of the polytope.

Proposition 2. Let B0, B1 be matrices defined in (1.5) for which the finiteness
property does not hold. Let Σ̃ = {B̃0, B̃1}, where

B̃0 =
(

1 0
0 B0

)
, B̃1 =

(
1 0
0 B1

)
.

The set Σ̃ has the finiteness property and is nondefective, but it does not admit an
extremal complex polytope norm, thus, violating Conjecture 1.

Proof. The joint spectral radius of Σ̃ is equal to one. Indeed, any product B̃ ∈ Σ̃t

can be written as

B̃ =
(

1 0
0 B

)
,

with B ∈ Σt and

lim sup
t→∞

max
B̃∈Σ̃t

ρ(B̃) = 1.

Now ρ(B0) = 1, and so Σ̃ has the finiteness property. Furthermore, since the family
Σ is irreducible, it is nondefective, and therefore, Σ̃ is nondefective either. We now
show that Σ̃ does not admit an extremal complex polytope norm. Let us suppose by
contradiction that there exists a nondegenerate invariant polytope. Lemma 2 implies
that Σ = {B0, B1} also admits a nondegenerate invariant polytope. Hence, Σ has a
complex polytope extremal norm, which is in contradiction with Theorem 3.

3. Conclusion. We have provided two counterexamples to the complex polytope
extremality (CPE) conjecture: the existence of an extremal complex polytope norm
is not a criterion for recognizing sets of matrices satisfying the finiteness property. We
leave the following question, raised in [13], open: does there exist an algorithm that
recognizes sets of matrices satisfying the finiteness property? Also, even though this
is not a criterion for the finiteness property, it would be interesting to recognize sets
of matrices that admit an extremal complex polytope norm, since for these sets, it is
possible to compute the joint spectral radius exactly [9]. To the best of the authors’
knowledge, no such algorithms are known thus far.
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