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THE SYNCHRONIZING PROBABILITY FUNCTION OF AN
AUTOMATON∗

RAPHAËL M. JUNGERS†

Abstract. We study the synchronization phenomenon for deterministic finite state automata
and the related longstanding Černý conjecture. We formulate this conjecture in the setting of a
two-player probabilistic game. Our goal is twofold. On the one hand, the probabilistic interpretation
is of interest in its own right and can be applied to real-world situations. On the other hand, our
formulation makes use of standard convex optimization techniques, which appear powerful to shed
light on Černý’s conjecture. We analyze the synchronization phenomenon through this particular
point of view. Among other properties, we prove that the synchronization process cannot stagnate
too long in a certain sense. We propose a new conjecture and demonstrate that its validity would
imply Černý’s conjecture. We show numerical evidence for the pertinence of the approach.
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1. Černý’s conjecture. A (deterministic, finite state, complete) automaton is
a set of m row-stochastic matrices Σ ⊂ {0, 1}n×n (where m,n are positive integers).
That is, the matrices in Σ have binary entries, and they satisfy Ae = e, where e is
the all-ones (column) vector. We write Σt for the set of matrices which are products
of length t of matrices taken in Σ. For convenience of product representation, to each
matrix Ac ∈ Σ is associated a letter c such that the product Ac1 . . . Act ∈ Σt can be
written Ac1...ct .

It is convenient to look at an automaton in terms of a discrete time dynamical
system, where an agent moves on a graph. In this interpretation, at each time step, the
m matrices are possible candidates for an adjacency matrix of a graph on n vertices,
and this adjacency matrix can change from time to time. If one specifies a sequence of
T ∈ N letters c1 . . . cT , and a starting node for the agent (say, vi0 : 1 ≤ i0 ≤ n), there is
a single corresponding path vi0−vi1−· · ·−viT such that the entry (it−1, it) (1 ≤ t ≤ T )
of the matrix Act is equal to one (this is because the matrices are stochastic). Thus, if
one knows the initial vertex vi0 and the sequence of matrices c1 . . . cT , the last vertex
of the path is given by the product eTi0Ac1...cT , where the kth standard basic vector
ek represents the fact that the agent is in vertex k.

Now, imagine that the position of the agent is not known, but one is allowed to
choose the succession of letters c1, c2 . . . so that he has some control on the trajectory
of the agent. An automaton is said to be synchronizing if it is possible to drive the
agent to a fixed position and localize it.

Definition 1. An automaton Σ ⊂ {0, 1}n×n is synchronizing if there is a finite
product A = Ac1 . . . AcT : Aci ∈ Σ which satisfies

A = eeTi ,
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where e is the all-ones vector and ei is the ith standard basis vector. In this case, the
sequence of letters c1 . . . cT is said to be a synchronizing word.

Thus, if an automaton is synchronizing, one can drive an agent to a fixed node,
without a priori knowing its position, just by applying a synchronizing word. Syn-
chronizing words, which are also sometimes called reset sequences, have appeared
independently in many different communities and times, due to their very natural
motivation. Synchronizing automata have applications in theoretical computer sci-
ence, biocomputing, robotics, etc. (see [20] for a recent survey). They were defined in
1964 [9] and have led since then to a huge literature. They are recognizable in polyno-
mial time but the shortest synchronizing word of a given synchronizing automaton is
NP-hard to compute [4, 12]. They are related to the famous road-coloring conjecture
of Adler and Weiss [1], which has been recently solved by Trahtman [18]. The main
open problem on synchronizing automata is undoubtedly the following one.

Conjecture 1 (Černý’s conjecture, 1964 [10]). Let Σ ⊂ {0, 1}n×n be a synchro-
nizing automaton. Then, there is a synchronizing word of length at most (n− 1)2.

In [9], an infinite sequence of automata on n vertices (and containing two ma-
trices): Cn ⊂ {0, 1}n×n, n = 1, . . . , is proposed that exactly require (n − 1)2 time
steps to synchronize. These automata have a simple structure: Aa is the identity
matrix, except that the last row is e1, while Ab(i+1,j+1) = 1 iff j = i + 1 mod n for
0 ≤ i, j ≤ n − 1 (see Figure 1(d)). Let us mention that except for these, very few
synchronizing automata are known that necessitate so many steps to synchronize. We
call the automata Cn the Černý automata.

Černý’s conjecture has been proved in many particular cases (see, for exam-
ple, [2, 3, 8, 9, 11, 12, 14, 17]) but is still open in its general formulation. It has been
the subject of intense research for several decades, and we quote M. Volkov: “this
simply looking conjecture is arguably the most longstanding open problem in the
combinatorial theory of finite automata” [20].

Until now, the best upper bound on the length of a minimal synchronizing word
for an automaton of size n is not quadratic but is equal to (n3−n)/6 [15].1 Recently,
some attemps to introduce a probabilistic point of view to this problem have appeared
in the literature. (See [16] for a recent presentation of the main ideas.) In the following
we also introduce probabilistic ideas. However, this does not seem to connect directly
to the above mentioned approaches, as these approaches put probabilities on the
matrix to choose, while we introduce probabilities on the nodes of the graph.

In the remainder of this paper, we first (in section 2) introduce the mathematical
object we want to study in this paper, which we call the synchronizing probability
function of an automaton. Then in section 3 we analyze this function. Among other
things, we show that this function must increase regularly in some sense. We hope
that this may open new opportunities for a proof of Černý’s conjecture. In section 4
we analyze numerical computations motivated by our analysis and present conjectures
based on our observations. We prove that the main conjecture implies Černý’s conjec-
ture. In section 5, we conclude and state a few remarks on our approach. In Figure 1,
the reader will find representations of a few automata that are studied in this paper.

2. The synchronizing probability function. Our starting idea is to twist
the notion of synchronizing automaton by looking at its interpretation in terms of an
agent moving on a graph and whose position is not known exactly. It is natural to

1While the present paper was under review, this 30-year-old bound was reduced to
n(7n2 + 6n− 16)/48 in the preprint [19].
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Fig. 1. A few automata with slowly increasing synchronizing probability function, which are
studied in this paper. (a) An automaton on 5 nodes. (b) Kari’s automaton. (c) Roman’s automaton.
(d) Černý’s family of automata.

introduce a vector p of probability density on the set of nodes, which represents the
possible positions of the agent. In the classical setting of synchronizing automata,
postmultiplying a vector with matrices in Σ allows one to improve his knowledge on
the agent’s position. The probabilistic natural counterpart is that one modifies the
probability distribution on the nodes.

However, this probability is not specified as an instance of the problem, and in
order to define it, we think of the situation as a two-player game. In this game, the
first player tries to catch the second one, which is hidden in the graph. The policy of
the second player is defined as a probability distribution on the nodes, that is, any
vector p ∈ R

+n, eT p = 1. This agent starts in node i with probability pi, and will
then end up in the node corresponding to eTi A, where A is the matrix that the first
player will choose. Since the first player wants to maximize the probability to catch
player two, he will pick up the node where the probability for player two to be is
maximal, that is,

argmaxl(p
TA)l.

So, the probability that player two will be caught is

(1) max
l,A

((pTA)l).
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Obviously, player two wants to minimize that probability. Thus, we introduce
the mathematical object we want to study: the synchronizing probability function of
the automaton Σ. In the following, Σ≤t is the set of products of length at most t
of matrices taken in Σ. By convention, and for the ease of notation, it contains the
product of length zero, which is the identity matrix.

Definition 2 (synchronizing probability function). Let n ∈ N and Σ ⊂ {0, 1}n×n

be an automaton. The synchronizing probability function of Σ is the function2 kΣ :
N → R

+ :

kΣ(t) = min
p∈R+n, eT p=1

{
max

A∈Σ≤T
{max

l
(pTA)l}

}
.(2)

We fix by convention Σ0 = {I}, and this implies that for any automaton, k(0) =
1/n. In a general setting, the first player might well make use of a probabilistic policy:
for a given automaton Σ and a fixed length t, we define the probabilistic policy π of
player one as a set of s triples (where s is the number of different choices in the policy):

(3) π = {(wi, vi, qi) : 1 ≤ i ≤ s},
where wi are words of length t or less on the alphabet of the automaton, vi is the
index of a node, and qi is the probability for this particular choice (wi, vi) to be chosen
by player one (and thus

∑
qi = 1). In other words, the first player selects a couple

(wi, vi) with probability qi. He then applies the sequence of matrices given by wi and
picks up node vi.

The following proposition is obvious.
Proposition 1. Conjecture 1 is equivalent to the following conjecture. Let

Σ ⊂ {0, 1}n×n be a synchronizing automaton. Then,

∀t ≥ (n− 1)2, kΣ(t) = 1.

Proof. In (2), the minimum is equal to one iff there is a matrix in Σ≤T that has a
column whose entries are all equal to one, which means precisely that the automaton
is synchronized.

To the best of our knowledge, this probability function has never been looked
at in the literature. There has recently been some attempt to look at synchronizing
automata with a probabilistic reasoning; see, for instance, [16]. However, in that
reference, only the matrices are chosen following to a certain probability distribution,
and thus it does not seem to directly connect with our approach.

We hope this function will act as a sort of Lyapunov function in order to prove
Černý’s conjecture. As shown in Figures 2, 3, and 4, the function seems to increase
quite regularly. So, suppose (for instance) that one proves that for all t such that
k(t) < 1, k(t + n − 1) − k(t) ≥ 1/n; then the conjecture would be proved, because
k(0) = 1/n. We show below that this function has many appealing properties and
seems to accurately represent the synchronizing phenomenon. The intuitive reason

2There are several possible choices for the set of matrices that player one can apply. We choose
this one, which seems the most appropriate for proving results easily: all the matrices in Σ≤t. In
terms of the game interpretation, this means that we do not impose player one to apply a product
of length exactly t, but rather t is only an upper bound on the length of the product that player
one can choose. We prove below that choosing Σ≤t instead of Σt does not affect the value of the
function.
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Fig. 2. The function k(t) for the automaton C10 (solid curve and stars). The dashed curve is
the inverse of the minimal number of nonzero columns in a product of length t. For some automata,
this latter curve does not grow regularly at all, which is perhaps part of the reason why a proof of
Černý’s conjecture is hard to find. Throughout the paper, we use stars in our figures to refer to the
value taken by the Černý automaton, which we take as a reference value, being the slowest known
synchronizing behavior.
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Fig. 3. The function k(t) represented for the automaton (a) of Figure 1, which is an automaton
on 5 nodes. In the case of slow growths, as is the case for this particular automaton (the synchroniz-
ing time is 15, while the conjectured maximum is 16), the function grows very much like for Černý’s
automaton (represented by the stars), but up to small variations.
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Fig. 4. The function k(t) for the Kari automaton (defined in Figure 1(b)).
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for the good behavior of this function is that it takes precisely into account the
evolution of the matrix semigroup when the length of the products increases, as we
now explain. Suppose indeed that player two chooses his probability function p more
naively. Then of course the score of player one can be higher. For instance, it might
seem that a good strategy for player two is to hide in each state with equal probability
(i.e., p = e/n). However, this might be an inadequate choice. This is the case, for
instance, for the automaton in Figure 1(d) for t = 1. Indeed, applying matrix Aa,
player one could realize a score equal to 2/n, since max pTAa = 2/n. This is highly
suboptimal for player two: if, on the contrary, he hides in every node but the first one
with probability 1/(n− 1), then the probability of being caught drops to 1/(n− 1) at
most, whatever policy player one adopts. Finally, note that the optimal probability
distribution can change with t, and, for instance, at time t = n, the policy p = e/n
actually becomes optimal (but only at that precise time).

In fact, this particular choice of p = e/n is important in practice, since with this
choice, the best strategy for player one is to apply the column of a matrix in Σ≤t

with the largest possible weight (i.e., the largest number of ones). This can in turn
be put in relation with a popular method in the literature for designing synchronizing
sequences, known as the “extension method.” In matrix terms, the idea of this method
is to find products with columns of increasingly larger weights, starting with a column
of weight two. The method first chooses an arbitrary index 1 ≤ i ≤ n and then works
iteratively: if one has a product (say, Aw) such that eTAwei = k, then he tries to
look for a product Au such that eTAuAwei = k+1. For several particular families of
synchronizing automata, one is able to show that such a word u always exists, whose
length is smaller than n. It is obvious that in this case Černý’s conjecture then holds,
because after (n − 2) steps the product constructed must contain a column which is
the all-ones vector. This product has then a length at most (n− 1)2.

However, the extension method is known to be suboptimal in several cases: if one
builds a product in this way, it may well have a larger length in the end than the
shortest synchronizing product. The reason is that trying to increase the weight of a
column in a greedy manner, one does not look to the long-term optimum, and then,
after a few steps, the only available products that still can increase the weight of a
column may be too long. This is the case, for instance, for a family of automata (the
“Berlinkov Automata” [5]), which we analyze below.

On the other hand, the synchronizing probability function tries to find a synchro-
nizing word in a much more careful way, since no information is assumed on the initial
probability distribution. This forces player one to be more careful and to keep more
than one product. We believe that the requirement of being able to gather a certain
probability whatever the initial distribution was, rather than just assuming that the
initial distribution was homogeneous, is critical. In this paper we show theoretical as
well as numerical arguments in this direction.

We end this section by formulating the optimization problems of player one and
player two as linear programming problems. The theory of linear programming allows
us to prove that both these problems have the same value, which is coherent with the
intuition that there must be a unique probability that player one localizes player two
if both of them play optimally. The theory of linear programming (see [7] for a sur-
vey) enables us to prove many appealing properties for the synchronizing probability
function but, except for the theorem below, we will prove all the results from scratch
for the sake of clarity and in order to ease the intuition on this function. From now
on, we note e for the all-ones column vector without explicitly stating its dimension
if it is clear from the context.



SYNCHRONIZING PROBABILITY FUNCTION OF AN AUTOMATON 183

Theorem 1. The synchronizing probability function kΣ(t) of Σ is given by

min
p

k(4)

s.t. pTB ≤ keT ∀B ∈ Σ≤t

eT p = 1

p ≥ 0.

It is also given by the solution of

max
q

k(5)

s.t. Aq ≥ ke

eT q = 1

q ≥ 0,

where A = A(t) is the n ×M(t) block-row matrix with all the matrices in Σ≤t, and
M(t) = nmt + nmt−1 + · · ·+ n.

Proof. It is straightforward to show that the programs (4) and (5) are the dual
of each other. Since they both admit a feasible solution, their optima must be equal
by the well-known duality theorem of linear programming [6, section 4.3].

The dual formulation (5) represents the point of view of player one. It shows
that, in general, he has to randomize in order to ensure the optimality of his policy:
if qj corresponds to the ith column of the product Aw ∈ Σ≤t, it represents the
probability with which player one will choose this product together with node vi.
Thus, it corresponds precisely to the triple (w, vi, qj) in the description of its policy
as in equation (3).

3. Study of the function k(t). We now analyze the above described game.
Some of the following results can be derived from classical optimization theory results,
but we tried to present self-contained arguments. All these results are promising
in view of a proof of Černý’s conjecture. For instance, the first result shows that
for t = 0, 1, 2, 3, 4, the discrete derivative of k(t) is at worst more or less equal to
1/(n− 1)2. If the function keeps increasing at this rate until k(t) = 1, then Černý’s
conjecture is true. Also, item 5 shows that at the last step of the synchronization
process, the discrete derivative, is large.

Proposition 2. For any synchronizing automaton,
1. k(0) = 1/n,
2. k(1) ≥ 1/(n− 1),
3. k(3) ≥ 1/(n− 1.5),
4. k(4) ≥ 1/(n− 2), and
5. k(t) < 1 ⇒ k(t) ≤ (n− 1)/n.

Proof.
1. Since Σ0 = {I}, the solution p = e/n, k = 1/n is a feasible solution for (4),

which shows that k(0) ≤ 1/n. On the other hand, q = e/n, k = 1/n is a
feasible solution for (5), which shows that k(0) ≥ 1/n.

2. Let us denote A ∈ Σ any matrix in Σ which has a zero column. Then, taking
qi = 1/(n− 1) for the variables in (5) corresponding to the other columns of
A, we obtain a feasible solution with k = 1/(n− 1).

3. At t = 3, the block-rowmatrix A(3) (i.e., the set of columns of all the products
of length three or less) has at least three different columns of weight two, or
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one column with weight at least three. Indeed, at every step t, there must be
at least one new column in A(t). We now provide a feasible solution in each
of these two cases for the linear program (5), yielding a lower bound on k(t).
In the first case (i.e., A(3) has no column of weight three or more), if there
are two columns with in total four different entries equal to one, we give a
coefficient 1/(n− 2) to these columns and also to all the unit vectors ei such
that vi does not correspond to any of those four entries. If, on the other hand,
the three columns share only three different nonzero entries in a symmetric
way, we give them a coefficient 1/(2n−3), and we give 2/(2n−3) to the other
unit vectors.
The only remaining possibility for the case where A(3) has no column of
weight three or more is that all columns of weight two have a common nonzero
entry (say, the first one). We show by contradiction that this is impossible in
a synchronizing automaton. Indeed, at t = 2, there are at least two different
such columns of weight two, which implies that p∗ = (0, 1/(n− 1), . . . , 1/(n−
1)) is the only solution to (4) and k(2) = 1/(n − 1). Also, if all columns of
weight two in A(3) have the first entry equal to one, we have that

p∗TAcA(2) ≤ 1/(n− 1)

for any Ac ∈ Σ (because the columns in AcA(2) are columns in A(3)). Thus,
p∗TAc is equal to the only solution to (4), and we have that

∀Ac ∈ Σ, p∗TAc = p∗T ,

which implies that Σ is not synchronizing.
In the second case (i.e., A(3) contains a column of weight at least three) we
give a coefficient 1/(n− 2) to the column of weight larger than three and to
the other unit vectors.
Now, in all these situations, the corresponding vector Aq is (entrywise) larger
than e/(n− 1.5).

4. It is well known [15, Theorem 3.8] that for any synchronizing automaton, there
is a product of four matrices with two zero columns. Giving the coefficient
qi = 1/(n − 2) to all the other columns in the product, one gets k(4) ≥
1/(n− 2).

5. Note that k(t) < 1 implies that every column in A(t) has at least one zero.
Thus,

(e/n)Tke ≤ (e/n)TAq = ((e/n)TA)q ≤ ((n− 1)/n)eT q = (n− 1)/n.
The next proposition states that for any automaton Σ and integer t, the second

player can make his policy public (provided it is optimal) without loosing optimality.
That is, even if the first player knows the policy chosen by the second player, he
cannot improve the probability to catch him. The same holds for the second player
with the policy of the first.

Proposition 3. Denote kp(t) the greatest probability that player one can ensure
if he knows that player two has chosen the policy p. If p corresponds to an optimal
solution of (4), then kp(t) = k(t).

Denote kq(t) the smallest probability that player two can ensure if he knows that
player one has chosen the policy q. If q corresponds to an optimal solution of (5), then
kq(t) = k(t).
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Proof. Since p is an optimal solution of (4), for any policy q of player one,

kp(t) = pTA(t)q ≤ k(t)eT q = k(t).

The proof of the other statement is similar.
Proposition 4. For any automaton Σ and integer t, there is always an optimal

policy (as defined in (3)) for the first player with a number of columns smaller than
or equal to n, where n is the number of nodes in the automaton.

Proof. Let us suppose that all the entries of the optimal solution q∗ are positive.
In the other situation, we can just remove the zero entries and the corresponding
columns in A(t) without changing the optimum in (5).

Now, if there are more than n columns in A, the system

(6) Aq′ = 0

has a nonzero solution.
Since this equation is homogeneous, we can scale the solution, and λq′ is still a

solution. Suppose without loss of generality that

(7) eT q′ ≤ 0.

Then, taking

(8) λ = min
(q′i<0)

{q∗i /(−q′i)},

we obtain that q∗ + λq′ is a feasible solution. Indeed, from (7) we infer that eT (q∗ +
λq′) ≤ 1. From (8) we infer that for all i, (q∗ + λq′)i ≥ 0. Finally, (q∗ +λq′) is still an
optimal solution, since (6) implies that A(q∗ + λq′) ≥ k. (If eT (q∗ + λq′) < 1 one can
of course increase a non-zero-entry of (q∗+λq′) until the sum is equal to one, without
losing optimality.)

Now q∗ + λq′ has a zero-entry, and we can remove the corresponding column
without changing the optimum. The result follows by inductively removing columns
until there are no more than n of them.

Proposition 5. For any automaton Σ and integer t, the synchronizing probability
function kΣ(t) remains the same if the set of matrices Σ≤t is replaced by Σt in its
definition (4).

Proof. We prove it for the optimization problem (5). This proves the proposition
since the optimal value is the same for (4) and (5). Since the feasible domain is smaller
when Σ≤t is replaced by Σt, it is clear that the optimal value decreases. We prove
now that actually the same value remains feasible.

Suppose that the columns aj , j = 1, . . . , J , which are columns of products of
length tj < t have a nonzero coefficient qj in (5). We will find a product of length
exactly t with a column which is greater than or equal to aj (componentwise).

For each j, let ij be the index of the column aj in its corresponding matrix (i.e.,
aj = A:,ij for a matrix A ∈ Σtj ). Take any matrix M ∈ Σt−tj and any i such that
Mij ,i = 1. (Recall that the matrices are stochastic, so M and i exist.) Then, the
product AM is of length t and its ith column is greater than or equal to aj and we
can then replace it in the optimal solution of (5).

We state a last property that will be useful for the analysis of the synchronizing
probability function. (These are the complementary slackness conditions of linear
programming; see [6, 7].)
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Theorem 2. For any set of matrices (represented by the block-row matrix A)
and any couple of optimal solutions (p∗(t), q∗(t)) of the problems (4) and (5) we have

• q∗j · (k − (p∗TA)j) = 0 for all 1 ≤ j ≤ M(t) and
• p∗i · ((Aq∗)i − k) = 0 for all 1 ≤ i ≤ n.

Proof. Since Aq∗ − ke ≥ 0 and p∗TA− keT ≤ 0, and also p∗, q∗ ≥ 0, we have

0 ≤ p∗T (Aq∗ − ke)

= p∗TAq∗ − k

= (p∗TA− keT )q∗

≤ 0.

Hence, since all the terms in p∗T (Aq∗ − ke) are nonnegative and all the terms in
(p∗TA− keT )q∗ are nonpositive, they must all be zero.

In the remark below, we make a few observations on the algorithmic problem of
computing the synchronizing probability function.

Remark 1.

• The synchronizing probability function depends only on the columns of the
matrices in ΣT and not on the matrices themselves.

• This shows that the different opportunities for player one at time t are simply
represented by a set of columns, while the original formulation tended to
indicate that the set of matrices Σ≤t was relevant. The problem is in some
sense decoupled.

• This allows us to design a fast method to compute the function k(t): for each
time t = 1, . . . compute the set A(t) of columns that can be generated as the
set {Ma : a ∈ A(t− 1),M ∈ Σ}, starting with A(0) the set of columns of the
identity matrix. Then, trim the set A(t) by just keeping the columns that
are not majorated, and solve the (hopefully much smaller) linear problem.

• So, one can view this problem as involving a sequence Ht of hypergraphs
(represented by a rectangular matrix whose columns are the hyperedges),
and we can define an operator on hypergraphs, defined by the set Σ (here, if
Σ = {A0, A1})

Ht → Ht+1 : Ht+1 = A0Ht ∪ A1Ht.

Our goal is to show that if one hypergraph Ht contains the hyperedge e, then
it is the case for t = (n− 1)2. The results below go in that direction.

We define two polytopes that give some insight on the combinatorial structure of
the problem.

Definition 3. Let Σ represent an automaton and t be a positive integer. The
polytopes Pt and Qt are the sets of optimal solutions of, respectively, (4) and (5).

The following lemma and what follows formalize the rough idea that if k remains
constant, something must evolve in order to increase k in the end. Below, for a set of
vectors P and a set of matrices Σ, PTΣ represents the set {vTA : v ∈ P and A ∈ Σ}.

Lemma 1. If k(t) = k(t+ 1),
1. Pt+1 ⊂ Pt,
2.

⋃
A∈ΣATPt+1 ⊂ Pt, and

3. for all p ∈ Pt,max(p) ≤ k(t).
Proof. Only the second item is not trivial. Under the hypotheses, if p ∈ Pt+1,

then for all B ∈ Σt+1, pTB ≤ keT . Take now any A ∈ Σ. It follows that for any
C ∈ Σt, pTAC ≤ keT . Hence, AT p ∈ Pt.
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In the following, we call a critical column any column aj of the matrix A in the
linear program (5) such that there is a solution q with qj > 0.

Lemma 2. At any time t such that k(t) < 1, the dimension of Pt satisfies

dim(Pt) ≤ n− 2.

Proof. Take k(t) < 1, and consider the inequality Aq ≥ ke. At least two linearly
independent columns in the matrix A are necessary to fulfill this inequality (this is
because the column e is not available in A). By Theorem 2, these two constraints
(say, a1, a2) satisfy

pTa1 = k, pT a2 = k ∀p ∈ Pt

and dim(Pt) ≤ n− 2.
We can now prove our main result.
Theorem 3. Let Σ ⊂ R

n×n represent a synchronizing automaton and t be a
positive integer. Then, if k(t) < 1,

k(t+ n− 1) > k(t).

Proof. Let us suppose that k(t+ 1) = k(t).
We define Ac(t) to be the set of critical columns. Then there exists a vector q > 0

such that Ac(t)q ≥ ke. Thus, for all M ∈ Σ, MAc(t)q ≥ ke (because the transition
matrices of an automaton are row-stochastic). As a consequence, for any column a of
Ac(t), and any M ∈ Σ, Ma is a critical column at time t+ 1.

Define Rt to be the set of optimal solutions of (4) with the matrix Ac(t) (obviously,
Pt ⊂ Rt). Recall (Lemma 1) that

Pt+1 ⊂ Pt.

We define

A′(t+ 1) = Ac(t) ∪ {MAc(t) : M ∈ Σ}

and P ′
t+1 as the set of points p ≥ 0, eT p = 1, such that pTA′(t + 1) = ke. Note

that Pt+1 ⊂ P ′
t+1, since the columns in A′(t+ 1) are a subset of the critical columns

in A(t + 1). Also, P ′
t+1 ⊂ Rt since the columns in Ac(t) are a subset of columns in

A′(t+ 1).
We first show that P ′

t+1 
= Rt. Indeed, since A′(t+ 1) contains all the columns of
Ac(t) multiplied by a matrix in Σ, it is clear that

(9) ∀A ∈ Σ, ∀p ∈ P ′
t+1, A

T p ∈ Rt.

Supposing P ′
t+1 = Rt, the above equation implies that BTRt ⊂ Rt for all B ∈ Σs, s ≥

1, which implies that Σ is not synchronizing. Indeed, this implies that for all p ∈ Rt,
for all B ∈ Σs, pTB ≤ keT .

So, there must be a matrix M ∈ Σ and a column aj of Ac(t) such that Maj 
∈
Ac(t). Again, since MAc(t)q ≥ ke, Maj is a new critical column.

Now, by Theorem 2, the new critical column Maj is such that pTMaj = k for all
p ∈ P ′

t+1. Let H be the hyperplane represented by this constraint. Since Rt∩H 
= Rt,
and Rt+1 ⊂ P ′

t+1 ⊂ Rt∩H, it follows that dim(Rt+1) < dim(Rt). Since the dimension
of Rt is less than or equal to n − 2 (indeed, one can replace Pt with Rt without
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Fig. 5. The function k(t) for the Roman automaton (an automaton on five nodes which reaches
the conjectured maximal number of steps). The dashed curve is the inverse of the minimal number
of nonzero columns in a product of length t.

changing the proof in Lemma 2), the dimension of Rt+n−1 should be negative if k
remained constant between t and t+n−1, and we have reached a contradiction.

The theorem above seems to be promising: in classical upper bounds on the length
of a synchronizing word [15], such a word of length smaller than n3 is found because
it is shown how to decrease the minimal number of nonzero columns in a product of
length t by concatenating it with a product whose length is provably O(n2). Since one
needs to decrease this number O(n) times (from n to 1), one gets the O(n3) bound
(visually it corresponds to the dashed curve in Figure 2). As seen in Figure 5, it is
sometimes necessary to have a product of length Ω(n2) (or at least more than n) to
increase the curve, like in the last step in this example. In Theorem 3, we have a
function that we can increment by concatenating products of length only n − 1 at
most, which lets us hope to get an overall bound of (n− 1)2 in the end.

4. A new conjecture on synchronizing automata. Due to numerical com-
putations, we make the following conjecture.

Conjecture 2. For any synchronizing automaton Σ and for any j ≥ 1, j ≤ n−1,

(10) k(1 + (j − 1)(n+ 1)) ≥ j/(n− 1).

In Figure 6 we represent the synchronizing probability function for another im-
portant family of automata introduced by Berlinkov [5].3 The particularity of this
family is that for some values of m, k, the extension method does not provide a sat-
isfactory algorithm to find a shortest synchronizing word. Indeed, at some steps, one
must wait as much as 2n− 3 steps to increase the maximal weight [5]. As shown in
Figure 6, these automata respect Conjecture 2. Even for the value (m, k) = (11, 1),
the function k(t) increases slowly but always remains greater than the lower bound
from Conjecture 2.

3For any couple (m, k) ∈ N
2, the Berlinkov automaton B(m, k) is an automaton on m + k + 1

nodes {v0, . . . , vm+k} defined as follows: for all i : 0 ≤ i ≤ m− 1, there is an edge with label a from
vi to vi+1, and for all i : m+1 ≤ i ≤ m+ k− 1, there is an edge with label b from vi to vi+1. For all
i : m + 1 ≤ i ≤ m + k, there is an edge with label a from vi to v2. There is also an edge with label
b from vm+k to v0, an edge with label b from v0 to vm+1, and an edge with label a from vm to v0.
Finally, all the edges missing in the automaton described above are defined to be self-loops.
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Fig. 6. The function k(t) represented for the Berlinkov automata B(m, k) for a few values of
m and k. For all these values, the automata have 13 nodes and are thus compared with the extremal
automaton C13.

Note that Conjecture 2 is true for j = 1 (see Proposition 2). It appears that the
general statement implies a positive answer to Černý’s conjecture.

Theorem 4. Conjecture 2 is stronger than Conjecture 1.
We split the proof into a few lemmas for clarity.
Lemma 3. Let A be a matrix in {0, 1}n×s, n ≥ 3, with at least one zero-entry in

each column. If there is a nonnegative vector q, qT e = 1 such that

(11) Aq ≥ n− 2

n− 1
e,

then there must exist such a q and a column ai : e
Tai = n− 1 with qi ≥ 1/(n− 1).

Proof. We fix l the number of different columns ai of weight n − 1 in A (i.e.,
eTai = n− 1). Suppose first that l ≥ n− 1. Then, taking n− 1 of these columns with
a coefficient qi = 1/(n− 1) does the job.

Suppose now by contradiction that l < n − 1, and all these columns have a
coefficient qi < 1/(n− 1). Then,

eTAq ≤
∑

eT ai=n−1

qi(n− 1) +
∑

eT ai≤n−2

qi(n− 2)

<
l

n− 1
(n− 1) +

n− 1− l

n− 1
(n− 2)

≤ l(n− 1)− (l + 1)(n− 2)

n− 1
+

n

n− 1
(n− 2)

≤ n− 2

n− 1
n+

l − (n− 2)

n− 1
,

a contradiction with (11) and the fact that l ≤ (n− 2).
Lemma 4. Let A be a matrix in {0, 1}n×s, n ≥ 3, with at least one zero-entry in

each column. If there is a nonnegative vector q, qT e = 1 such that

(12) Aq ≥ n− 2

n− 1
e,
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then there exists such a q, together with at least n− 2 different columns ai in A such
that eTai = n− 1. For these columns, we have qi = 1/(n− 1).

Proof. We prove the lemma by induction. It is obvious for n = 3.
We suppose in this proof that q > 0, as columns corresponding to qi = 0 are

irrelevant in the lemma. From Lemma 3, we can suppose without loss of generality
that q1 ≥ 1/(n− 1), a1 = e− e1 (i.e., the only zero entry of a1 is the first one). Now,
q1 is actually exactly equal to 1/(n− 1). Indeed,

(Aq)1 ≥ n− 2

n− 1
,

and this implies that

s∑
2

qi ≥ n− 2

n− 1
.

Moreover, this latter fact implies that A1,i = 1 for all i > 1.
Then, denoting A′, q′ the matrix and vector obtained by removing the first row of

A and q and the first column of A, we obtain a system in dimension n− 1 such that

A′q′ ≥ n− 3

n− 1
.

Multiplying this equation by (n − 1)/(n − 2) and denoting by q′′ the vector ((n −
1)/(n− 2))q′, we get

A′q′′ ≥ n− 3

n− 2
, eT q′′ = 1,

and we can apply the result by induction on (q′′, A′).
Lemma 5. Let Σ be a synchronizing automaton and t such that

k(t) ≥ n− 2

n− 1
.

Then, k(t+ 3) = 1.
Proof. By Lemma 4 we can suppose without loss of generality that

ai = e− ei, 1 ≤ i ≤ n− 2,(13)

an−1 ≥ e− en−1 − en(14)

are the only columns in A(t) (where the last inequality is entrywise). By the proof
of Theorem 3, A(t + 1) must contain a new column which is not majorated by any
column in A(t′) for any t′ < t+ 1. There are only two such columns at time t, which
are not equal to e. Thus, after three steps, the supplementary column must be e,
which implies that k(t+ 3) = 1.

Proof of Theorem 4. Taking j = n− 2 in (10), we obtain that

k((n− 1)2 − 3) ≥ (n− 2)/(n− 1),

and Lemma 5 implies that k((n− 1)2) = 1.
Taking j = 2 in Conjecture 2, we deduce two seemingly simpler conjectures, which

are open to the best of our knowledge.
Conjecture 3. For any synchronizing graph, k(n+ 2) ≥ 2/(n− 1).
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In turn, there is another conjecture that is implied by the above. To see this we
state an easy proposition.

Proposition 6. If all columns in A(t) are of weight at most j, then k(t) ≤ j/n.
Proof. Let q be a solution of (5); we have

kn = keTe ≤ eTAq ≤ (jeT )q ≤ j.

Now it is easy to see that Conjecture 3 implies the next one.
Conjecture 4. For any synchronizing graph, there is a product of length n+ 2

that has one column with three ones.
We do not have a proof for this simple statement, and to the best of our knowledge

this problem is open. If it is the case, it may be worth looking at this seemingly much
simpler problem.

5. Conclusion. In this paper, we have twisted the notion of synchronizing au-
tomaton, viewing it in the setting of a two-player game on an automaton. Beyond
the possible real-life applications of this natural setting, our aim was to bring some
understanding to the synchronization process, which is not well understood. The re-
sults presented in this paper go in that direction. More precisely, the synchronization
process seems smoother when looking at the synchronizing probability function k(t):
we prove that this function cannot remain constant during more than n− 1 steps.

Our experimental work based on the concepts introduced in this paper suggests
ideas. Since the function k(t) grows in a rather monotonous (and fast) way, it might
lead to new methods for deriving upper bounds on the minimal length of a synchro-
nizing word. Since the synchronization process looks very homogeneous and regular,
the synchronizing probability function might be a useful tool to generate slowly syn-
chronizing automata: by looking to k(t) for the first few values of t, one could directly
infer that the automaton synchronizes slowly or not.

Also, our approach allowed us to reformulate Černý’s conjecture as a consequence
of another conjecture (Conjecture 2) and to propose new simpler ones, which might
help us better understand synchronizing automata.

If this synchronizing probability function does not appear powerful enough, one
might think of modifications of this concept that could be of interest. For instance,
the first player might want to minimize the entropy of the probability distribution
of the second player on the nodes, rather than maximize the probability of catching
him. We have preferred the latter approach in this paper for two reasons. First,
even though the entropy approach is also representable as a convex program, with all
the appealing properties that it implies, the problem is not representable as a linear
program. So, the numerical simulations, as well as the theoretical results that can be
derived, are less powerful. Second, from a few preliminary numerical tests, it seems
that the corresponding “synchronizing entropy function” behaves much less regularly
than the synchronizing probability function.

We have introduced a new way to look at the synchronization problem, which has
many appealing features and properties. These features might allow for new ideas for
tackling Černý’s conjecture, and lead to many open questions.
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the 14th International Conference on Developments in Language Theory, Springer-Verlag,
Berlin, 2010, pp. 423–431.
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