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Distance distribution in random graphs and application to networks exploration
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We consider the problem of determining the proportion of edges that are discovered in an Erdős-
Rényi graph when one constructs all shortest paths from a given source node to all other nodes.
This problem is equivalent to the one of determining the proportion of edges connecting nodes that
are at identical distance from the source node. The evolution of this quantity with the probability of
existence of the edges exhibits intriguing oscillatory behavior. In order to perform our analysis, we
introduce a new way of computing the distribution of distances between nodes. Our method outper-
forms previous similar analyses and leads to estimates that coincide remarkably well with numerical
simulations. It allows us to characterize the phase transitions appearing when the connectivity
probability varies.

PACS numbers: 89.75.Hc, 89.20.Hh, 02.50.-r, 05.50.+q

I. INTRODUCTION

The small-world phenomenon has attracted increasing attention over the last few years [2, 9]. In a small-world
network, the average distance between two nodes is small as compared to the total number of nodes. In many natural
networks, it is typically of the order of log(n) (n is the total number of nodes) and several models have been proposed
to explain this phenomenon (see, e.g. [2, 3, 10]). In some applications though, one is interested not only in this
so-called “average inter-vertex distance”, but in the whole inter-vertex distance distribution.

Even though this distribution is of much interest, it has not been studied very much in the literature. A theoretical
method for the computation of the distances in uncorrelated random networks of infinite size has been proposed
by Dorogovtsev et al. in 2003 [4]. In 2004, Fronczak et al. have analyzed the distance between nodes for a wide
class of random networks of finite size that generalizes the Erdős-Rényi graphs, the so-called uncorrelated random
networks with hidden variables [5]. They propose an approximation of the distribution of the distance between nodes
that performs well for a certain range of the parameter values. Their formula has the advantage of being simple
and analytical, but the approximations done in the calculations lead to significative differences with the numerical
evidence for some ranges of the parameters.

Our work is motivated by the analysis of algorithms that have been recently developped for analysing networks,
such as the internet. A typical way of doing that is to use the freeware traceroute, that provides the user a short
path from his computer to any other one in the internet. In the ASP model (All Shortest Paths), introduced to model
this strategy, one chooses a particular node s of the network, and then constructs all shortest paths from s to all
other nodes of the network [6]. Some edges of the network may not belong to any of these shortest paths and so they
are left undiscovered. The problem considered in [6] is that of determining the proportion of edges of the network
that are discovered. Thus the question is: “what is the proportion of edges that are on at least one shortest path
starting from the source?”. As pointed out in [6], the edges that are not discovered are exactly those connecting nodes
that are at identical distances from the source. Indeed, if an edge connects two equidistant nodes, it cannot be on a
shortest path from the source, since any path using this edge (say going from v1 to v2) can be shortened by going
directly to v2 via the shortest path to v2. Conversely, if an edge links two nodes that are not at the same distance,
then it links a node v1 at a certain distance d to a node v2 at a distance d + 1, and at least one shortest path to v2

passes through this edge. We are therefore interested in computing the number of edges connecting nodes that are at
the same distance from the source. Other models exist for representing network analysis strategies. For instance, [6]
introduces the USP model (for Unique Shortest Path). In the USP model one chooses only one shortest path from
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FIG. 1: Evolution with p (log-scale) of the proportion of edges that lie on a shortest path in an Erdős-Rényi random graph
with n = 1000 vertices. Each value is computed by averaging the observations made on 1000 graphs [6].

the source to each node in the graph and so there are possibly more edges that are left undiscovered. Our work is
also relevant to the analysis of this model, as it counts the proportion of edges that are never found by any single or
multiple USP searches.

In [6], massive numerical simulations have been performed to analyze the proportion of edges that are on shortest
paths in Erdős-Rényi graphs. In such random graphs, edges are all equally likely to be present and the probability of
presence is given by some fixed probability p. We do not consider self loops nor multiple edges. So, for constructing
an Erdős-Rényi graph, one needs to fix two parameters: the number of nodes n and the probability of existence
for every edge p. As shown in FIG. 1, the proportion of edges that are discovered in the ASP model presents an
interesting dependence in the parameter p. One can directly explain some characteristics of this curve. When p is
very small the graph is highly disconnected and consists in small connected components. Most edges do therefore
not belong to any path starting from the source, and the proportion of observed edges is close to zero. Conversely, if
p is very high, the graph is almost complete, and every shortest path has length one. So n− 1 edges are found, while
there are almost 1

2n(n − 1) edges in the graph, and thus the proportion also vanishes.

The aims of this paper are first to introduce a new simple model of inter-vertex distances in Erdős-Rényi graphs
that can be used to compute the curve of FIG. 1 without any numerical experiment, and second to analyze the
oscillating behavior of this curve and explain the phase transitions appearing with variations of the graph connectivity.
Note that similar oscillating behaviors in random graphs have recently been observed [8], and that these phenomena
seem to open challenging questions in random graphs theory. This paper proposes a precise analysis of such an
oscillating behavior in the simple theoretical framework of Erdős-Rényi graphs. One could imagine exploiting these
oscillations to optimize the design of a network or to develop method for its analysis, although this is beyond the
scope of this paper. Besides, such applications of the concepts developed here would probably require some further
analysis and extension of our results, because real networks often exhibit non-trivial correlations between nodes that
do not occur in Erdős-Rényi graphs. These extensions would however most likely not lead to the derivation of simple
analytical solutions providing an intuitive understanding of the phenomena as it is done here.

The remainder of the paper is organized as follows. In Section II, we introduce a recurrence equation allowing to
evaluate the inter-vertex distance distribution for Erdős-Rényi graphs, and compare to previously published results
[5]. From this function we derive a theoretical expression for values shown on FIG. 1. In Section III we analyze this
curve, we characterize the phase transitions, and give analytical expressions in different phases (proved in Appendix
A). In Section IV we conclude and make some remarks on practical applications of the phenomena studied in the
paper.

II. APPROXIMATION OF INTERVERTEX DISTANCE DISTRIBUTION

In this section we propose an approximation for inter-vertex distance distribution in Erdős-Rényi graphs. We
compare our results to those obtained by Fronczak et al. [5] in a more generic situation, and show how our results
outperform theirs in the particular case of Erdős-Rényi graphs. We also analyze the accuracy of our model and
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its dependence on the graph connectedness. We then use our inter-vertex distance distribution to estimate the
proportion of equidistant pairs of nodes.

In the sequel, we consider the distance between a randomly selected node and a fixed but initially randomly selected
“source node”. Since this source is randomly selected, all results obtained for the distance probability can also be
applied to the distance between two randomly selected vertices. Let Fd be the probability for a randomly selected
node to be at a distance larger than d from the source, that is, the probability that there is no path of length smaller
than or equal to d from the source to this node. The probability fd for the node to be at a distance exactly d of the
source is then given by fd = Fd−1 − Fd. Obviously, F0 = 1 − 1

n
. We now derive a recurrence relation allowing the

computation of Fd for higher values of d. A node is at a distance larger than d from the source if it is not the source
itself, which happens with probability 1− 1

n
, and if it is connected to no node at distance less than d from the source,

which happens with probability (1− p)nd , nd being the number of nodes at distance less than d from the source. We
have therefore the following simple relation:

Fd =

(

1 −
1

n

) n−1
∑

k=1

P [nd = k](1 − p)k, (1)

where P [nd = k] denotes the probability that nd = k. In order to express the probability Fd, we should thus know the
distribution of nd. We approximate this quantity to be always exactly equal to its expectation 〈nd〉 = (1 − Fd−1)n.
Introducing this approximation in (1) we obtain a recurrence relation for F.

Fd =

(

1 −
1

n

)

(1 − p)(1−Fd−1)n, (2)

which allows us to compute fd for any d. This formula is different, but provably equivalent to Equation (6) in [1]
that has been derived independently for other purposes.

In [5], Fronczak et al. propose an expression for the intervertex distance distribution of any “random graph with
hidden variables”, that are generalizations of Erdős-Rényi graphs. In these graphs, two nodes i and j are connected
with a probability pi,j = hihj/β, where each node v has its own “hidden variable” hv, and β = 〈h〉n. So, in a large
graph, the hidden variables represent the expected degree of the vertices. In the particular case of Erdős-Rényi graphs,
that is when hv = np for all v ∈ V , their expression for the function F of inter-vertex distance distribution reduces
to:

Fd = e−
1

n
(np)d

. (3)

This result has a straightforward interpretation as the solution of an other recurrence equation on d, although it is
not obtained in that way in [5]. A vertex i is at a distance larger than d from the source node if all its neighbors are
at distance larger than d − 1 from the source. Approximating the number of neighbors by its expectation np and
neglecting the dependence effects, one obtains the recurrence Fd = Fnp

d−1. The relation (3) is then re-obtained by

taking F0 = e−
1

n ≃ 1 − 1
n

as initial condition. Numerical experiments confirm indeed that taking e−
1

n or 1 − 1
n

as
initial condition has no influence on the results if n is sufficiently large.

In FIG. 2 we compare the predictions from the two models, with numerical results. One can see that both models
perform very well when the average degree np is significantly larger than 1 and if p is not too big, as in FIG. 2(c).
For an average degree np < 1, that is below the emergence of the giant connected component (see [2]), our results
match approximately the experimental observations while Fronczak et al.’s model is not valid as it gives an increasing
curve (see FIG. 2(a)). For values of np larger than but close to 1, both models present significant errors but ours
is closer to the experimental observations (see FIG. 2(b)). Finally, for a large p, one can see in FIG. 2(d) that
our results match the experimental data very well while those obtained with the model of [5] are significantly different.

The fact that the model derived in [5] behaves very differently from our model for a certain range of values of
p may seem surprising. Our derivation presents indeed various similarities with the interpretation of Fronczak et
al.’s model as a solution of a recursive equation. Three reasons can however explain why a model based on this
interpretation gives less accurate results than ours. First, for np << 1, the possibility for the randomly selected node
to be the source could not be neglected, as very few nodes are in the connected component of the source. When np
is larger than but close to 1, the approximation that a node has exactly np neighbors leads to proportionally more
important errors. This problem could be solved by considering a binomial distribution for the number of neighbors in
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FIG. 2: Evolution of Fd, the probability for a random node to be at a distance larger than d from the source node, for n = 1000
nodes and for (a) np = 0.5, (b) np = 2, (c) np = 10, (d) np = 900. The three curves represent the experimental observations
(averaged on 500 graphs), our model, and the model of Fronczak et al given in [5].

our interpretation of Fronczak et al.’s model. Finally, for large values of p, the number of neighbors of the randomly
selected node is large, so that some independence problems are not negligible. Indeed, the probabilities for two
neighbors of the randomly selected node to be the source are not independent, as there is exactly one source in the
graph.

The errors of our model, observed for values of np larger than but close to 1 are due to the approximation
mentioned above: To obtain the recurrence equation (2) from (1), we suppose that the number nd of vertices at a
distance smaller than d from the source is exactly equal to its expectancy n(1 − Fd−1) instead of considering its
probability distribution. In this range of parameters, the distribution is far from being centered because of the
existence of a peak around 0 (see FIG. 3(a)). For these values indeed, the graph is not totally connected. If the
source happens not to be in the giant connected component, almost all nodes are at an infinite distance of it, so that
nd is close to 0 for any d. The weight of the peak represents thus the probability for a randomly selected source
not to be in the giant connected component. It is known that when np grows, this probability tends exponentially
to 0 independently of n [7, Theorem 5.4]. This problem does therefore only appear when the average degree np
is very small (but larger than 1), independently of the size n of the graph. FIG. 3(b) shows that the problem is
already almost negligible when np = 4 (for these values, the giant connected component already contains more than
98% of the vertices). Note that for np < 1 the graph is highly disconnected so that almost no nodes are at a finite
distance from the source. The distribution P [nd = k] consists thus only in one peak around 0 and is therefore centered.

We close this section by explaining how the distance distribution can be used to compute the proportion Ps of
edges belonging to shortest paths starting at the source node. As explained in the introduction, the edges that do
not belong to any shortest path are those connecting nodes that are at the same distance from the source, in addition
to all edges that are not in the same connected component as the source. Since the expectation of the number of
nodes at distance d from the source is equal to nfd, the expected number of edges connecting these nodes is roughly
equal to 1

2p (nfd)
2
. Taking 1

2pn2 as the total number of edges, we obtain the following expression for the proportion
of edges that lie on a shortest path in an Erdős-Rényi graph, which we denote by Ps(n, p) in the sequel:

Ps(n, p) = 1 −

∑n

d=1 p (nfd)
2

n2p
= 1 −

n
∑

d=1

f2
d . (4)



5

0 500 1000
0

0.05

0.1

0.15

0.2

0.25

k

P
[n

d=
k]

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

d

F
d

experiments
our model

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

k

P
[n

d=
k]

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

d

F
d

experiments
our model

(b)

FIG. 3: Representation of P [nd = k], probability that there are exactly k nodes at distance less than d from the source, obtained
experimentally, in front of Fd, proportion of nodes at a distance larger than d from the source, obtained experimentally and
with our model, for np = 2 (a) and np = 4 (b), with n = 1000 in both cases. P [nd = k] is represented for d = 11 in (a) and
for d = 7 in (b) as typical path lengths are different when np = 2 or np = 4. The distribution in (a) is bimodal as it contains
a large peak around 0, while the peak in (b) is much smaller. Our approximation of nd by its average value n(1 − Fd−1) leads
thus to larger errors for np = 2 (a) than for np = 4 (b).

Note that this expression implicitly handles the edges that are not in the same connected component as the source if
we take fn = Fn−1 ≈ F∞. Indeed, this quantity represents those nodes that are not connected to the source, as they
are at a distance larger than n−1. The evolutions with p of Ps using the two models presented above are represented
in FIG. 4 for n = 1000 and n = 10000. One can see that our results match the experiments very well except when np
is larger than but close to one, which is the range of parameters for which our model has already been shown to be
less accurate. Moreover, the range of values of np for which our model is less accurate appears not to grow with n.

III. ANALYSIS OF THE CURVE

In this section we analyze the function Ps(n, p) generated with our model and (4). We show the appearance of a
sort of phase transition: for some particular values, a weak variation of the probability p may cause abrupt changes
in the proportion of discovered edges with the ASP model, and affect dramatically the properties of the graph. We
give analytical formulas for the asymptotic behavior in several phases.
We begin by analyzing the first transition, starting from small values of p. It is well known [2] that in an Erdős-Rényi
graph, a giant component emerges when p becomes larger than 1/n. If the average degree np is sufficiently small,
the graph is not connected and the only edges that the observer can see are in the (small) connected component of
the source. This quantity is negligible in view of the total number of edges, and so the function is approximately
zero. Note however that such graphs do not contain many cycles, so that most paths starting from the source are
shortest paths. Therefore, the observer discovers approximately all edges in its connected component. When p grows
the size of the connected components increases, so that more and more edges are discovered. Now when np ≈ 1, the
giant component emerges very quickly, and the source is in this component with a large probability. Since most of
the edges are also in this component, the proportion of discovered edges increases rapidly with np. Simultaneously
with the apparition of a giant component, there also appears a non negligible number of cycles in the graphs, so that
not all edges lie on shortest paths anymore. As a result of these two conflicting phenomena a (global) optimum is
reached for np ≈ 2. Experimentally our model gives an optimum that seems to lie exactly at np = 2, but we have not
been able to prove this, nor to express analytically the values of Ps(n, p) around np ≈ 2. However, experiments seem
to indicate that in this range of parameters Ps(n, p) only depends on np. All this can be seen in FIG. 5, for different
values of n. When np becomes larger, one can see that Ps does not only depend on np, and presents an oscillatory
behavior. In particular, the successive values of the maxima seem to tend to 1

2 . We explain this phenomenon in the
sequel.
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FIG. 4: Comparison of the evolution of Ps(n, p) with n = 1000 (a) and n = 10000 (b) according to numerical experiments [6],
to our model, and to Fronczak et al.’s model.

As can be observed in FIG. 6, the shape of Ps(p) tends to the parabola 2p(1 − p) on any interval [ǫ, 1] when n
increases (note that the x-axis is in linear scale). This fact can be proved theoretically, based on our model of evolution
of Fd. In the sequel, for the sake of clarity in our analysis, we modify (2), and study the slightly different one:

Fd(n, p) = (1 − p)n(1−Fd−1(n,p)). (5)

This new approximation is justified by the fact that we will consider asymptotic behaviors for n → ∞. Moreover,
the results that we derive can be obtained without making this approximation. Observe that F1(n, p) = 1 − p, so
that F2(n, p) = (1 − p)np. When n grows F0 = 1 − 1

n
→ 1, and if p is bounded from below by an arbitrary positive

constant ǫ, F2(n, p) = (1 − p)np tends uniformly to 0. As a consequence the probability f(d) for a node to be at a
distance d from the source tends uniformly to 0 for all d except for d = 1, 2, for which f1 = F0(n, p) − F1(n, p) → p
and f2 = F1(n, p) − F2(n, p) → 1 − p. It follows then from (4) that

Ps(n, p) → 1 − p2 − (1 − p)2 = 2p(1 − p),

so that asymptotically, the last maximum of Ps is 1
2 and is reached at p = 1

2 . The asymptotic parabolic character of
Ps is thus here due to the fact that almost all nodes tend to be at a distance either 1 or 2 from the source when n
grows and p is sufficiently large, as can for example be observed in FIG. 2(d).
We now analyze the oscillating behavior between the first and last maximum. One can see in FIG. 7 that around the
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FIG. 5: Evolution of Ps(n, p) with np for different values of n. All curves present a sharp increase between np = 1 and np = 2,
and a global maximum in np ≃ 2. For larger values, the curves present several oscillations, with local maxima tending to 0.5.
(b) is a zoomed-in linear-scale version of (a).
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FIG. 6: Evolution of Ps(n, p) with p for different values of n. On any interval [ǫ, 1], Ps tends to the parabola 2p(1− p) when n

increases.
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FIG. 7: Evolution with n
1

2 p of Ps(n, p) for different values of n. (b) is a zoomed-in linear-scale version of (a). Asymptotically,

Pc behaves as 2e−np2
“

1 − e−np2
”

which is represented by “∗” in (b).

second rightmost maximum, Ps only depends on n
1

2 p, and that Ps asymptotically behaves as

Ps ≃ 2e−(n
1

2 p)2
(

1 − e−(n
1

2 p)2
)

(6)

around this maximum. The maximum therefore tends to 1
2 when n → ∞ and is attained for (n

1

2 p)2 = log 2. To
explain (6), we show in the appendix that similarly as above, all nodes are asymptotically at distance either 2 or 3
when n → ∞ with ǫ < np2 < R, where ǫ, R are arbitrarily positive constants. As in the case of the parabola, this
together with (4) implies that Ps then asymptotically behaves as 2(1 − F2)F2. We also show that F2(n, p) tends to

e−np2

, which implies (6).

Actually the previous relations can be generalized inductively: we prove in the appendix that when n → ∞ with

ǫ < nd−1pd < R, Fd converges uniformly to e−nd−1pd

, while all Fd′ with d′ < d converge uniformly to 1 and all others
to 0. This means that in this range of parameters, and when n tends to infinity, almost all nodes are at distance d or
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FIG. 8: Evolution of Ps(n, p) with n
2

3 p (a) and n
3

4 p (b), for different values of n. Asymptotically, local maxima 1

2
appear for

n
2

3 p = 3
√

log 2 and n
3

4 p = 4
√

log 2. The “∗” represent the theoretical asymptotic behavior.

d + 1 from the source. It follows then from (4) that

lim
ǫ<nd−1pd<R

Ps(n, p) = 2
(

1 − e−nd−1pd
)

e−nd−1pd

,

which, as for d = 1, 2, is a parabolic curve with respect to Fd. This parabolic curve attains its maximum 1
2 when

e−nd−1pd

= 1
2 . So, when n → ∞, Ps contains an unbounded number of oscillations and local maxima with asymptotic

values 1
2 , and these maxima are attained when nd−1pd = log 2 for each d > 1 as can be seen on some additional

examples in FIG. 8. Experimentally, all local maxima but the first global one can be explained in that way. Between
two maxima, there is a zone where asymptotically Fd ≃ 1 and Fd+1 ≃ 0, so that almost all nodes are at distance
d + 1 from the source, and Ps ≃ 1 − 12 = 0. Such behavior is obtained when n → ∞ with either large values of
nd−1pd but still ǫ < nd−1pd < R, or small values of ndpd+1 but still ǫ < ndpd+1 < R. One can indeed see in FIG. 7
and 8 for example that the values of the local minima decrease significantly when n increases. Let us mention that
an explanation of the oscillatory behavior based on the fact that almost all nodes are at distance d or d + 1 from the
source had been suggested without proof in [6].
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IV. CONCLUSIONS AND FUTURE WORK

The goal of this paper was twofold: First, we have proposed a simple model for the computation of the inter-vertex
distance distribution in a random graph, via a recurrence equation for the probability for two randomly chosen
nodes to be at distance more than d. Contrary to the model of Fronczak et al., our recurrence equation is not
explicitly solvable, but it is more accurate. It has to be noted that for the range of parameters corresponding to the
oscillating behavior analyzed at the end of Section III, the two models are equally valid, and that the analysis that
we have made for such values could also be made using Fronczak et al.’s model. Let us add that the ideas behind the
derivation of the formula remain valid for more general graphs such as random graphs with hidden variables. In the
particular case of Erdős-Rényi graphs, these ideas lead to a simple recurrence equation, allowing to compute explicit
values numerically, and to prove the asymptotic behavior of the curve experimentally obtained in [6]. Nevertheless,
a further analysis for more general graphs could be interesting.

Second, following numerical simulations in previous works motivated by practical graph exploration questions [6],
we have analyzed the proportion of edges connecting nodes that are equidistant from a certain source node in random
graphs. The evolution of this quantity with the parameter p exhibits an intriguing oscillating behavior, which we
have been able to explain and reproduce with a great accuracy using our model. We have also characterized precisely
the (infinite number of) transitions for this quantity, and the analytical evolution with p in the different phases.
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APPENDIX A: EXPRESSION OF THE ASYMPTOTIC BEHAVIOR

In this appendix, we provide an analytical expression for Fd when n tends to infinity with ǫ < nd−1pd < R, and
we show that in this range of parameters, almost all nodes are at distance d or d + 1. Suppose first that n → ∞ with
0 < np2 < R for an arbitrary R. Then p → 0 so that F1 = (1 − p) → 1 uniformly with np2. From our recurrence
formula (5), we have

F2(n, p) = (1 − p)np =
(

(1 − p)
1

p

)np2

,

which, together with the classical relation limp→0(1 − p)
1

p = e−1, implies that

lim
np2<R

F2(n, p) = e−np2

(A1)

holds uniformly for 0 < np2 < R. We now show that

lim
ǫ<np2<R

F3(n, p) = lim
ǫ<np2<R

(1 − p)n(1−F2) = 0

http://arXiv.org/abs/cond-mat/0608273
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for any two arbitrary constants ǫ and R. This implies that almost all nodes are at distance 2 or 3 from the source. It
follows from (A1) that 1−F2 is uniformly bounded from below by a positive constant when n → ∞ with ǫ < np2 < R,
so that we just need to prove the uniform decay of (1 − p)n. The latter expression can be rewritten as

(1 − p)n =

(

(

1 −
np2

(np)

)(np)
)

1

p

. (A2)

Since np → ∞ when n → ∞ with ǫ < np2 < R, there uniformly holds

e−R ≤ lim
ǫ<np2<R

(

1 −
np2

(np)

)np

≤ e−ǫ.

And since 1
p
→ ∞, it follows from (A2) that

lim
ǫ<np2<R

(1 − p)n = 0,

which implies the desired result.

There remains to prove our assertions about the asymptotic behavior of Fd for any d > 2. We first prove by
induction that the two following relations hold uniformly for nd−1pd < R where R is any arbitrary positive constant.

lim
nd−1pd<R

Fd−1(n, p) = 1, (A3)

lim
nd−1pd<R

Fd(n, p) = e−nd−1pd

. (A4)

These relations hold for d = 2 as shown above. Let us now assume that they hold for a certain d − 1 and prove
that they then hold for d. Observe first that when n → ∞ with nd−1pd < R, nd−2pd−1 tends uniformly to 0 and is
bounded. It follows then from the induction hypothesis that

Fd−1(n, p) → e−nd−2pd−1

→ 1 − nd−2pd−1

uniformly when n → ∞, nd−1pd < R. So Equation (A3) is proved. By our recurrence relation (5), Fd(n, p) =

(1 − p)
n(1−Fd−1). Therefore, there holds

lim
nd−1pd<R

Fd(n, p) = (1 − p)
(np)d−1

=
(

(1 − p)
1

p

)nd−1pd

.

Since nd−1pd is bounded, and since p tends thus uniformly to 0 when n → ∞, the last equation becomes

lim
nd−1pd<R

Fd(n, p) = e−nd−1pd

uniformly for nd−1pd ∈ (0, R), which proves (A4).

Using the results above we now prove that for any d > 2, the following holds uniformly

lim
ǫ<nd−1pd<R

Fd+1(n, p) = 0, (A5)

where ǫ and R are two arbitrary positive constants. By (5), we have

Fd+1(n, p) = (1 − p)
n(1−Fd)

.

It follows from the results above that 1 − Fd is uniformly bounded from below by a positive constant when n → ∞
with ǫ < nd−1pd < R, so that we just need to prove the uniform decay of (1 − p)n. The latter expression can be
rewritten as

(1 − p)n =





(

1 −
nd−1pd

(np)d−1

)(np)d−1




1

nd−2pd−1

. (A6)
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Since (np)d−1 → ∞ when n → ∞ with ǫ < nd−1pd < R, there uniformly holds

e−R ≤ lim
ǫ<nd−1pd<R

(

1 −
nd−1pd

(np)d−1

)(np)d−1

≤ e−ǫ.

And since nd−2pd−1 → 0 when n → ∞ with ǫ < nd−1pd < R, it follows from (A6) that

lim
ǫ<nd−1pd<R

(1 − p)n = 0,

which implies the desired result (A5).
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