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Abstract

The concept of Elementary Flux Modes (EFMs) has been of central importance
in a number of studies involving the analysis of metabolism. In [1] this concept
is used to translate the metabolic networks of the different phases of CHO cell
culture into macroscopic bioreactions linking extracellular substrates to products.
However, a critical issue concerns the calculation of these elementary flux vectors,
as their number combinatorially increases with the size of the metabolic network.
In this study, a detailed metabolic network of CHO cells is considered, where the
above-mentioned combinatorial explosion makes the computation of the elementary
flux modes impossible. To alleviate this problem, a methodology proposed in [10] is
used to compute a decomposition of admissible flux vectors in a minimal number of
elementary flux modes without explicitly enumerating all of them. As a result, a set
of macroscopic bioreactions linking the extracellular measured species is obtained
at a very low computational expense. The procedure is repeated for the several cell
life phases and a global model is built using a multi-model approach, which is able
to successfully predict the evolution of experimental data.
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1 Introduction

Macroscopic models of bioprocesses have been used in many applications,
ranging from simulation to estimation, optimization and control [4]. These
models represent the conversion of substrates into products by a few macro-
scopic reactions, without taking the intracellular reaction network into con-
sideration (black box representation).

These models can be derived using two main approaches. The first approach is
essentially data-driven. Macroscopic models are derived solely from the exper-
imental observation of the time evolution of a few extracellular components
(substrates, products of interest, inhibiting compounds). Various techniques
can be combined, including data analysis techniques such as principal com-
ponent analysis to deduce the number of bioreactions and partial stoichiome-
try [5], and identification methods based on - whenever possible - decoupling
techniques to estimate independently the stoichiometry and the kinetics (con-
cept of C-identifiability) [6], [8]. In the second approach, the available prior
knowledge about the metabolic network is exploited, and a macroscopic set of
reactions is derived in agreement with the intracellular metabolism [7].

This is the second approach which is of interest in the present study, and
particularly, the procedure devised in [14] where dynamic models are derived
from the concept of Elementary Flux Modes (EFMs) for a metabolic network
of CHO cells under balanced growth conditions. This latter assumption stip-
ulates that the intracellular metabolites do not accumulate in the cell, or in
other words, that the intracellular processes occur much faster than those hap-
pening outside the cell. In [1], this approach is further used to translate the
metabolic networks of the different phases of the cell culture into macroscopic
bioreactions linking extracellular substrates to products. However, a critical
issue concerns the calculation of these elementary flux vectors, as their number
combinatorially increases with the size of the metabolic network.

This latter point is one of the motivations behind this study, in which we
consider a more detailed metabolic network of CHO cells developed by the
authors in [17], where the above-mentioned combinatorial explosion makes
the computation of the elementary flux modes impossible. To alleviate this
problem, we apply a methodology to compute a decomposition of admissible
flux vectors in a minimal number of elementary flux modes without explicitly
enumerating all of them, as proposed by the authors in [10]. As a result, a
set of macroscopic bioreactions linking the extracellular measured species is
obtained at a very low computational cost. Further, the procedure is repeated
for the different life cell phases (exponential growth, transition and death) to
determine local dynamic models, which can then be assembled to form a global
(piecewise) model for the entire culture. The multi-model approach has already
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been applied successfully to describe the behavior of complex bioprocesses in
other areas of applications such as wastewater treatment [15], or the culture
of micro-algae in photo-bioreactors [11].

This paper is organized as follows. Section 2 introduces the general form of
a dynamic model of batch cell cultures and the concept of Elementary Flux
Modes (EFMs). The methodology for the computation of a minimal set of
EFMs and the decomposition of an admissible flux distribution is presented
in Section 3. A practical application of the methodology is presented in Sec-
tion 4, where sets of macroscopic bioreactions are computed for each of the
cell life phases of batch cultures of CHO-320 cells. Section 5 discusses the
construction of a piecewise global dynamic model for the entire culture, based
on the previous local models. Finally, Section 6 draws the main conclusions of
this work.

2 Cell culture modelling

2.1 Dynamics of a batch culture

In general, cell cultivation in a batch process can be divided in at least three
phases, according to the physiological states of the cells.

• the first phase corresponds to the exponential growth, where the concen-
tration of the carbon source and all other substrates are in excess and
there is sufficient dissolved oxygen allowing a rapid proliferation of the
biomass. Lactate, alanine and ammonia are produced because of the high
level of glucose and glutamine.

• the second phase is transition, where the sugar concentration decreases
below a critical level and the produced lactate and alanine start to be
consumed instead. There is sufficient dissolved oxygen in the medium in
order to allow the oxidative pathways metabolize lactate and alanine and
keep the cellular division, however in a less effective way.

• the third state corresponds to cellular death, where programmed cell
death takes place upon exposure to stress encountered in the bioreactor.
There could be various causes for apoptosis: nutrient depletion, waste
byproduct accumulation, hypoxia, mechanical agitation, etc ([3]).
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For a cell culture carried out in batch mode in a stirred tank reactor, the
dynamics of substrates and products are described by:

dS
dt

= −vsX(t)

dP
dt

= vpX(t)
(1)

where

• X(t) is the biomass concentration,
• S(t) is the vector of substrate concentrations,
• P (t) is the vector of product concentrations,
• vs is the vector of specific uptake rates,
• sp is the vector of specific production rates.

Clearly, vs and vp are linear combinations of some of the (intracellular) metabolic
fluxes v. Thus, by defining appropriate matrices Ns and Np, the stoichiometric
matrices for the extracellular substrates and final products, respectively, this
relation can be expressed as:

vs(t) = Nsv(t)

vp(t) = Npv(t).
(2)

2.2 Metabolic network and elementary flux modes

The intracellular metabolism of living cells is usually represented by a metabolic
network under the form of a hypergraph encoding a set of biochemical re-
actions. In this hypergraph, each node represents a particular intracellular
metabolite and the edges represent the metabolic reactions or fluxes.

According to the pseudo steady-state assumption of metabolic flux analysis
(MFA), it is assumed that the fluxes are balanced at each internal node, i.e.
intracellular metabolites do not accumulate in the cell. This means that the net
sum of production and consumption fluxes, weighted by their stoichiometric
coefficients, is zero for each internal metabolite of the network. This steady-
state balance around the internal metabolites is expressed by the algebraic
relation:

Nv = 0 v > 0 (3)

where v = (v1, v2, . . . , vn)T is the n-dimensional column vector of fluxes and
N = [nij] is the m × n stoichiometric matrix of the metabolic network (m
is the number of internal metabolites and n is the number of fluxes). More
precisely, a flux vj denotes the rate of reaction j and a non-zero nij is the
stoichiometric coefficient of the metabolite i in reaction j.
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For a given metabolic network, the set S of possible flux distributions is the
set of vectors v that satisfy the linear system 3. This set S is the pointed
polyhedral cone resulting from the intersection of the kernel of N with the
non-negative orthant. This implies that there exists a set of elementary flux
vectors ei, the extreme rays (or edges) of this polyhedral cone, such that any
flux distribution v can be expressed as a non-negative linear combination of
them:

v = w1e1 + w2e2 + · · · + wqeq wi > 0. (4)

The n × q non-negative matrix E with column vectors ei obviously satisfies
NE = 0 and Equation (4) can be written in matrix form as

v = Ew with w , (w1, w2, . . . , wq)
T . (5)

Thus, the elementary flux vectors are a way of representing the set of pos-
sible flux distributions. The dynamics of the concentration of each substrate
and product in a batch reactor, where no exchange occurs with the outside
environment, are written as follows:

d

dt







S(t)

P (t)





 =







−Ns

Np





 vX (6)

From 5 and 6, we obtain:

d

dt







S(t)

P (t)





 =







−Ns

Np





 EwX (7)

The product of stoichiometric matrices Ns and Np times the elementary flux
modes matrix E yields the stoichiometric matrix for a set of macroscopic reac-
tions, linking the extracellular substrates to the final products. Let us consider
that the reaction scheme of the process involves N macroscopic reactions and
M extracellular species, either substrates or products, with K being the M×N

matrix for the stoichiometric coefficients.

K =







−Ns

Np





 E (8)

Then, if the vector ξ is defined as:

ξ =







S(t)

P (t)





 , (9)

The dynamic model defined by the macroscopic bioreactions may be written
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as:
dξ

dt
= Kw(t)X(t) = Kϕ(ξ, t) (10)

where w(t) is the vector of the specific reaction rates wi of the macroscopic
bioreactions and ϕ is the vector of reaction rates.

3 Computation of the elementary flux modes and of minimal flux

decomposition

3.1 Problem statement

A well known issue related to the EFMs representation is that the number of
such vectors grows exponentially with the size of the network. This means that
for detailed metabolic networks, such as the one considered in the following
of this study, the computation of matrix E becomes prohibitive.

In general, the decomposition of a flux distribution v in the convex basis of
elementary flux vectors ei does not necessitate the whole enumeration of the
convex basis but requires only the knowledge of a few elementary vectors.
Thus, the objective is to determine a minimal such decomposition. Nonethe-
less, when the vector v is the solution of an underdetermined metabolic flux
analysis problem, the situation is more complex, though it may be possible
to find a decomposition with even less elementary flux modes. Indeed, it is
not known a priori which vector, among all admissible flux distributions, is
the one that can be decomposed in the minimal number of elementary flux
modes. The information needed for computing these elementary vectors can
be obtained directly from the stoichiometric matrix N together with the ex-
tracellular measurements. Herein, this methodology is used to compute this
decomposition without actually evaluating the whole convex basis, thanks to
the convex programming techniques presented in [10].

3.2 Definition of some polytopes of interest

If we consider system 3 and take the constraints imposed by the extracellular
measurements into account, it is possible to write







N

Nm





 v =







0

vm





 v > 0. (11)
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for a given metabolic network and a given set of measurements. Nm stands
for the stoichiometric matrix of the extracellular species and vm is the vector
of measurements.

As demonstrated in [10, 13], any admissible flux distribution v can be ex-
pressed as a convex combination of n-m elementary flux vectors ei. n-m cor-
responds to the degrees of freedom of the system, if N and Nm are full rank
matrices. Notice that the decomposition of v in the convex basis {ei} is not
unique.

Moreover, if the number of measurements p is smaller than n-m, then there
is at least one vector v∗ that can be expressed as a convex combination of
only p elementary flux vectors. Hence, the objective is to determine such a
decomposition in a minimal number of elementary flux vectors {ei}.

Using Equation (5), system 11 is equivalent to the system:







NE

NmE





 w =







0

vm





 w > 0. (12)

We observe that the first equation NEw = 0 is trivially satisfied indepen-
dently of w since by definition NE = 0. Hence, system 12 may be reduced to
the second equation:

NmEw = vm w > 0. (13)

or equivalently written

(

NmE −vm

)







w

1





 = 0. (14)

In this form, it is clear that the set of admissible weighting vectors w that
satisfy Equation (13) constitutes a convex polytope that will be denoted H.
Therefore, there exists a set of appropriate edge vectors hi such that any
arbitrary convex combination of the form:

w =
∑

i

βihi βi > 0
∑

i

βi = 1 (15)

is necessarily an admissible w satisfying Equation (13). The convex basis vec-
tors hi have a critical property : the number of non-zero entries in these vectors
is equal to the number of measurements p.

From a metabolic viewpoint, each vector hi is a solution w of Equation (13).
Vectors Ehi correspond to minimal flux distributions v:

v̂i = Ehi v ∈ F . (16)
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Each minimal flux distribution v̂i represent the simplest pathways that satisfy
the pseudo-steady state assumption and the constraints imposed by the extra-
cellular measurements. Equation (16) implies that a minimal flux distribution
(in terms of EFMs) can be obtained by different combinations of EFMs and
in turn, of metabolic pathways. This will be illustrated further in the article,
when we will assess the calculation procedure of the minimal set of EFMs.

3.3 Decomposing v in a convex basis

As already stated, the number of distinct extreme rays or cone vertices that
are generated when computing the cone S may become very large because it
combinatorially increases with the size of the underlying metabolic network.
It is also the case for the number of vectors hi that are vertices of the polytope
H.

We apply here the method presented in [10] to decompose a flux distribution
v in a minimal number (p < n − m) of elementary flux modes. To this end,
we introduce yet another cone K ⊂ R

p. This cone is the projection of S by
the matrix Nm : K = {y = Nmv : v > 0,Nv = 0}.

We know that the vector vm is in K because of Equation (11). So, vm can be
expressed as a convex combination of p extreme rays yi of cone K (because K
has dimension p).

vm =
p

∑

i

αiyi αi > 0
∑

i

αi = 1 (17)

Now, the extreme rays of K are the projections of extreme rays ei of S under
the matrix Nm. This implies that the corresponding convex combination of
the ei gives us the required v. In other words, if yi is an extreme ray of the
projected cone K, then ei is an extreme ray of cone S.

vm = Nmv ⇒ yi = Nmei (18)

As vm has been decomposed in p extreme rays in 17, a decomposition in the
extreme rays of cone S is also achieved

vm =
p

∑

1

αiNmei = Nm

p
∑

1

αiei (19)

and thus, v is decomposed in a minimal set of p elementary flux vectors.

v =
p

∑

1

αiei (20)
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Table 1
Specific uptake/excretion rates for the three life phases

Specie Exponential Growth Phase Transition Phase Death Phase

Glucose -1.6383 ± 0.244e−1 - -

Glutamine -4.7922 ± 1.107e−2 -1.4582 ± 7.678e−3 -8.9527 ± 62.97e−4

Arginine -1.7381 ± 1.659e−3 -8.9108 ± 0.271e−5 5.1413 ± 16.66e−5

Asparagine -1.2354 ± 0.203e−3 -1.7873 ± 3.316e−5 6.0603 ± 10.76e−5

Aspartate -2.7112 ± 4.304e−4 -4.6172 ± 4.601e−4 -7.4483 ± 20.77e−5

Isoleucine -1.7422 ± 0.521e−3 -4.1392 ± 2.982e−4 -1.7901 ± 2.393e−4

Leucine -2.9556 ± 0.610e−3 -3.1471 ± 2.109e−4 -1.1150 ± 8.286e−5

Lysine -3.0675 ± 0.839e−3 -2.7181 ± 1.628e−4 -1.9790e−5

Methionine -8.1777 ± 1.777e−4 -6.6621 ± 6.668e−5 -

Phenylalanine -1.1747 ± 0.309e−3 -1.0902 ± 0.832e−4 -4.6531 ± 18.38e−5

Serine -1.0054 ± 0.499e−3 -4.4716 ± 3.295e−4 1.5091 ± 4.229e−4

Threonine -1.5358 ± 0.928e−3 -1.2195 ± 2.679e−4 -1.2157 ± 7.073e−4

Tyrosine -8.7011 ± 3.171e−4 -8.5351 ± 7.158e−5 -1.2778 ± 2.528e−4

Valine -2.0238 ± 0.664e−3 -2.7412 ± 2.827e−4 -1.5805 ± 4.369e−4

Lactate 2.9880 ± 0.599e−1 -2.0169 ± 4.971e−2 -3.8359 ± 3.793e−2

NH
+

4
3.8858 ± 0.954e−2 1.4428 ± 8.118e−3 1.5064 ± 10.11e−3

Glycine 2.6166 ± 0.847e−3 4.6293 ± 14.47e−4 -5.3266 ± 22.34e−4

Alanine 1.0273 ± 0.144e−2 -1.1855 ± 56.37e−4 -2.1682 ± 1.527e−3

Glutamate 3.0143 ± 1.942e−3 -9.7355 ± 8.015e−4 -9.0875 ± 11.29e−4

For more details on the algorithm and the theory behind it, the reader is
referred to references [9] and [10].

4 Macroscopic bioreactions for cultures of CHO cells

In this section we apply the methodology described above to three detailed
(and underdetermined) metabolic networks describing the metabolism of CHO-
320 cells. Each network represents the metabolism of one of the life phases of
a cell in a batch culture: exponential growth, transition and death. For each
of these networks, a minimal set of elementary flux modes is computed by ap-
plying the procedure described in Section 3. For reasons of space, the details
of matrices N for the growth, transition and death phases are not presented.
To retrieve the list of reactions describing the different phases, the reader is
referred to references [17] and [16].

To apply this procedure we need to define stoichiometric matrices N and
Nm and the vector of extracellular measurements vm for each phase. The
set of experimental data contains, respectively 19, 18 and 17 extracellular
measurements for the exponential growth, transition and death phases. These
vectors of experimental measurements vm are listed in Table 1.

The dimension of the vector vm will then determine the dimension of the
matrix containing the minimal set of vectors ei (Emin). Each elementary vector
defines a metabolic path linking extracellular substrates to final products,
which can be translated into a macroscopic reaction. Proceeding in this way,
the set of 19 macroscopic reactions presented in Table 2 describes the main
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Table 2
Macroscopic Reactions for the exponential growth phase

EFM Macroscopic Reaction

e1 Tyr → Glu + 4 CO2

e2 Glucose + 1.7 Gln → 1.7 Lactate + 3.3 NH
+

4
+ 6CO2

e3 Gln → Glu + NH
+

4

e4 Ser → Gly

e5 Asn → Lactate + Urea

e6 3.3 Glucose + 6.4 Gln + Asn + 1.9 Asp + 1.2 Arg + 1.4 Thr + 1.7 Lys + 1.6 V al

+ 1.3 Ile + 6.5 Leu + 1.7 Phe + Met + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Eth + 0.4 cho

→ 25.8 Biomass + 2.9 Ala + 5 NH
+

4
+ 13.1 CO2

e7 15.2 Glucose + 7.7 Gln + 4.7 Asn + 14.2 Arg + 6.5 Thr + 13.5 Lys + 7.2 V al + 5.8 Ile

+ 10 Leu + 7.8 Phe + 4.6 Met + 5.7 Pro + 25.9 Trp + 2.5 His + 0.7 Eth + 2 Cho

→ 118.6 Biomass + 15.8 Ala + 8.6 Urea + NH
+

4
+ 134.2 CO2

e8 Glucose + 1.7 V al → 3.3 Lactate + 1.7 NH
+

4
+ 4.3 CO2

e9 2.1 Glucose + 2.5 Gln + Asn + 1.2 Arg + 3.4 Thr + 1.5 Lys + 1.6 V al + 4.2 Ile

+ 5.1 Leu + 1.7 Phe + 1 Met + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Eth + 0.4 Cho

→ 25.8 Biomass + NH
+

4
+ 4.7 CO2

e10 15.2 Glucose + 7.7 Gln + 4.7 Asn + 9.4 Arg + 6.5 Thr + 6.5 Lys + 7.2 V al + 68.7 Ile

+ 10 Leu + 7.8 Phe + 4.6 Met + 5.7 Pro + 1.5 Trp + 2.5 His + 0.7 Eth + 2 Cho

→ 118.6 Biomass + 19 Lactate + 30.6 Ala + 3.8 Urea + NH
+

4
+ 75.9 CO2

e11 Gln → Ala + NH
+

4
+ 2 CO2

e12 6.6 Glucose + 2.4 Gln + Asn + 1.2 Arg + 1.4 Thr + 8.1 Lys + 1.5 V al + 1.2 Ile

+ 2.1 Leu + 1.7 Phe + 2.4 Met + 1.2 Pro + 0.3 Trp + 0.5 His + 0.1 Eth + 0.4 Cho

→ 25.2 Biomass + 4.3 Gly + 3.9 NH
+

4
+ 21 CO2

e13 Gln → Lactate + Urea + CO2

e14 Glucose → 1.7 Lactate + CO2

e15 6.8 Glucose + 1.7 Gln + Asn + 6.2 Arg + 1.4 Thr + 1.4 Lys + 1.6 V al + 1.3 Ile

+ 6.7 Leu + 1.7 Phe + Met + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Eth + 0.4 Cho

→ 25.8 Biomass + 7 Lactate + 4.9 Urea + 6 NH
+

4
+ 14.5 CO2

e16 49.6 Glucose + 7.7 Gln + 4.7 Asn + 22.7 Arg + 6.5 Thr + 37.9 Lys + 7.2 V al + 5.8 Ile

+ 10 Leu + 7.8 Phe + 4.6 Met + 5.7 Pro + 1.5 Trp + 2.5 His + 0.7 Eth + 2 Cho

→ 118.6 Biomass + 57.3 Gly + 17.1 Urea + NH
+

4
+ 136.9 CO2

e17 1.2 Glucose + Arg → 3 Lactate + Urea + 2 NH
+

4
+ 3.2 CO2

e18 7.3 Glucose + 3.5 Gln + Asn + 1.2 Arg + 1.4 Thr + 8.1 Lys + 1.5 V al + 1.2 Ile

+ 2.1 Leu + 1.7 Phe + Met + 1.2 Pro + 0.3 Trp + 0.5 His + 0.1 Eth + 0.4 Cho

→ 25.2 Biomass + 4.9 Lactate + 8.7 NH
+

4
+ 22.2 CO2

e19 Glucose + 1.7 Gln → 3.3 Lactate + 3.3 NH
+

4
+ 4.3 CO2

metabolic processes occurring during the growth phase.

Thus, the minimal set of EFMs obtained for the exponential growth phase has
been translated into a set of macroscopic bioreactions, from which a general
model can be deduced. At this point, it is worth noticing that each run of
the model reduction algorithm will yield different minimal sets of EFMs, thus
giving different sets of macroscopic reactions. The reader is reminded about
vectors hi and Equation ((16)) which states that the pseudo-steady state as-
sumption and the constraints imposed by the extracellular measurements can
be satisfied by different minimal flux distributions v̂i. Hence, each time the
calculation procedure is launched, a particular vector hi is found and in turn,
a minimal flux distribution v̂i.

An estimation of the reaction rates for the macroreactions are obtained from
Equation ((13)). As NmE is a p × p matrix, then w is easily obtained from:

w = (NmE)−1
vm (21)

The resulting reaction rates wi for each of the macroscopic reactions taking
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Table 3
Reaction rates for the three sets of macroscopic reactions

Reaction Rate Exponential Growth Phase Transition Phase Death Phase

w1 7.6104e−4 1.4006e−4 1.9790e−5

w2 3.3737e−3 3.8043e−4 1.9790e−5

w3 1.9371e−4 4.1514e−5 5.8637e−6

w4 9.2342e−4 5.7292e−4 2.0670e−4

w5 5.2333e−4 8.3348e−7 9.2354e−5

w6 1.7039e−4 5.1261e−5 2.4921e−5

w7 7.8766e−6 2.9480e−4 1.1288e−4

w8 6.1698e−4 3.2716e−4 3.6726e−2

w9 1.8203e−4 3.3813e−2 5.9150e−4

w10 4.0478e−6 2.7660e−4 6.2670e−5

w11 8.0719e−3 5.4907e−5 7.6960e−5

w12 9.4097e−5 5.6892e−4 7.3303e−7

w13 2.3533e−2 2.6781e−4 2.4188e−5

w14 1.7277e−1 2.7978e−5 2.1403e−4

w15 1.0689e−5 2.4642e−5 7.2050e−4

w16 1.5793e−5 5.4348e−5 7.4763e−5

w17 1.0180e−3 7.0945e−5 3.3575e−4

w18 8.1690e−6 9.0659e−5 -

w19 6.4727e−3 - -

Table 4
Macroscopic reactions for the transition phase

EFM Macroscopic Reaction

e1 Tyr → NH
+

4
+ 9 CO2

e2 Gln → 2 NH
+

4
+ 3 CO2

e3 3 Leu + Met → 2 Urea + 20 CO2

e4 Ser → Gly

e5 Asn → Urea + 3 CO2

e6 13.7 Lactate + 2.2 Gln + Asn + 2.6 Asp + 1.2 Arg + 1.4 Thr + 1.4 Lys + 1.6 V al + 1.3 Ile

+2.2 Leu + 1.7 Phe + Met + 1.9 Ala + 4.5 Glu + 1.2 Pro + 0.3 Trp + 0.5 His + 0.2 Etn + 0.4 cho

→ 25.8 Biomass + 0.7 Urea + 23.8 CO2

e7 Ala + Asp → Urea + 4 CO2

e8 V al → Gly + 2 CO2

e9 Lactate → 3 CO2

e10 Ile + Leu → Urea + 9 CO2

e11 Lys + 2 Phe → 2 Urea + 18 CO2

e12 Gln → Urea + 4 CO2

e13 Lys + 2 Glu → 2 Urea + 10 CO2

e14 Lys + 2 V al → 2 Urea + 10 CO22

e15 Thr + Ile → Urea + 9 CO2

e16 Thr + 1.5 Lys → 2 Urea + 9 CO2

e17 2 Asp + Lys → 2 Urea + 8 CO2

e18 Lys + 2 Ile → 2 Urea + 12 CO2

place during the exponential growth phase are listed in Table 3.

In the same way, a minimal set of elementary vectors for the transition phase
is obtained. The number of extreme rays ei matches the number of entries in
the vector vm. Thus, the 18 resulting elementary flux vectors are presented in
Table 4, from which a set of macroscopic reactions is defined. Notice that the
metabolic changes corresponding to this phase of the culture are reflected by
the macroscopic reactions obtained. Lactate, Alanine and Glutamate are now
consumed as substrates, and since glucose is depleted, it no longer appears as
a substrate. The estimated reaction rates wi are listed in Table 3.

The same procedure is now applied to the reaction network defining the
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Table 5
Macroscopic reactions for the death
phase

EFM Macroscopic Reaction

e1 Ala + Gly → Asn

e2 Lys + 2 Gly → 2 Urea + 6 CO2

e3 Asp + 3 Leu + Pro → Ser + Arg + 18 CO2

e4 Gly → NH
+

4
+ CO2

e5 Thr → NH
+

4
+ 3 CO2

e6 3 Ala + 1 Pro → Arg + 8 CO2

e7 Glu → Ser + 2 CO2

e8 Lactate → 3 CO2

e9 Gln → 2 NH
+

4
+ 5 CO2

e10 2 V al → Urea + 9 CO2

e11 2 Ile → Urea + 11 CO2

e12 Asp + Glu → Urea + 8 CO2

e13 2 Phe → Urea + 17 CO2

e14 Glu → NH
+

4
+ 5 CO2

e15 2 Ala → Urea + 5 CO2

e16 Tyr → NH
+

4
+ 9 CO2

e17 Ala → NH
+

4
+ 3 CO2

metabolism of the death phase of the culture. As vector vm includes 17 exper-
imental measurements, the same number of elementary vectors are obtained.
This set of extreme rays generate the corresponding macroscopic bioreactions
presented in Table 5. Now that cells are dying, there is no production of
biomass any longer and the metabolism is centered in the production of en-
ergy with CO2 as main product. The resulting reaction rates wi are presented
in Table 3.

5 A piecewise dynamic model of CHO-320 cells

An estimation of the maximum reaction rates have been obtained for each
of the cell life phase (see Table 3). To take account of possible substrate
limitations, and guarantee concentration positivity during model simulation,
it is suggested to modulate these maximum rates with Monod factors.

ri = wi

S1

(ks1
+ S1)

S2

(ks2
+ S2)

......
Sz

(ksni
+ Sni

)
(22)

Subindex ni indicates the number of substrates participating in reaction i.

Thus, the dynamical model can be rewritten as:

dξ

dt
= KrX. (23)

In order to complete the model, it is necessary to select numerical values for
the half-saturation constants of substrates. Our aim in this study is to propose
a model structure and not to estimate these values from experimental data.
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Clearly, our database is insufficient for this latter purpose. Here, we select
somewhat arbitrary values equal to 0.1 mM, i.e., values small enough to not
interfere during the growth phase but large enough to avoid stiffness difficulties
in the simulation of the model differential equations. The same idea has been
used in [14].

Consequently, a local dynamic model is obtained for each of the life phases. In
Figures 1 and 2 the prediction of the three different models is presented. As
expected, all three models fit well the available data in their respective time
span.
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Fig. 1. Prediction of the three different models - Biomass and 9 first components
- Magenta: growth phase model; green: transition phase model; red: death phase
model.
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Fig. 2. Prediction of the three different models - 10 remaining components - Ma-
genta: growth phase model; green: transition phase model; red: death phase model.

A global model describing the complete dynamics of a CHO-320 cell culture,
can be defined as an interpolation between the three models obtained in the
previous section for growth, transition and death phases. The influence of each
model is controlled by means of weighting functions φg, φm and φd (see [12] for
more on the multi-model approach), such that the global model is formulated
as follows:

dξ

dt
= φg

dξg

dt
+ φm

dξm

dt
+ φd

dξd

dt
. (24)

Many local basis functions could be used. One of the simplest option is pro-
vided by linear functions of time φg, φm and φd, as shown in Figure 3). In order
to blend the three models, the first transition occurs in a time span starting
from 75 hours until 95 hours, time of the culture at which glucose is depleted.
The second transition starts at t = 123 hours and finishes at t = 143 hours, a
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time range where some kind of stress in the culture medium triggers cellular
apoptosis or programmed cell death. The time selection for the first model
transition is derived from the fact that the last measurement points of the
growth phase occurs at 72-74 hours and the first measurement points of the
transition phase are at 96-98 hours. In the same way, the time selection for the
second transition comes from the last measurement points of the transition
phase and the first points of the death phase, at 120-122 hours and 144-145
hours, respectively. The simulation results are presented in Figures 4 and 5.

0 20 40 60 80 100 120 140 160 180
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1

Time [h]

Fig. 3. Linear switching functions.

While the model reproduces quite well the evolution of cellular density and
main substrates and products, it fails to provide good results for all metabo-
lites. Indeed, at the end of the growth phase, the model stops predicting the
consumption of certain amino acids such as Arginine, Asparagine, Threonine,
Leucine, Isoleucine, Valine, Phenylalanine and Methionine. Hence, the transi-
tion phase model starts with wrong initial concentrations and is not able to
catch up with the real data.

To alleviate the problem of the erroneous model prediction for certain amino
acids, we search for those macroscopic reactions where these amino acids par-
ticipate. It appears that all nine amino acids participate in almost exactly the
same reactions. In addition, in all these reactions glucose appears as a sub-
strate. The kinetic expressions of the reaction rates r are modeled by Monod
kinetics and thus, they depend on glucose concentration as a multiplication
factor. Consequently, the concentration of these amino-acids do not vary any
longer, as the glucose concentration depletes.

Clearly, the early disappearance of glucose from the medium is the cause of
this problem. The exponential growth phase model presented in Table 2 has
been determined from the experimental measurements collected between 0
and 80 hours. Due to the reduced number of measurement points, the error in
the determination of the specific uptake rate of glucose (and all other species)
might be significant. Indeed, a smaller consumption rate of glucose would
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Fig. 4. Global model validation (using linear weighting functions).

maybe yield a macroscopic model capable of a better fit for the amino acids
in question. Thus, we selected from Table 1 a smaller specific uptake rate of
glucose within the confidence interval of the estimated value, so as to compute
a new minimal set of EFMs, and in turn, a new model for the exponential
growth phase. The set of macroscopic reactions obtained along with their
corresponding reaction rates wi are presented in Table 6.

The global model is constructed as before using linear functions of time. Now,
the first transition starts at t = 85 hours until t = 100 hours. In this way,
the overlapping of the exponential growth and transition phase models occurs
later, allowing the first to have an influence on the global model for a longer
time. The time span of the second transition remains identical, starting at
t = 123 hours and finishing at t = 143 hours. The simulation results are
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Fig. 5. Global model validation (using linear weighting functions).

presented in Figures 6 and 7.

6 Conclusions

Dynamic modeling of animal cell cultures is a delicate task that has attracted
considerable attention in the last decades, with models ranging from low-
dimensional macroscopic models to complex models mixing knowledge about
the metabolic network and kinetic models [2].

In this study, a procedure for the derivation of macroscopic dynamic mod-
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Fig. 6. Global model validation using a smaller glucose uptake rate.
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Fig. 7. Global model validation using a smaller glucose uptake rate.
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Table 6
Macroscopic Reactions for the exponential growth phase

EFM Macroscopic Reaction Reaction Rate w

e1 16.2 Glucose + 3.1 Gln + 1.9 Asn + 3.4 Asp + 2.2 Arg + 1.4 Tyr + 2.6 Thr 3.3637e−3

+15.4 Lys + 2.9 V al + 2.3 Ile + 4 Leu + 1.7 Phe + Met + 3.1 Pro + 0.6 Trp

+His + 0.3 Eth + 0.8 cho → 47.1 Biomass + 14.9 Gly + 43.6 CO2

e2 Lysine → 2 NH+
4 + 6 CO2 1.2885e−3

e3 V al → Lactate + NH+
4 + 2 CO2 6.8944e−3

e4 Gln → Lactate + 2 NH+
4 + 2 CO2 5.8354e−2

e5 Glucose → 2 Lactate 8.9550e−1

e6 Ser + Arg → Ala + Glu + NH+
4 + Urea 2.6505e−4

e7 Gln → Ala + NH+
4 + 2 CO2 3.2234e−3

e8 Ile → Glu + CO2 3.3120e−5

e9 Glucose → 6 CO2 1.5911e−2

e10 Thr → Gly + 2 CO2 6.4803e−5

e11 Asn + Arg → 2 Ala + 2 Urea + 2 CO2 2.6428e−4

e12 Ser + 4 Arg + Met → 6 Ala + 6 Urea + 7 CO2 2.1242e−5

e13 Tyr + Thr → Urea + 11 CO2 1.2274e−5

e14 Ser + 4 Leu + Met → 2 Ala + 23 CO2 2.8599e−4

e15 Tyr → Ala + 6 CO2 6.1860e−5

e16 Ile → Ala + 3 CO2 1.3218e−4

e17 Gln → Urea + 4 CO2 1.4200e−2

e18 Phe → Ala + 6 CO2 1.2058e−4

e19 Ser + 2 Phe + Met → 2 Urea + 23 CO2 4.9886e−6

els from detailed metabolic networks is presented, and discussed based on an
application example related to batch cultures of CHO-320 cells. In particu-
lar, the relatively high complexity of the metabolic network makes impossible
the computation of the complete set of elementary flux modes due to com-
binatorial explosion. An alternative procedure is therefore applied, where an
admissible flux distribution is decomposed into a minimal set of elementary
flux modes. The minimal set can be computed directly, without enumerating
the full collection of EFMs. Model reduction based on this minimal decom-
position provides sets of macroscopic bioreactions, as well as estimates of the
maximum reaction rates. Dynamic models with suitable properties can there-
fore be obtained through the introduction of classical Monod factors. Piecewise
models for the different cell life phases can also be easily constructed, using
linear weighting functions (to switch from one phase to the other).

A global model can be obtained by a minor adjustment in the consumption
rate of glucose. If glucose is considered to be consumed a little slower, the reac-
tion rates of the macro reactions depending on glucose concentration become
zero once the passage from the exponential growth phase model to the transi-
tion phase model is completed. The consideration of a smaller slope of glucose
consumption allows the obtaining of a global model capable of reproducing
the experimental data for the entire cell culture.
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