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In this section we show that the following problem is decidable:

The bounded trajectory problem:

INSTANCE

• A finite set of nonnegative integer matrices M = {A1, . . . , Am} ⊂
N

n×n.

• A finite set of nonnegative integer vectors V = {u1, . . . , up} ⊂ N
n.

PROBLEM

Determine whether there exists a sequence (it)
∞

t=1
, it ∈ {1, . . . ,m} and

an initial vector v0 ∈ V such that the sequence of vectors determined by the
recurrence

vt = Atvt−1, t = 1, 2, . . . (1)

is bounded.

In the following, M∗,Mt denote respectively the set of all products of
matrices inM, and the set of all products of length t of matrices inM.

This problem is closely related to the so called joint spectral subradius
of a set of matrices, which is the smallest asymptotic rate of growth of any
long product of matrices in the set, when the length of the product increases.
For a survey on the joint spectral subradius and similar quantities, see [2].
While the joint spectral subradius is notoriously Turing-uncomputable in
general, we will see that in our precise situation, we are able to provide
an algorithmic solution to the problem. We first show that one should not
expect a polynomial time algorithm for the problem.

Proposition 1. Unless P = NP, there is no polynomial time algorithm for
solving the bounded trajectory problem.
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Proof. Our proof is by reduction from the mortality problem which is
known to be NP-hard, even for nonnegative integer matrices [1, p. 286].
In this problem, one is given a set of matrices M, and it is asked whether
there exists a product of matrices inM∗ which is equal to the zero matrix.
We now construct an instanceM′, V of the bounded trajectory problem

such that there is a bounded trajectory for this instance if and only if the
setM is mortal: takeM′ = {A′ = 2A : A ∈ M} and v0 = e (the ”all ones
vector”) as the unique vector in V.

Now, it is straightforward that there exists a sequence (it)
∞

t=1
: it ∈ {1, . . . ,m}

such that the sequence of vectors

A′

t . . . A
′

1
e = 2tAt . . . A1e

is bounded if and only if the set M is mortal. Indeed, the matrices in M
being nonnegative integer valued, if the vector At . . . A1e is different from
zero, then its (say, Euclidean) norm is greater or equal to one.

Also, if one relaxes the requirement that the matrices and the vectors are
nonnegative, then the problem becomes undecidable, as shown in the next
proposition.

Proposition 2. The bounded trajectory problem is undecidable if the
matrices and vectors in the instance can have negative entries.

Proof. (sketch) It is known that the mortality problem with entries in Z

is undecidable [2, Corollary 2.1]. We reduce this problem to the bounded

trajectory problem in a way similar as in Proposition 1, except that we
build much larger matrices: we make 2n copies of each matrix in M and
place them in a large block-diagonal matrix. That is, our matrices inM′ are
of the shape

{diag(2A, 2A, . . . , 2A) : A ∈M}.

Now we take V = v0, where v0 ∈ {−1, 1}
2
nn is the concatenation of all the dif-

ferent n-dimensional {−1, 1}-vectors. This vector has a bounded trajectory
if and only if there exists a zero product inM∗.

However, we show in the remainder of this section that the problem is
decidable when restricted to nonnegative instances. The next lemma states
that if there is a bounded trajectory, then it can be obtained with a periodic
sequence of matrices.

Lemma 1. LetM, V be an instance of the bounded trajectory problem.
There exists a sequence (vt) as given by Equation (1) which is bounded iff
there exist matrices A,B ∈ M∗, and a vector v0 ∈ V such that the sequence
(ct) = AtBv0 is bounded.
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Proof. The if-part is obvious.
In the other direction, if the set {vt = At . . . A1v0} is bounded it must be
finite. Thus, there actually exist A,B, v such that Av = v, v = Bv0.

It appears that it is possible to check in polynomial time, given a matrix
A and a vector v, whether the sequence (ct) = Atv is bounded. In fact, as
we show below, this does not really depend on the actual value of the entries
of A and v, but only for each entry of A whether it is equal to zero, one, or
larger than one, and for each entry of v whether it is equal to zero or larger
than zero. For this reason we introduce two operators that get rid of the
inessential information:

Definition 1. Given any matrix (or vector) M ∈ N
n1×n2 , we denote by σ(M)

the matrix in {0, 1, 2}n1×n2 in which all entries larger than two are set to two,
while the other entries are equal to the corresponding ones in M.

Similarly, we denote by τ(M) the matrix in {0, 1}n1×n2 in which all entries
larger than one are set to one, while the other entries are equal to zero.

Theorem 1. Given a matrix A ∈ N
n×n, and two indices 1 ≤ i, j ≤ n, it is

possible to check in polynomial time whether the sequence

(At)i,j

remains bounded when t grows.

Proof. Our algorithm adopts a different approach in the cases i = j and
i 6= j.

• For the diagonal elements, it is known (see [3, corollary 2] and the
remarks before) that for any matrix A ∈ N

n×n, and any index i, its
diagonal entry (At)i,i remains bounded if and only if (At)i,i ≤ 1 for
t = 1, . . . , n2.

• Non-diagonal elements (1 ≤ i, j ≤ n, i 6= j). First, it is obvious
that the condition

∃t : 1 ≤ t ≤ n− 1 : At
i,j ≥ 1 (2)

is necessary for having the (i, j)-entry unbounded.
Indeed, for any power At such that (At)i,j > 0, if t ≥ n one can find a
t′ < t such that (At′)i,j > 0. To see this, simply remark that (At)i,j > 0
implies the existence of a sequence

(i, i1), (i1, i2), . . . , (it−1, j)
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of nonzero entries in A. Now, if t ≥ n, there is a particular index that
appears twice in this sequence, and one can build a shorter sequence
with the same property.

Thus, one can restrict its attention to such pairs (i, j) such that there
exists a t < n such that At

i,j ≥ 1. We will prove that this entry is
unbounded if and only if one of the following conditions must occur
(and these conditions can be checked in polynomial time):

I. The (i, i)-entry or the (j, j)-entry is unbounded.

II. There exists t such that

At
i,i, A

t
i,j , A

t
j,j ≥ 1. (3)

Moreover, if this condition holds, there is such a t smaller than
n3 [3, Proposition 1].

III. There exists another index j′ and an integer t ≤ n − 1 such that
either

– At
j′,j ≥ 1 and the (i, j′)-entry satisfies the Condition II.,

– or conversely At
i,j′ ≥ 1, and (j′, j) satisfies Condition II.

It is straightforward to check that any of these three conditions (to-
gether with the necessary condition in Equation (2)) implies that the
(i, j)-entry is unbounded.
We now show that if the (i, j) entry is unbounded, but yet, I. and II.
fail, then, III. should hold.
We claim that I. and II. being violated implies that either ∀t, (At)i,i = 0,
or ∀t, (At)j,j = 0. Indeed, it is not difficult to see that if there exist
t1, t2, t3 such that (At1)i,i ≥ 1, (At2)j,j ≥ 1, (At3)i,j ≥ 1, then condition
II. holds (see [3, proof of Proposition 1] for a proof). We thus suppose
without loss of generality that

∀t, (At)j,j = 0. (4)

(If it is not the case, then the proof is symmetrically the same replacing
j with i.)

Now, since

(At)i,j =
∑

k

At−1

i,k Ak,j,

it comes that there is an index k1 6= i, j, such that (At)i,k1 is unbounded
and Ak1,j ≥ 1. Thus, if the pair (i, k1) satisfies Condition II. the proof
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is done. If not, one can remove the row and column corresponding to
j in the matrix A and reiterate the proof on the pair (i, k1) since this
entry is unbounded in the powers of this submatrix too. Reiterating
the proof as long as necessary, one will find an index k such that the
pair (i, k) satisfies condition II.

We are now in position to present our algorithm:
Algorithm 1 for solving the bounded trajectory problem.

I. Construct a new instance of the bounded trajectory problem:

M′ = {σ(A) : A ∈M}, (5)

V ′ = {τ(v) : v ∈ V }. (6)

II. REPEAT

• V ′ ← V ′ ∪ {τ(Av) : A ∈M′, v ∈ V ′}

• M′ ←M′ ∪ {σ(AB) : A ∈M′, B ∈M′}

UNTIL no new element is added to V ′,M′.

III. For all pair (A, v) ∈M′ × V ′,

(a) IF the sequence (ct) = Atv is bounded,

• RETURN YES

• STOP

IV. RETURN NO.

Theorem 2. Algorithm 1 is correct and stops in finite time.

Proof. We first show how to implement Point III. (a) in the algorithm. For
any column corresponding to a nonzero entry of v, one just has to check
whether all the entries of this column remain bounded in the sequence of
matrices At. Thanks to Theorem 1, it is possible to fulfill this requirement1.

It remains to be seen that all the tests on the entries of A in the algorithm
exposed in the proof of Theorem 1 do actually only depend on σ(A) (indeed,
the tests only ask whether the entry in some power of A is zero, one, or

1The algorithmic complexity of this particular line in the algorithm could be slightly
improved thanks to techniques developped in [2], but it would not change the overall
complexity.
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larger than one, but this latter condition does not change if one considers A or
σ(A)). Thus, one can restrict his attention to the finite set {σ(A) : A ∈M∗},
which is the set obtained after the loop at Line 2 in the algorithm.
Also, Atv is bounded if and only if Atτ(v) is bounded, and one can restrict
his attention to the finite set {τ(v) : v = Av0, A ∈ M

∗, v0 ∈ V }, which is
the set obtained after the loop at Line II. in the algorithm.
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