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Trackable graphs

Let V(¢) be te worst possible number of trajectories compatible with an

observation of length t
A network is trackable if N (t) grows subexponentially

[Crespi et al. 05]

Here: number of possibilities asymptotically zero N (t) ~ (0

=>» Trackable



Trackable graphs
® ® O -

Worst case : RRRRRR... = N(t) =t

Polynomial number of possibilities

=>» Trackable



Trackable graphs

Worst case : RGRGRG...”> N (t) ~ 2“2

Exponential number of possibilities

=>» Not trackable



Trackability : the formal problem

We are given 0 1
e S —
— Agraph G(V,E) : e e o A=|1
0 1
— A set of possible observations : .
defining a partition of the nodes { R _{1’ 2}
G={3}

For each possible color, we define the corresponding matrix by erasing the
incompatible columns from A :

0 1 0) ‘0 0 0)

S . —
e e o A=|1 0 0] A=/001
\O 1 O) \O 0 O




Trackability : the formal problem

To a given observation, associate the corresponding product:

(0 1 0) (0 0 0

— TS T = 1 O O = 1
\O 1 O) \O 0 O/

‘(0 1 0

000 @m AAA-000
\O 1 O/

The number of possible trajectories is given by the sum of the entries of the
matrix
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Switching systems

Ay X
Xpr1=
A; X,

Point-to-point Given x, and X, is there a product (say, A; Ay A; A, ... Ay) for

which x«=Ay Ay A; Ag ... A; X7

Mortality Is there a product that gives the zero matrix?

Boundedness Is the set of all products {A,, Ay, AjAy AjA4,...} bounded?



Switching systems

_ A X,
Xi+1= A
1 X¢
Global convergence to the origin Do all products of the type .
Ay Ay A A, ... A converge to zero?

The spectral radius of a matrix A controls the growth or decay of powers of A
A) = lim ||Af|[1/*
p(4) = lim []A°]

The powers of A converge to zero iff ~ p(A) < 1

The joint spectral radius of a set of matrices X is given by

p(2) = lim max |[A14s ... A

t—roo 4,62

All products of matrices in ¥ converge to zero iff p(32) < 1

[Rota, Strang, 1960]



The joint spectral characteristics

1/t The joint
] spectral radius

p(X) = lim [max A1 As .. Ay

t— oo f)l?;EE

2
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The joint spectral characteristics

The joint spectral
radius

|AgAoAol| 3<<

2
AopAo |
1 | H<||A0A0A1|| .
|| Ao||
ApAi1Ap

3
ApA
|AoAr|fe—"" Ao Ay A

5
2
4 A1 Ao Aoll 6
5 | A1 Ao
|A1< el A1ApAq|| 2
4
A1 A | =" ArdiAoll 5

[Gurvits 95] |A1 AlAl | 1

- . 1Xt
pE) = tiﬂ;@ [}111»15% [|A1As ... Ay \]




The joint spectral characteristics

1/(pt) _ .
pp(X) = lim [-m Z 1A A, . 4t\|p] *“1 The p-radius

t— oo
4,1

gqn;tifictgfiguzn;bemf ||A§A0||-\A | Ao ApAp|| 3=<
1 ||AOAOA1|| 1

140 3
||A0A1|| — AOAlAO 5
T A[)AlAl 2
4 A1 AgApl] 6
2
5

) | A1 Ao -
14, B A1 AgAq
4 A A A

AL A |
pia9s)  [I(1.2)]l,] [ie3aa),] 13152625 1D




The joint spectral characteristics

/et The Lyapunov
(8) = Jim | %H [ 41da .. Ad| | Exponent
E"T'r
(m is the number of ? ||A[}AOA0|| J

matrices in %) A A
0411410

5
Ao A4 ]|

— Ao Ay Ayl 2

4 A1 A Aol 6
A1 Ao[le—""

Ay AgAql| 2

5

1

A1A1 Ao

\ ®
A Y AL AL

[Furstenberg Kesten, 1960]




The joint spectral characteristics

P(Z) = Jim [max

1/t
AiAs . Ay \]

p(X) = lim [min

t—oo LA;eX

1/t
AL Ay A \]

_ } —11/(pt)
lg_p(z) — thll [ m ¢ Z Al A, .. .flth ]
f)li'EEt
) - L/(tm")
,0(2) — tl_lggj[ H AjAs .. fltH ]
AieE*

The joint spectral radius
addresses the stability
problem

The joint spectral
subradius addresses the
problem

The p-radius addresses
the quadratic stability
(p=2), and more
generally the p-weak

stability [J. Protasov 10]
[Ogura J. 14]

The Lyapunov exponent
addresses the stability

with probability one
(Cfr. Oseledets Theorem)



The joint spectral characteristics:
Mission Impossible?

Theorem Computing or approximating p is NP-hard

Theorem The problem p-1 is algorithmically undecidable

Conjecture The problem p<1 is algorithmically undecidable @

Theorem Even the question « |p — r| < a 4+ bp ?» is algorithmically undecidable
for all (nontrivial) a and b

Theorem The same is true for the Lyapunov exponent

Theorem The p-radius is NP-hard to approximate

See [Blondel Tsitsiklis 97,
Blondel Tsitsiklis 00,
J. Protasov 09]
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LMI methods

e The CQLF method

inf, cp+ r
S.t.

ATPA

e

'Y |A

- “"Sb
~
<C
s
M
[




SDP methods

e Theorem Forall £ = 00 there exists a norm such that

VA € Y,Vx, |Az| < (p+€)|x|  [Rota Strang, 60]

John’s ellipsoid Theorem: Let K be a compact convex set with
nonempty interior symmetric about the origin. Then there is an
ellipsoid E such that EFc K cnE

[John 1948]

A

vV 2E

¢SO we can F
approximate the unit
ball of an extremal
norm with an ellipsoid

v




SDP methods

e Theorem The best ellipsoidal norm | - ||z approximates the joint
spectral radius up to a factor /= [Ando Shih 98]

»

p < max||A|lg, < VA

1
ﬁ.ﬂ*;.ﬂ';.ﬂ'* //7

One can improve this method by lifting the state space
There exists a PTAS for the jsr computation :
:> Algorithm that approximates the joint spectral radius of
arbitrary sets of m (nXn)-matrices up to an arbitrary accuracy € in
O(n"<) Operations

v



Yet another LMI method

e A strange semidefinite program

min, g+ r

S.t.

AT PiA, = r2Py,

A({Pzﬂl j "?"2P1,,

P ~ 0.

p<r
[Goebel, Hu, Teel 06]
e Butalso... [Daafouz Bernussou 01]

[Bliman Ferrari-Trecate 03]
[Lee and Dullerud 06] ...



Yet another LMI method

e An even stranger program:

min,.cp+

S.t.

Al PA,

(A A1) T P(AsA))
(A3)TP(A3)

P

) <

Y TATATA

"T‘2 P
rt P,
"T‘4 P,,

[Ahmadi, J., Parrilo,
Roozbehanil0]



Yet another LMI method

e (Questions:

— Can we characterize all the LMIs that work, in a unified
framework?

— Which LMIs are better than others?
— How to prove that an LMI works?

— Can we provide converse Lyapunov theorems for more
methods?



From an LMI to an automaton

e Automata representation Given a set of LMIs, construct an automaton like

this: _
AT P A, < 2P, < >h

mlHTERJF
s.T. 42 4
AT PA, < PPy, N AL
A?Pgﬂl j Tgpl? ‘\_l/

A
F; — 0.

e Definition A labeled graph (with label set A) is path-complete if for any
word on the alphabet A, there exists a path in the graph that generates
the corresponding word.

e Theorem If G is path-complete, the corresponding semidefinite program is
a sufficient condition for stability. [Ahmadi J. Parrilo Roozbehani 11]



An obvious question: are there other

e Theorem valid criteria?
AZ 4 min?"ER"‘ r
/-\ L 8.1
&= <o
\/ Agﬂﬂz = TQPQ:
A ATP A, =< 2P,
P, ~ 0

Path complete Sufficient condition
for stability

If G is path-complete, the corresponding semidefinite program is a
sufficient condition for stability.

o Are all valid sets of equations coming from path-complete graphs?

e ...or are there even more valid LMI criteria?



Are there other valid criteria?

* Theorem Non path-complete sets of LMIs are not sufficient for stability.
[J. Ahmadi Parrilo Roozbehani 12]

Ay A MiN,.-p+ T
N A s.t.

< > ATPA, < 2P,
\/ Ag Pl Ag i Tg PQ,
Ay Al PA, = P,

F; ~ 0.

Path complete Sufficient condition
for stability

e Corollary

It is PSPACE complete to recognize sets of equations that are a sufficient
condition for stability

e These results are not limited to LMIs, but apply to other families of conic
inequalities



What about the other quantities?

Arbitrary Arbitrary Arbitrary
) ) approximation in approximation for . s
approximation polynomial time positive matrices Decidability
Joint
Spectral v v v
Radius
Joint
Spectral X X Vv X
Subradius
Lyapunov
Exponent X X Vv X
p-radius Depends | Depends v

onp onp




So what now?

* After all, what are all these results useful for?

Ay A MiN,.-p+ T
7~ A 5.t
=) Y <o
AgPlﬂg j TQPQ,
F; — 0

e =>» this framework is generalizable to harder problems

e Constrained switching systems
o Controller design for switching systems
o Automatically optimized abstraction of cyber-physical systems
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Constrained switching sequences

Switching sequences on regular languages

G(V,E) Directed & Labeled €= (v;,v;,k) € E ke {l,--- ,N}

0(1), 0(2), .-+ admissible if dp = {(Uiavj: 0(1))7 (vja vy, 0(2))7 T }

everything f 2 .
C

... abcabcabc ...

Tac.. ;




Constrained switching sequences

Switching sequences on regular languages

G(V,E) Directed & Labeled €= (v;,v;,k) € E ke {l,--- ,N}

0(1),0(2), .-+ admissible if dp = {(Uiavj:a(l))a (?)j,’Ug, 0(2))7 o }

4 oy )
Stability
limt_mo Tt — llmt_>oo Aa(t—l) et AJ(O)xO =0
Vrg € R", Vo(0),0(1),--- € G
- J
\
Theorem:

o(G(V,E), M) < 1/\/n = The system admits a
Quadratic Lyapunov Multinorm

\_[Philippe J. 2014] -/
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Trackable graphs

To a given observation, associate the corresponding product:

0 1 0) (0 0 0)

— TS T :100 = 1
o« % e A A=|0 0
0 1 0 0 0 0,

0 1 0

000 @) AAA-000
0 1 0,

The number of possible trajectories is given by the sum of the entries of the
matrix



Trackable graphs

The maximal total number of possibilities is
N(t) = max [ Al : Aex]

We are interested in the asymptotic worst case :

lim N (1) = limmax {| A" : Ae 3|

t—o0 {—o0 1

This is a joint spectral radius!



Trackable graphs

The network is trackable iff

p<1

[Crespi et al. 05]

Theorem It is possible to check
trackability in polynomial time

[J. Protasov Blondel 08]
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Wireless control networks

impact of impact of
Delays Scheduling

A large scale decentralized
control network

impact of sl A green bU|Id|ng

[Zhu Yuan Song Han Basar 12] e

Heat: Chilled Liquid
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nummﬁ...ﬁfﬁf’fﬁ-;:ﬂf; ) 1 K Physical Security
s N o and Control

||||||l\| i

Supply Chain and
Asset Management

Environmental Monitoring,
Disaster Recovery and
Preventive Conservation




How to model failures?

d=123456¢ N .
|

_________________________

WCNs are delay systems:
v(t+1) = Az + Bv(t —d)



How to model failures?

d=1234567
: _____________________ N a
| .
| (g 3
V(t) m ]
C : vy - V(g"i 7 V() u(t) P
| s RSN V(t-7)
| uc V(o 1‘ y V(t) ufu L |
I * V)
|
|

WCNs are systems with
itchi ;
switching delays :IZ(t + 1) — Axr + Bv(t _
0 2
A=(2 0)? B=(0 1)"

D ={0,1}

x(k)




LTIs with switched delays
Example

A 2D system with two possible delays

cos(a) sin(a)
g —ng'.-n.(f_]j) c'os(a.('.ph.a.)

-6

D=1{0,1

() () ° 44
<€ o .
€ = A

I
—

oV

« Theorem: For the above system, there exist values of the parameters
such that no linear controller can stabilize the system, but a nonlinear
bang-bang controller does the job. [3. DInnocenzo Di Benedetto 2014]



LTIs with switched delays
stability analysis

Delay dependent controller

TR N-;
i g VAN e i k
v(t) = K(d)u(t)
u(t) =
(@(t),u1(t),uz(t), - -, vd,.., ()
/4 B 0 0 0
0 0 7 () :
Y= 4 0 0 0 U +| K({d) | ¢
0 0 0 :
Ao 0 0 0) 0

[Hetel Daafouz Iung 07]

[Weiss et al. 09]

Delay independent controller

o(t) = Ki(t),
(t) =
(®(t),v(t — dmaz), - - v(E—1)))
/A 0 O 0\
0 0 I 0 >
0o 0 0 0
\Ko Ki Ky Ki,.../




LTIs with switched delays
stability analysis

Delay dependent controller Delay independent controller
T A~ ' |
(G | c L

e Corollary
For both models there is a PTAS for the stability question:

for any required accuracy, there is a polynomial-time algorithm for checking
stability up to this accuracy

Previous sufficient conditions for stability in [Hetel Daafouz Iung 07, Zhang Shi Basin 08]

e However:
Theorem the very stability problem is NP-hard
Theorem the boundedness problem is even Turing-undecidable!

[J. D'Innocenzo Di Benedetto 12]
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Consensus systems

Agents trying to agree on a common value

Applications: control of vehicles formations, distributed
computing etc.

Update as weighted average:
xi(t+ 1) = X;a;()x;(t)

Question: Convergence to consensus (multiple of
1=(1 - DN)?



Consensus systems

A(t) changes with time

Assumption: set of possible transition matrices is known
S — {Al, ,Am}

x(t+1) = Agpx(®),  x(0) = x
A; stochastic
o sequence of transition matrices




Switching can harm convergence

X1,X2,X3
O O O O
O @ i a
o=11,1,.. © @ O
S >
O O O O
@ @ i 8
c=2,22,.. I @ @ ©
S >



Switching can harm convergence

Oia

X1,X2,X3
@

o O
c=11,1,.. I © @
S >

o O O i 8
c=2,2,2,.. I O @
S >

©og 6o
6=1212. | o
S

e—e—6——6—>

000

oYoYe!
0




Two decision problems

* Problem 1 (stability): Given set S, does system
converge to consensus for any o, x,?

Goal:

Algorithm:

Input: S

Output: "Yes" if system converges for any x,, o
"No" otherwise

- Problem 2 (controllability): Given a set S, does there
exist, for any x,, a sequence o such that the system
converges to consensus?



Two decision problems

Previous results (only on Problem 1):

« Decidable: there exists an algorithm (doubly exponential
complexity:0(m3"))

« NP-Hard

V. D. Blondel, A. Olshevsky, How to decide consensus? A combinatorial necessary and
sufficient condition and a proof that consensus is decidable but NP-hard, to appear in
SICON.

« Problem 1 reduces to a joint spectral radius computation!
[Jadbabaie Lin Morse 2003]

Our results:
e The first singly exponential algorithm for problem 1
e First algorithm for Problem 2



Joint spectral characteristics of
stochastic matrices

Property: Any consensus state is an equilibrium, and
P= {x | maxx; — minx; < 2} is an invariant polyhedron
l l

Theorem: [Lagarias Wang 95] If jsr=1 and there is an
invariant polyhedron, every open face is mapped in an open
face

Corollary: We can represent the
(non)-convergence to consensus on a /

purely combinatorial, finite object: the graph
of faces




Algorithms for problems 1 and 2

Theorem 0: The graph of faces is constructible in
O(lEl+ V)

Theorem 1: Problem 1 (stability) = Is graph of faces
acyclic (other that the int(P) self-loop)?

Theorem 2: Problem 2 (controllability) = Is there a path in
the graph of faces from any node to int(P)

These problems are easy: O(|E| + |V])
Construction of the graph dominates complexity

[Chevalier Hendrickx J. 2014]
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Conclusion

[Daafouz
Bernussou
03]

il | [Johansson
3 Rantzer 98]

[Rota, Strang, 1960]  [Blondel Tsitsiklis, 98+ [Lee Dullerud 06]

> )

Mathematical TCS inspired lyapunov/LMI  CPS applic.
properties Negative Techniques Ad hoc
Complexity resuits (S-procedurel technigues




Thanks!

Ads
The JSR Toolbox:

http://www.mathworks.com/matlabcentral/fil
eexchange/33202-the-jsr-toolbox

[Van Keerberghen, Hendrickx, J. HSCC 2014]

Questions?

Several open positions:
raphael.jungers@uclouvain.be

References:
http://perso.uclouvain.be/raphael.jungers/ Raphag! Jungers

Joint Work with Theory and Applications

A.A. Ahmadi (Princeton), M-D di Benedetto (I'Ag U|Ia),

V. Blondel (UCLouvain), P-Y Chevalier (UCLouvaln), :

Hendrickx UCLouvaln) A. D'innocenzo (I'Aquila), M
Ogura (UPenn), P. Parrilo (MIT; M. Philippe

(UCLouvain), V. Protasov (Moscow), M. Roozbehani
(MTT)
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Design of LTIs with switched delays

The infinite look-ahead case

e Theorem for n=m=1, there is an explicit formula for a linear controller that
achieves deadbeat stabilization, even if N=1

(based on a generalization of the Ackermann formula for delayed LTI)
K*(d) = (—a®™ /b, —a®, —a®t, ..., —a)

e So, does a controllable system always remain controllable with delays?

 No! when n>1, nastier things can happen...

Example: 1
33{]:(0) A:(? é)? B:(U 1)T
1 0 B B
331:}1(0) :(1) D={0,1}, (&) =1%mod 2

1o = A2 (é) + Bu(1l) + Bu(2) = (é) T (U(l) E: v(?))

=» The system is not stabilizable, even with infinite lookahead



Design of LTIs with switched delays

The infinite look-ahead case

e A sufficient condition for uncontrollability (informal): if A,B can be put in
the following form (under similarity transformation):

,

g O X O A L An adversarm
A — O O X B — Q strategy can make

/

this system

X O O Y, O uncontrollable:

Vi, t+d(t) #1 mod 3
Is it also necessary?

Would be nice, because we can prove ...

N

e Theorem There is a polynomial time algorithm that decides whether such
an adversary strategy is possible




Design of LTIs with switched delays

The infinite look-ahead case

e Answer: No! There are more intricate examples

/sin 0y —cosby 0 0 \ /l\
costy  sinfq 0 0 1
A= b=
0 0 sinfly —cos by 1
\ 0 0 cosbBy  sinby / \1 /
D ={0.1,...,121} 01 = 155 Oy = &
0 if 0<t<?2

o(t) =
121 —t mod(121) if t> 3



Conclusion and perspectives

e Many open questions and Conjectures:
e For computer scientists:
Is ‘p<1’ decidable? [Blondel Megretski 05]
Write protocols for optimal control of computer networks

e For mathematicians:
The finiteness conjecture
[Lagarias, Wang 95], [Bousch Mairesse 02] [J. Blondel 08]
e For control theorists:
What are the best path-complete graphs and why?

Can we apply these path-complete methods to more general hybrid
systems? (a la [Johansson Rantzer 98])

How to design and control switching systems?

e Meta-conclusion: Is switching systems theory useful for modern CPS
engineering?



How to model failures?

LTIs with switched delays
d=1234567 N :

_________________________

z(t+1) = Az(t)+ Bu(v(t—dmar : t), 0(t—dmas 1 1))

D ={dy,... dp} s -mr et oo
ol T S T Bult — dy)

dmar IS the maximal delay



Constrained switching sequences

LTt4+1 — Aa(t)ﬂft
xo € R"
d(0),0(1),---€G
Aa(t) e M Cc R"™"

Constrained Joint Spectral Radius x. pai 2012]

p(G, M) = lim;_, Supa(-)eG{HAa(t—l) Tt Aa(o)Hl/t}

\_

4 Stability and CISR (x. pai 2012 - corr. 2.8]

limt_mo Tt — llmt_>oo Acr(t—l) et AJ(O)CC() =0

p(G,M)<1<:>{ V[J(O),U(l),U(Q)a"']EG

|:Et| < CP(G, M)t

62




Constrained switching and

multinorms
e CJSR as an infimum over sets of norms

|2
IO(G(Vv E)v M) —
inf
RETEENEIN ! —>
[ Apz]j < v[zl;, ] Ep

\V/(?)ijvj,k) c E, Vx c R™

-

\_

Theorem: Stability iff there exists a multiple
Lyapunov function 3|, 1<i< |V
p(GWV,E), M) <1< { Apz|; < |x|s,

- V(vi,vj, k) € E, Vo € R"
[Philippe J. 2014]

J

Generalizes Path Complete Lyap Func.



Quadratic multinorms
e How to decide when a system is stable?

37|, 1 <i < |V| + Necessary and Sufficient ©
‘Ak$|j < |x|%v
V(vi,v,k) € E, Vo € R" B Infinite dimensional program ...



Quadratic multinorms

e How to decide when a system is stable?

37|, 1 <i < |V| + Necessary and Sufficient ©
‘Ak$|j < |x|%v
V(vi,v,k) € E, Vo € R" B Infinite dimensional program ...

e Quadratic Approximation of Lyapunov functions

+ Quadratic is “easy” (LMIs)

/ 1/2 .
Conservative, [Daafouz & Bernussou, 2001 ] — Param. Var. systs.
Sufficient condition. [Daafouz, Riedinger, Iung, 2002] — Switched Lyapunov

[Lee & Dullerud, 2006] — Path Dependant Lyap Functions
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Converse Lyapunov Theorem

Theorem:

p(G(V,E), M) < 1/\/n = -

;cQJAk — Q’L < 07
V(’Ui,?}j,k) el

\ [Philippe J. 2014]

J

Generalizes the result of [Ando & Shih , 1998] for arbitrary switching systems

John’s Ellipsoid Theorem

(2'Qiz)Y? < ||y < /n(a'Qix)'/?

Requirement becomes heavy as n grows!
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Hierarchy of converse Lyapunov
Theorems

e Application of previous results on augmented systems

admits a
Quadratic Lyapunov Multinorm

~

p(GT,MT) < ]./\/ﬁ = S(GT,MT)

Theorem:

admits a
Quadratic Lyapunov Multinorm

\_[Philippe J. 2014] J

p(G, M) < n=1/2T = §(Gy, MT)

Stable system : there exist 7 ...
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