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Abstract. We introduce the framework of path-complete graph Lyapunov functions for ap-
proximation of the joint spectral radius. The approach is based on the analysis of the underlying
switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled
directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of
graphs called path-complete graphs, and show that any such graph gives rise to a method for proving
stability of the switched system. This enables us to derive several asymptotically tight hierarchies
of semidefinite programming relaxations that unify and generalize many existing techniques such as
common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov func-
tions. We compare the quality of approximation obtained by certain classes of path-complete graphs
including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two
matrices. We provide approximation guarantees for several families of path-complete graphs, such
as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for
maximum/minimum-of-quadratics Lyapunov functions.
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1. Introduction. Given a finite set of square matrices A := {A1, ..., Am}, their
joint spectral radius ρ(A) is defined as

ρ (A) = lim
k→∞

max
σ∈{1,...,m}k

‖Aσk
...Aσ2Aσ1‖

1/k
, (1.1)

where the quantity ρ(A) is independent of the norm used in (1.1). The joint spectral
radius (JSR) is a natural generalization of the spectral radius of a single square matrix
and it characterizes the maximal growth rate that can be obtained by taking products,
of arbitrary length, of all possible permutations of A1, ..., Am. This concept was
introduced by Rota and Strang [28] in the early 60s and has since been the subject
of extensive research within the engineering and the mathematics communities alike.
Aside from a wealth of fascinating mathematical questions that arise from the JSR,
the notion emerges in many areas of application such as stability of switched linear
dynamical systems, Leontief input-output model of the economy with uncertain data,
computation of the capacity of codes, continuity of wavelet functions, convergence of
consensus algorithms, trackability of graphs, and many others. See [19] and references
therein for a recent survey of the theory and applications of the JSR.

Motivated by the abundance of applications, there has been much work on efficient
computation of the joint spectral radius; see e.g. [6], [5], [24], and references therein.
Unfortunately, the negative results in the literature certainly restrict the horizon of
possibilities. In [7], Blondel and Tsitsiklis prove that even when the set A consists of
only two matrices, the question of testing whether ρ(A) ≤ 1 is undecidable. They also
show that unless P=NP, one cannot compute an approximation ρ̂ of ρ that satisfies
|ρ̂ − ρ| ≤ ερ, in a number of steps polynomial in the bit size of A and the bit size
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of ε [29]. It is easy to show that the spectral radius of any finite product of length k
raised to the power of 1/k gives a lower bound on ρ [19]. However, for reasons that
we explain next, our focus will be on computing upper bounds for ρ.

There is an attractive connection between the joint spectral radius and the sta-
bility properties of an arbitrarily switched linear system; i.e., dynamical systems of
the form

xk+1 = Aσ(k)xk, (1.2)

where σ : Z→{1, ...,m} is a map from the set of integers to the set of indices. It is
well-known that ρ < 1 if and only if system (1.2) is absolutely asymptotically stable
(AAS), that is, (globally) asymptotically stable for all switching sequences. Moreover,
it is known [21] that absolute asymptotic stability of (1.2) is equivalent to absolute
asymptotic stability of the linear difference inclusion

xk+1 ∈ coA xk, (1.3)

where coA here denotes the convex hull of the set A. Therefore, any method for
obtaining upper bounds on the joint spectral radius provides sufficient conditions
for stability of systems of type (1.2) or (1.3). Conversely, if we can prove absolute
asymptotic stability of (1.2) or (1.3) for the set Aγ := {γA1, . . . , γAm} for some
positive scalar γ, then we get an upper bound of 1

γ on ρ(A). (This follows from the
scaling property of the JSR: ρ(Aγ) = γρ(A).) One advantage of working with the
notion of the joint spectral radius is that it gives a way of rigorously quantifying the
performance guarantee of different techniques for stability analysis of systems (1.2)
or (1.3).

Perhaps the most well-established technique for proving stability of switched
systems is the use of a common (or simultaneous) Lyapunov function. The idea
here is that if there is a continuous, positive, and homogeneous (Lyapunov) function
V : Rn → R that for some γ > 1 satisfies

V (γAix) ≤ V (x) ∀i = 1, . . . ,m, ∀x ∈ Rn, (1.4)

(i.e., V (x) decreases no matter which matrix is applied), then the system in (1.2) (or
in (1.3)) is AAS. Conversely, it is known that if the system is AAS, then there exists a
convex common Lyapunov function (in fact a norm); see e.g. [19, p. 24]. However, this
function is not in general finitely constructable. A popular approach has been to try
to approximate this function by a class of functions that we can efficiently search for
using convex optimization and in particular semidefinite programming. Semidefinite
programs (SDPs) can be solved with arbitrary accuracy in polynomial time and lead
to efficient computational methods for approximation of the JSR. As an example, if
we take the Lyapunov function to be quadratic (i.e., V (x) = xTPx), then the search
for such a Lyapunov function can be formulated as the following SDP:

P � 0
γ2ATi PAi � P ∀i = 1, . . . ,m. (1.5)

The quality of approximation of common quadratic Lyapunov functions is a well-
studied topic. In particular, it is known [6] that the estimate ρ̂V2 obtained by this
method1 satisfies

1√
n
ρ̂V2(A) ≤ ρ(A) ≤ ρ̂V2(A), (1.6)

1The estimate ρ̂V2 is the reciprocal of the largest γ that satisfies (1.5) and can be found by
bisection.
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where n is the dimension of the matrices. This bound is a direct consequence of John’s
ellipsoid theorem and is known to be tight [4].

In [24], the use of sum of squares (SOS) polynomial Lyapunov functions of degree
2d was proposed as a common Lyapunov function for the switched system in (1.2).
The search for such a Lyapunov function can again be formulated as a semidefinite
program. This method does considerably better than a common quadratic Lyapunov
function in practice and its estimate ρ̂VSOS,2d satisfies the bound

1
2d
√
η
ρ̂VSOS,2d(A) ≤ ρ(A) ≤ ρ̂VSOS,2d(A), (1.7)

where η = min{m,
(
n+d−1

d

)
}. Furthermore, as the degree 2d goes to infinity, the

estimate ρ̂VSOS,2d converges to the true value of ρ [24]. The semidefinite programming
based methods for approximation of the JSR have been recently generalized and put
in the framework of conic programming [25].

1.1. Contributions and organization. It is natural to ask whether one can
develop better approximation schemes for the joint spectral radius by using multiple
Lyapunov functions as opposed to requiring simultaneous contractibility of a single
Lyapunov function with respect to all the matrices. More concretely, our goal is to
understand how we can write inequalities among, say, k different Lyapunov functions
V1(x), . . . , Vk(x) that imply absolute asymptotic stability of (1.2) and can be checked
via semidefinite programming.

The general idea of using several Lyapunov functions for analysis of switched sys-
tems is a very natural one and has already appeared in the literature (although to our
knowledge not in the context of the approximation of the JSR); see e.g. [18], [8], [16],
[15], [12]. Perhaps one of the earliest references is the work on “piecewise quadratic
Lyapunov functions” in [18]. However, this work is in the different framework of state
dependent switching, where the dynamics switches depending on which region of the
space the trajectory is traversing (as opposed to arbitrary switching). In this setting,
there is a natural way of using several Lyapunov functions: assign one Lyapunov
function per region and “glue them together”. Closer to our setting, there is a body
of work in the literature that gives sufficient conditions for existence of piecewise
Lyapunov functions of the type max{xTP1x, . . . , x

TPkx}, min{xTP1x, . . . , x
TPkx},

and conv{xTP1x, . . . , x
TPkx}, i.e., the pointwise maximum, the pointwise minimum,

and the convex envelope of a set of quadratic functions [16], [15], [12], [17]. These
works are mostly concerned with analysis of linear differential inclusions in continuous
time, but they have obvious discrete time counterparts. The main drawback of these
methods is that in their greatest generality, they involve solving bilinear matrix in-
equalities, which are non-convex and in general NP-hard. One therefore has to turn to
heuristics, which have no performance guarantees and their computation time quickly
becomes prohibitive when the dimension of the system increases. Moreover, all of
these methods solely provide sufficient conditions for stability with no performance
guarantees.

There are several unanswered questions that in our view deserve a more thorough
study: (i) With a focus on conditions that are amenable to convex optimization, what
are the different ways to write a set of inequalities among k Lyapunov functions that
imply absolute asymptotic stability of (1.2)? Can we give a unifying framework that
includes the previously proposed Lyapunov functions and perhaps also introduces
new ones? (ii) Among the different sets of inequalities that imply stability, can we
identify some that are more powerful than some other? (iii) The available methods
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on piecewise Lyapunov functions solely provide sufficient conditions for stability with
no guarantee on their performance. Can we give converse theorems that guarantee
the existence of a feasible solution to our search for a given accuracy?

The contributions of this paper to these questions are as follows. We propose a
unifying framework based on a representation of Lyapunov inequalities with labeled
graphs and by making some connections with basic concepts in automata theory.
This is done in Section 2, where we define the notion of a path-complete graph (Def-
inition 2.2) and prove that any such graph provides an approximation scheme for
the JSR (Theorem 2.4). In Section 3, we give examples of families of path-complete
graphs and show that many of the previously proposed techniques come from par-
ticular classes of simple path-complete graphs (e.g., Corollary 3.4, Corollary 3.5, and
Remark 3.2). In Section 4, we characterize all the path-complete graphs with two
nodes for the analysis of the JSR of two matrices. We determine how the approxima-
tions obtained from all of these graphs compare (Proposition 4.2). In Section 5, we
study in more depth the approximation properties of a particular pair of “dual” path-
complete graphs that seem to perform very well in practice. Subsection 5.1 contains
more general results about duality within path-complete graphs and its connection
to transposition of matrices (Theorem 5.1). Subsection 5.2 gives an approximation
guarantee for the graphs studied in Section 5 (Theorem 5.4), and Subsection 5.3 con-
tains some numerical examples. In Section 6, we prove a converse theorem for the
method of max-of-quadratics Lyapunov functions (Theorem 6.1) and an approxima-
tion guarantee for a new class of methods for proving stability of switched systems
(Theorem 6.2). Finally, our conclusions and some future directions are presented in
Section 7.

2. Path-complete graphs and the joint spectral radius. In what follows,
we will think of the set of matrices A := {A1, ..., Am} as a finite alphabet and we
will often refer to a finite product of matrices from this set as a word. We denote the
set of all words Ait . . . Ai1 of length t by At. Contrary to the standard convention
in automata theory, our convention is to read a word from right to left. This is in
accordance with the order of matrix multiplication. The set of all finite words is
denoted by A∗; i.e., A∗ =

⋃
t∈Z+

At.

The basic idea behind our framework is to represent through a graph all the
possible occurrences of products that can appear in a run of the dynamical system
in (1.2), and assert via some Lyapunov inequalities that no matter what occurrence
appears, the product must remain stable. A convenient way of representing these
Lyapunov inequalities is via a directed labeled graph G(N,E). Each node of this
graph is associated with a (continuous, positive definite, and homogeneous) Lyapunov
function Vi : Rn → R, and each edge is labeled by a finite product of matrices, i.e., by
a word from the set A∗. As illustrated in Figure 2.1, given two nodes with Lyapunov
functions Vi(x) and Vj(x) and an edge going from node i to node j labeled with the
matrix Al, we write the Lyapunov inequality:

Vj(Alx) ≤ Vi(x) ∀x ∈ Rn. (2.1)

The problem that we are interested in is to understand which sets of Lyapunov
inequalities imply stability of the switched system in (1.2). We will answer this
question based on the corresponding graph.

For reasons that will become clear shortly, we would like to reduce graphs whose
edges have arbitrary labels from the set A∗ to graphs whose edges have labels from
the set A, i.e., labels of length one. This is explained next.
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Fig. 2.1. Graphical representation of Lyapunov inequalities. The edge in the graph above
corresponds to the Lyapunov inequality Vj(Alx) ≤ Vi(x). Here, Al can be a single matrix from A
or a finite product of matrices from A.

Definition 2.1. Given a labeled directed graph G(N,E), we define its expanded
graph Ge(Ne, Ee) as the outcome of the following procedure. For every edge (i, j) ∈ E
with label Aik . . . Ai1 ∈ Ak, where k > 1, we remove the edge (i, j) and replace it with
k new edges (sq, sq+1) ∈ Ee \ E : q ∈ {0, . . . , k − 1}, where s0 = i and sk = j.2

(These new edges go from node i through k − 1 newly added nodes s1, . . . , sk−1 and
then to node j.) We then label the new edges (i, s1), . . . , (sq, sq+1), . . . , (sk−1, j) with
Ai1, . . . , Aik respectively.

Fig. 2.2. Graph expansion: edges with labels of length more than one are broken into new edges
with labels of length one.

An example of a graph and its expansion is given in Figure 2.2. Note that if a
graph has only labels of length one, then its expanded graph equals itself. The next
definition is central to our development.

Definition 2.2. Given a directed graph G(N,E) whose edges are labeled with
words from the set A∗, we say that the graph is path-complete, if for all finite words
Aσk

. . . Aσ1 of any length k (i.e., for all words in A∗), there is a directed path in its
expanded graph Ge(Ne, Ee) such that the labels on the edges of this path are the labels
Aσ1 up to Aσk

.
In Figure 2.3, we present seven path-complete graphs on the alphabet A =

{A1, A2}. The fact that these graphs are path-complete is easy to see for graphs
H1, H2, G3, and G4, but perhaps not so obvious for graphs H3, G1, and G2. One way
to check if a graph is path-complete is to think of it as a finite automaton by introduc-
ing an auxiliary start node (state) with free transitions to every node and by making
all the other nodes be accepting states. Then, there are well-known algorithms (see
e.g. [14, Chap. 4]) that check whether the language accepted by an automaton is A∗,
which is equivalent to the graph being path-complete. Similar algorithms exist in the
symbolic dynamics literature; see e.g. [22, Chap. 3]. Our interest in path-complete
graphs stems from Theorem 2.4 below that establishes that any such graph gives a
method for approximation of the JSR. We introduce one last definition before we state

2It is understood that the node index sq depends on the original nodes i and j. To keep the

notation simple we write sq instead of sij
q .
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this theorem.

Fig. 2.3. Examples of path-complete graphs for the alphabet {A1, A2}. If Lyapunov functions
satisfying the inequalities associated with any of these graphs are found, then we get an upper bound
of unity on ρ(A1, A2).

Definition 2.3. Let A = {A1, . . . , Am} be a set of matrices. Given a path-
complete graph G (N,E) and |N | functions Vi(x), we say that {Vi(x) | i = 1, . . . , |N |}
is a graph Lyapunov function (GLF) associated with G (N,E) if

Vj (L ((i, j))x) ≤ Vi (x) ∀x ∈ Rn, ∀ (i, j) ∈ E,
where L ((i, j)) ∈ A∗ is the label associated with edge (i, j) ∈ E going from node i to
node j.

Theorem 2.4. Consider a finite set of matrices A = {A1, . . . , Am}. For a scalar
γ > 0, let Aγ := {γA1, . . . , γAm}. Let G(N,E) be a path-complete graph whose edges
are labeled with words from A∗γ . If there exist positive, continuous, and homogeneous3

functions Vi(x), one per node of the graph, such that {Vi(x) | i = 1, . . . , |N |} is a
graph Lyapunov function associated with G(N,E), then ρ(A) ≤ 1

γ .
Proof. We will first prove the claim for the special case where the edge labels

of G(N,E) belong to Aγ and therefore G(N,E) = Ge(Ne, Ee). The general case
will be reduced to this case afterwards. Let d be the degree of homogeneity of the
Lyapunov functions Vi(x), i.e., Vi(λx) = λdVi(x) for all λ ∈ R. (The actual value of d
is irrelevant.) By positivity, continuity, and homogeneity of Vi(x), there exist scalars
αi and βi with 0 < αi ≤ βi for i = 1, . . . , |N |, such that

αi||x||d ≤ Vi(x) ≤ βi||x||d, (2.2)

for all x ∈ Rn and for all i = 1, . . . , |N |, where ||x|| here denotes the Euclidean norm
of x. Let

ξ = max
i,j∈{1,...,|N |}2

βi
αj
. (2.3)

3The requirement of homogeneity can be replaced by radial unboundedness which is implied by
homogeneity and positivity. However, since the dynamical system in (1.2) is homogeneous, there is
no conservatism in asking Vi(x) to be homogeneous.
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Now consider an arbitrary product Aσk
. . . Aσ1 of length k. Because the graph is path-

complete, there will be a directed path corresponding to this product that consists
of k edges, and goes from some node i to some node j. If we write the chain of k
Lyapunov inequalities associated with these edges (cf. Figure 2.1), then we get

Vj(γkAσk
. . . Aσ1x) ≤ Vi(x),

which by homogeneity of the Lyapunov functions can be rearranged to(
Vj(Aσk

. . . Aσ1x)
Vi(x)

) 1
d

≤ 1
γk
. (2.4)

We can now bound the spectral norm of Aσk
. . . Aσ1 as follows:

||Aσk
. . . Aσ1 || ≤ max

x

||Aσk
. . . Aσ1x||
||x||

≤
(
βi
αj

) 1
d

max
x

V
1
d
j (Aσk

. . . Aσ1x)

V
1
d
i (x)

≤
(
βi
αj

) 1
d 1
γk

≤ ξ 1
d

1
γk
,

where the last three inequalities follow from (2.2), (2.4), and (2.3) respectively. From
the definition of the JSR in (1.1), after taking the k-th root and the limit k →∞, we
get that ρ(A) ≤ 1

γ and the claim is established.
Now consider the case where at least one edge of G(N,E) has a label of length

more than one and hence Ge(Ne, Ee) 6= G(N,E). We will start with the Lyapunov
functions Vi(x) assigned to the nodes of G(N,E) and from them we will explicitly
construct |Ne| Lyapunov functions for the nodes of Ge(Ne, Ee) that satisfy the Lya-
punov inequalities associated to the edges in Ee. Once this is done, in view of our
preceding argument and the fact that the edges of Ge(Ne, Ee) have labels of length
one by definition, the proof will be completed.

For j ∈ Ne, let us denote the new Lyapunov functions by V ej (x). We give the
construction for the case where |Ne| = |N |+ 1. The result for the general case follows
by iterating this simple construction. Let s ∈ Ne\N be the added node in the
expanded graph, and q, r ∈ N be such that (s, q) ∈ Ee and (r, s) ∈ Ee with Asq and
Ars as the corresponding labels respectively. Define

V ej (x) =

{
Vj (x) , if j ∈ N

Vq (Asqx) , if j = s.
(2.5)

By construction, r and q, and subsequently, Asq and Ars are uniquely defined and
hence,

{
V ej (x) | j ∈ Ne

}
is well defined. We only need to show that

Vq (Asqx) ≤ V es (x) (2.6)
V es (Arsx) ≤ Vr (x) . (2.7)
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Inequality (2.6) follows trivially from (2.5). Furthermore, it follows from (2.5) that

V es (Arsx) = Vq (AsqArsx)
≤ Vr (x) ,

where the inequality follows from the fact that for i ∈ N , the functions Vi(x) satisfy
the Lyapunov inequalities of the edges of G (N,E) .

Remark 2.1. If the matrix Asq is not invertible, the extended function V ej (x)
as defined in (2.5) will only be positive semidefinite. However, since our goal is to
approximate the JSR, we will never be concerned with invertibility of the matrices in
A. Indeed, since the JSR is continuous in the entries of the matrices [19, p. 18], we
can always perturb the matrices slightly to make them invertible without changing the
JSR by much. In particular, for any α > 0, there exist 0 < ε, δ < α such that

Âsq =
Asq + δI

1 + ε

is invertible and (2.5)−(2.7) are satisfied with Asq = Âsq.
To understand the generality of the framework of “path-complete graph Lyapunov

funcitons” more clearly, let us revisit the path-complete graphs in Figure 2.3 for the
study of the case where the set A = {A1, A2} consists of only two matrices. For all
of these graphs if our choice for the Lyapunov functions V (x) or V1(x) and V2(x) are
quadratic functions or sum of squares polynomial functions, then we can formulate
the well-established semidefinite programs that search for these candidate Lyapunov
functions.

Graph H1, which is clearly the simplest possible one, corresponds to the well-
known common Lyapunov function approach. Graph H2 is a common Lyapunov
function applied to all products of length two. This graph also obviously implies
stability.4 But graph H3 tells us that if we find a Lyapunov function that decreases
whenever A1, A2

2, and A2A1 are applied (but with no requirement when A1A2 is
applied), then we still get stability. This is a priori not obvious and we believe this
approach has not appeared in the literature before. Graph H3 is also an example
that explains why we needed the expansion process. Note that for the unexpanded
graph, there is no path for any word of the form (A1A2)k or of the form A2k−1

2 , for
any k ∈ N. However, one can check that in the expanded graph of graph H3, there is
a path for every finite word, and this in turn allows us to conclude stability from the
Lyapunov inequalities of graph H3.

The remaining graphs in Figure 2.3 which all have two nodes and four edges
have a connection to the method of min-of-quadratics or max-of-quadratics Lyapunov
functions [16], [15], [12], [17]. If Lyapunov inequalities associated with any of these
four graphs are satisfied, then either min{V1(x), V2(x)} or max{V1(x), V2(x)} or both
serve as a common Lyapunov function for the switched system. In the next section,
we assert these facts in a more general setting (Corollaries 3.4 and 3.5) and show that
these graphs in some sense belong to “simplest” families of path-complete graphs.

3. Duality and examples of families of path-complete graphs. Now that
we have shown that any path-complete graph yields a method for proving stability of
switched systems, our next focus is naturally on showing how one can produce graphs

4By slight abuse of terminology, we say that a graph implies stability meaning that the associated
Lyapunov inequalities imply stability.
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that are path-complete. Before we proceed to some basic constructions of such graphs,
let us define a notion of duality among graphs which essentially doubles the number
of path-complete graphs that we can generate.

Definition 3.1. Given a directed graph G(N,E) whose edges are labeled with
words in A∗, we define its dual graph G′(N,E′) to be the graph obtained by reversing
the direction of the edges of G, and changing the labels Aσk

. . . Aσ1 of every edge of G
to its reversed version Aσ1 . . . Aσk

.

Fig. 3.1. An example of a pair of dual graphs.

An example of a pair of dual graphs with labels of length one is given in Figure 3.1.
The following theorem relates dual graphs and path-completeness.

Theorem 3.2. If a graph G(N,E) is path-complete, then its dual graph G′(N,E′)
is also path-complete.

Proof. Consider an arbitrary finite word Aik . . . Ai1 . By definition of path-
completeness, our task is to show that there exists a path corresponding to this word
in the expanded graph of the dual graph G′. It is easy to see that the expanded
graph of the dual graph of G is the same as the dual graph of the expanded graph
of G; i.e, G′e(Ne, E′e) = Ge

′

(Ne, Ee
′

). Therefore, we show a path for Aik . . . Ai1 in
Ge
′

. Consider the reversed word Aii . . . Aik . Since G is path-complete, there is a path
corresponding to this reversed word in Ge. Now if we just trace this path backwards,
we get exactly a path for the original word Aik . . . Ai1 in Ge

′

. This completes the
proof.

The next proposition offers a very simple construction for obtaining a large family
of path-complete graphs with labels of length one.

Proposition 3.3. A graph having any of the two properties below is path-
complete.

Property (i): every node has outgoing edges with all the labels in A.
Property (ii): every node has incoming edges with all the labels in A.
Proof. If a graph has Property (i), then it is obviously path-complete. If a graph

has Property (ii), then its dual has Property (i) and therefore by Theorem 3.2 it is
path-complete.

Examples of path-complete graphs that fall in the category of this proposition
include graphs G1, G2, G3, and G4 in Figure 2.3 and all of their dual graphs. By
combining the previous proposition with Theorem 2.4, we obtain the following two
simple corollaries which unify several linear matrix inequalities (LMIs) that have
been previously proposed in the literature. These corollaries also provide a link to
min/max-of-quadratics Lyapunov functions. Different special cases of these LMIs have
appeared in [16], [15], [12], [17], [20], [9]. Note that the framework of path-complete
graph Lyapunov functions makes the proof of the fact that these LMIs imply stability
immediate.

Corollary 3.4. Consider the set A = {A1, . . . , Am} and the associated switched
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linear system in (1.2) or (1.3). If there exist k positive definite matrices Pj such that

∀(i, k) ∈ {1, . . . ,m}2, ∃j ∈ {1, . . . ,m}
such that γ2ATi PjAi � Pk, (3.1)

for some γ > 1, then the system is absolutely asymptotically stable, i.e., ρ(A) < 1.
Moreover, the pointwise minimum

min{xTP1x, . . . , x
TPkx}

of the quadratic functions serves as a common Lyapunov function.
Proof. The inequalities in (3.1) imply that every node of the associated graph has

outgoing edges labeled with all the different m matrices. Therefore, by Proposition 3.3
the graph is path-complete, and by Theorem 2.4 this implies absolute asymptotic
stability. The proof that the pointwise minimum of the quadratics is a common
Lyapunov function is easy and left to the reader.

Corollary 3.5. Consider the set A = {A1, . . . , Am} and the associated switched
linear system in (1.2) or (1.3). If there exist k positive definite matrices Pj such that

∀(i, j) ∈ {1, . . . ,m}2, ∃k ∈ {1, . . . ,m}
such that γ2ATi PjAi � Pk, (3.2)

for some γ > 1, then the system is absolutely asymptotically stable, i.e., ρ(A) < 1.
Moreover, the pointwise maximum

max{xTP1x, . . . , x
TPkx}

of the quadratic functions serves as a common Lyapunov function.
Proof. The inequalities in (3.2) imply that every node of the associated graph has

incoming edges labeled with all the differentmmatrices. Therefore, by Proposition 3.3
the graph is path-complete and the proof of absolute asymptotic stability then follows.
The proof that the pointwise maximum of the quadratics is a common Lyapunov
function is again left to the reader.

Remark 3.1. The linear matrix inequalities in (3.1) and (3.2) are (convex) suf-
ficient conditions for existence of min-of-quadratics or max-of-quadratics Lyapunov
functions. The converse is not true. The works in [16], [15], [12], [17] have addi-
tional multipliers in (3.1) and (3.2) that make the inequalities non-convex but when
solved with a heuristic method contain a larger family of min-of-quadratics and max-
of-quadratics Lyapunov functions. Even if the non-convex inequalities with multipliers
could be solved exactly, except for special cases where the S-procedure is exact (e.g.,
the case of two quadratic functions), these methods still do not completely characterize
min-of-quadratics and max-of-quadratics functions.

Remark 3.2. The work in [20] on “path-dependent quadratic Lyapunov func-
tions” and the work in [9] on “parameter dependent Lyapunov functions”–when spe-
cialized to the analysis of arbitrarily switched linear systems–are special cases of Corol-
lary 3.4 and 3.5 respectively. This observation makes a connection between these
techniques and min/max-of-quadratics Lyapunov functions which is not established
in [20], [9]. It is also interesting to note that the path-complete graph correspond-
ing to the LMIs proposed in [20] (see Theorem 9 there) is the well-known De Bruijn
graph [13]. We will analyze the bound on the JSR obtained by analysis via this path-
complete graph in the later sections.
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The set of path-complete graphs is much broader than the simple family of graphs
constructed in Proposition 3.3. Indeed, there are many graphs that are path-complete
without having outgoing (or incoming) edges with all the labels on every node; see
e.g. graph He

4 in Figure 3.2. This in turn means that there are several interesting and
unexplored Lyapunov inequalities that we can impose for proving stability of switched
systems. Below, we give one particular example of such “non-obvious” inequalities
for the case of switching between two matrices.

Fig. 3.2. The path-complete graphs corresponding to Proposition 3.6.

Proposition 3.6. Consider the set A = {A1, A2} and the switched linear system
in (1.2) or (1.3). If there exist a positive definite matrix P such that

γ2AT1 PA1 � P,
γ4(A2A1)TP (A2A1) � P,
γ6(A2

2A1)TP (A2
2A1) � P,

γ6A3T

2 PA3
2 � P,

for some γ > 1, then the system is absolutely asymptotically stable, i.e., ρ(A) < 1.
Proof. The graph H4 associated with the LMIs above and its expanded version

He
4 are drawn in Figure 3.2. We leave it as an exercise for the reader to show (e.g. by

induction on the length of the word) that there is path for every finite word in He
4 .

Therefore, H4 is path-complete and in view of Theorem 2.4 the claim is established.

Remark 3.3. Proposition 3.6 can be generalized as follows: If a single Lyapunov
function decreases with respect to the matrix products

{A1, A2A1, A
2
2A1, . . . , A

k−1
2 A1, A

k
2}

for some integer k ≥ 1, then ρ(A1, A2) < 1. We omit the proof of this generalization
due to space limitations. We will later prove (Theorem 6.2) a bound for the quality
of approximation of path-complete graphs of this type, where a common Lyapunov
function is required to decrease with respect to products of different lengths.

When we have so many different ways of imposing conditions for stability, it
is natural to ask which ones are more powerful. The answer clearly depends on
the combinatorial structure of the graphs and does not seem to be easy in general.
Nevertheless, in the next section, we compare the performance of all path-complete
graphs with two nodes for analysis of switched systems with two matrices. Some
interesting connections between the bounds obtained from these graphs will arise.
For example, we will see that the graphs H1, G3, and G4 always give the same bound
on the joint spectral radius; i.e., one graph will succeed in proving stability if and
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only if the other two will. So, there is no point in increasing the number of decision
variables and the number of constraints and impose G3 or G4 in place of H1. The
same is true for the graphs in H3 and G2, which makes graph H3 preferable to graph
G2. (See Proposition 4.2.)

4. Path-complete graphs with two nodes. In this section, we character-
ize the set of all path-complete graphs consisting of two nodes, an alphabet set
A = {A1, A2}, and edge labels of unit length. We will elaborate on the set of all
admissible topologies arising in this setup and compare the performance—in the sense
of conservatism of the ensuing analysis—of different path-complete graph topologies.

Before we proceed, we introduce a notation that will prove to be convenient in
Subsection 4.2: Given a labeled graph G(N,E) associated with two matrices A1 and
A2, we denote by G(N,E), the graph obtained by swapping of A1 and A2 in all the
labels on every edge.

4.1. The set of path-complete graphs. The next lemma establishes that for
thorough analysis of the case of two matrices and two nodes, we only need to examine
graphs with four or fewer edges.

Lemma 4.1. Let G ({1, 2} , E) be a path-complete graph with labels of length one
for A = {A1, A2}. Let {V1, V2} be a graph Lyapunov function for G. If |E| > 4, then,
either

(i) there exists ê ∈ E such that G ({1, 2} , E\ê) is a path-complete graph,
or

(ii) either V1 or V2 or both are common Lyapunov functions for A.
Proof. If |E| > 4, then at least one node has three or more outgoing edges.

Without loss of generality let node 1 be a node with exactly three outgoing edges
e1, e2, e3, and let L (e1) = L (e2) = A1. Let D (e) denote the destination node of an
edge e ∈ E. If D (e1) = D (e2) , then e1 (or e2) can be removed without changing
the output set of words. If D (e1) 6= D (e2) , assume, without loss of generality, that
D (e1) = 1 and D (e2) = 2. Now, if L (e3) = A1, then regardless of its destination node,
e3 can be removed. If L (e3) = A2 and D (e3) = 1, then V1 is a common Lyapunov
function for A. The only remaining possibility is that L (e3) = A2 and D (e3) = 2.
Note that there must be an edge e4 ∈ E from node 2 to node 1, otherwise either node
2 would have two self-edges with the same label or V2 would be a common Lyapunov
function for A. If L(e4) = A2 then it can be verified that G({1, 2}, {e1, e2, e3, e4}) is
path-complete and thus all other edge can be removed. If there is no edge from node
2 to node 1 with label A2 then L(e4) = A1 and node 2 must have a self-edge e5 ∈ E
with label L(e5) = A2, otherwise the graph would not be path-complete. In this case,
it can be verified that e2 can be removed without affecting the output set of words.

One can easily verify that a path-complete graph with two nodes and fewer
than four edges must necessarily place two self-loops with different labels on one
node, which necessitates existence of a common Lyapunov function for the underly-
ing switched system. Since we are interested in exploiting the favorable properties of
graph Lyapunov functions in approximation of the JSR, we will focus on graphs with
four edges.

4.2. Comparison of performance. It can be verified that for path-complete
graphs with two nodes, four edges, and two matrices, and without multiple self-loops
on a single node, there are a total of nine distinct graph topologies to consider. Of
the nine graphs, six have the property that every node has two incoming edges with
different labels. These are graphs G1, G2, G2, G3, G3, and G4 (Figure 2.3). Note
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that G1 = G1 and G4 = G4. The duals of these six graphs, i.e., G′1, G
′
2, G

′
2, G

′
3 =

G3, G
′
3 = G3, and G′4 = G4 have the property that every node has two outgoing

edges with different labels. Evidently, G3, G3, and G4 are self-dual graphs, i.e., they
are isomorphic to their dual graphs. The self-dual graphs are least interesting to us
since, as we will show, they necessitate existence of a common Lyapunov function for
A (cf. Proposition 4.2, equation (4.2)).

Note that all of these graphs perform at least as well as a common Lyapunov func-
tion because we can always take V1 (x) = V2 (x). Furthermore, we know from Corollar-
ies 3.5 and 3.4 that if Lyapunov inequalities associated with G1, G2, G2, G3, G3, and
G4 are satisfied, then max {V1 (x) , V2 (x)} is a common Lyapunov function, whereas,
in the case of graphs G′1, G

′
2, G

′
2, G

′
3, G

′
3, and G′4, the function min {V1 (x) , V2 (x)}

would serve as a common Lyapunov function. Clearly, for the self-dual graphs G3, G3,
and G4 both max {V1 (x) , V2 (x)} and min {V1 (x) , V2 (x)} are common Lyapunov
functions.

Notation: Given a set of matrices A = {A1, . . . , Am} , a path-complete graph
G (N,E) , and a class of functions V, we denote by ρ̂V ,G (A) , the upper bound on the
JSR of A that can be obtained by numerical optimization of GLFs Vi ∈ V, i ∈ N,
defined over G. With a slight abuse of notation, we denote by ρ̂V (A) , the upper
bound that is obtained by using a common Lyapunov function V ∈ V.

Proposition 4.2. Consider the set A = {A1, A2} , and let G1, G2, G3, G4,
and H3 be the path-complete graphs shown in Figure 2.3. Then, the upper bounds on
the JSR of A obtained via the associated GLFs satisfy the following relations:

ρ̂V ,G1 (A) = ρ̂V ,G′1 (A) (4.1)

and

ρ̂V (A) = ρ̂V ,G3 (A) = ρ̂V ,G3
(A) = ρ̂V ,G4 (A) (4.2)

and

ρ̂V ,G2 (A) = ρ̂V ,H3 (A) , ρ̂V ,G2
(A) = ρ̂V ,H3

(A) (4.3)

and

ρ̂V ,G′2 (A) = ρ̂V ,H′3 (A) , ρ̂V ,G′2
(A) = ρ̂V ,H′3

(A) . (4.4)

Proof. A proof of (4.1) in more generality is provided in Section 5 (cf. Corollary
5.3). The proof of (4.2) is based on symmetry arguments. Let {V1, V2} be a GLF
associated with G3 (V1 is associated with node 1 and V2 is associated with node 2).
Then, by symmetry, {V2, V1} is also a GLF for G3 (where V1 is associated with node
2 and V2 is associated with node 1). Therefore, letting V = V1 + V2, we have that
{V, V } is a GLF for G3 and thus, V = V1+V2 is also a common Lyapunov function for
A, which implies that ρ̂V ,G3 (A) ≥ ρ̂V (A) . The other direction is trivial: If V ∈ V is
a common Lyapunov function for A, then {V1, V2 | V1 = V2 = V } is a GLF associated
withG3, and hence, ρ̂V ,G3 (A) ≤ ρ̂V (A) . Identical arguments based on symmetry hold
for G3 and G4. We now prove the left equality in (4.3), the proofs for the remaining
equalities in (4.3) and (4.4) are analogous. The equivalence between G2 and H3 is
a special case of the relation between a graph and its reduced model, obtained by
removing a node without any self-loops, adding a new edge per each pair of incoming
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and outgoing edges to that node, and then labeling the new edges by taking the
composition of the labels of the corresponding incoming and outgoing edges in the
original graph; see [27], [26, Chap. 5]. Note that H3 is an offspring of G2 in this sense.
This intuition helps construct a proof. Let {V1, V2} be a GLF associated with G2.
It can be verified that V1 is a Lyapunov function associated with H3, and therefore,
ρ̂V ,H3 (A) ≤ ρ̂V ,G2 (A) . Similarly, if V ∈ V is a Lyapunov function associated with
H3, then one can check that {V1, V2 | V1 (x) = V (x) , V2 (x) = V (A2x)} is a GLF
associated with G2, and hence, ρ̂V ,H3 (A) ≥ ρ̂V ,G2 (A) .

Fig. 4.1. A diagram describing the relative performance of the path-complete graphs of Fig-
ure 2.3 together with their duals and label permutations. The graphs placed in the same circle always
give the same approximation of the JSR. A graph at the end of an arrow results in an approxima-
tion of the JSR that is always at least as good as that of the graph at the start of the arrow. When
there is no directed path between two graphs in this diagram, either graph can outperform the other
depending on the set of matrices A.

Remark 4.1. Proposition 4.2 (equation 4.1) establishes the equivalence of the
bounds obtained from the pair of dual graphs G1 and G′1. This, however, is not true
for graphs G2 and G2 as there exist examples for which

ρ̂V ,G2 (A) 6= ρ̂V ,G′2 (A) ,

ρ̂V ,G2
(A) 6= ρ̂V ,G′2

(A) .

The diagram in Figure 4.1 summarizes the results of this section. We remark that
no relations other than the ones given in Figure 4.1 can be established among these
path-complete graphs. Indeed, whenever there are no relations between two graphs
in Figure 4.1, we have examples of matrices A1, A2 (not presented here) for which one
graph can outperform the other.

Based on our (incomprehensive) numerical experiments, the graphs G1 and G′1
seem to statistically perform better than all other graphs in Figure 4.1. For example,
we ran experiments on a set of 100 random 5 × 5 matrices {A1, A2} with elements
uniformly distributed in [−1, 1] to compare the performance of graphs G1, G2 and G2.
If in each case we also consider the relabeled matrices (i.e., {A2, A1}) as our input,
then, out of the total 200 instances, graph G1 produced strictly better bounds on the
JSR 58 times, whereas graphs G2 and G2 each produced the best bound of the three
graphs only 23 times. (The numbers do not add up to 200 due to ties.) In addition to
this superior performance, the bound ρ̂V ,G1 ({A1, A2}) obtained by analysis via the
graph G1 is invariant under (i) permutation of the labels A1 and A2 (obvious), and (ii)
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transposing of A1 and A2 (Corollary 5.3). These are desirable properties which fail
to hold for G2 and G2 or their duals. Motivated by these observations, we generalize
G1 and its dual G′1 in the next section to the case of m matrices and m Lyapunov
functions and establish that they have certain appealing properties. We will prove
(cf. Theorem 5.4) that these graphs always perform better than a common Lyapunov
function in 2 steps (i.e., the graph H2 in Figure 2.3), whereas, this is not the case for
G2 and G2 or their duals.

5. Further analysis of a particular family of path-complete graphs. The
framework of path-complete graphs provides a multitude of semidefinite programming
based techniques for the approximation of the JSR whose performance vary with
computational cost. For instance, as we increase the number of nodes of the graph,
or the degree of the polynomial Lyapunov functions assigned to the nodes, or the
number of edges of the graph that instead of labels of length one have labels of higher
length, we obtain better results but at a higher computational cost. Many of these
approximation techniques are asymptotically tight, so in theory they can be used to
achieve any desired accuracy of approximation. For example,

ρ̂VSOS,2d(A)→ ρ(A) as 2d→∞,

where VSOS,2d denotes the class of sum of squares homogeneous polynomial Lyapunov
functions of degree 2d. (Recall our notation for bounds from Section 4.2.) It is
also true that a common quadratic Lyapunov function for products of higher length
achieves the true JSR asymptotically [19]; i.e.5,

t
√
ρ̂V2(At)→ ρ(A) as t→∞.

Nevertheless, it is desirable for practical purposes to identify a class of path-
complete graphs that provide a good tradeoff between quality of approximation and
computational cost. Towards this objective, we propose the use of m quadratic Lya-
punov functions assigned to the nodes of the De Bruijn graph6 of order 1 on m symbols
for the approximation of the JSR of a set of m matrices. This graph and its dual are
particular path-complete graphs with m nodes and m2 edges and will be the subject
of study in this section. If we denote the quadratic Lyapunov functions by xTPix,
then we are proposing the use of linear matrix inequalities

Pi � 0 ∀i = 1, . . . ,m,
γ2ATi PjAi � Pi ∀i, j = {1, . . . ,m}2 (5.1)

or the set of LMIs

Pi � 0 ∀i = 1, . . . ,m,
γ2ATi PiAi � Pj ∀i, j = {1, . . . ,m}2 (5.2)

for the approximation of the JSR of m matrices. Throughout this section, we denote
the path-complete graphs associated with (5.1) and (5.2) with G1 and G′1 respectively.

5By V2 we denote the class of quadratic homogeneous polynomials. We drop the superscript
“SOS” because nonnegative quadratic polynomials are always sums of squares.

6The De Bruijn graph of order k on m symbols is a labeled directed graph with mk nodes and
mk+1 edges whose nodes are indexed by all possible words of length k from the alphabet {1, . . . ,m},
and whose edges have labels of length one and are obtained by the following simple rule: There is
an edge labeled with the letter j (or for our purposes the matrix Aj) going from node i1i2 . . . ik−1ik
to node i2i3 . . . ikj, ∀i1 . . . ik ∈ {1, . . . ,m}k and ∀j ∈ {1, . . . ,m}.
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(The De Bruijn graph of order 1, by standard convention, is actually the graph G′1.)
Observe that G1 and G′1 are indeed dual graphs as they can be obtained from each
other by reversing the direction of the edges. For the case m = 2, our notation is
consistent with the previous section and these graphs are illustrated in Figure 3.1.
Also observe from Corollary 3.4 and Corollary 3.5 that the LMIs in (5.1) give rise
to max-of-quadratics Lyapunov functions, whereas the LMIs in (5.2) lead to min-of-
quadratics Lyapunov functions. We will prove in this section that the approximation
bound obtained by these LMIs (i.e., the reciprocal of the largest γ for which the
LMIs (5.1) or (5.2) hold) is always the same and lies within a multiplicative factor
of 1

4√n of the true JSR, where n is the dimension of the matrices. The relation
between the bound obtained by a pair of dual path-complete graphs has a connection
to transposition of the matrices in the set A. We explain this next.

5.1. Duality and invariance under transposition. In [11], [12], it is shown
that absolute asymptotic stability of the linear difference inclusion in (1.3) defined by
the matrices A = {A1, . . . , Am} is equivalent to absolute asymptotic stability of (1.3)
for the transposed matrices AT := {AT1 , . . . , ATm}. Note that this fact is immediately
seen from the definition of the JSR in (1.1), since ρ(A) = ρ(AT ). It is also well-known
that

ρ̂V2(A) = ρ̂V2(AT ).

Indeed, if xTPx is a common quadratic Lyapunov function for the set A, then it
is easy to show that xTP−1x is a common quadratic Lyapunov function for the set
AT . However, this nice property is not true for the bound obtained from some other
techniques. For instance, the next example shows that

ρ̂VSOS,4(A) 6= ρ̂VSOS,4(AT ), (5.3)

i.e., the upper bound obtained by searching for a common quartic SOS polynomial is
not invariant under transposition.

Example 5.1. Consider the set of matrices A = {A1, A2, A3, A4}, with

A1 =

 10 −6 −1
8 1 −16
−8 0 17

 , A2 =

 −5 9 −14
1 5 10
3 2 16

 , A3 =

 −14 1 0
−15 −8 −12
−1 −6 7

 , A4 =

 1 −8 −2
1 16 3

16 11 14

 .

We have ρ̂VSOS,4(A) = 21.411, but ρ̂VSOS,4(AT ) = 21.214 (up to three significant
digits).

Similarly, the bound obtained by non-convex inequalities proposed in [11] is not
invariant under transposing the matrices. For such methods, one would have to run
the numerical optimization twice—once for the set A and once for the set AT—
and then pick the better bound of the two. We will show that by contrast, the
bound obtained from the LMIs in (5.1) and (5.2) are invariant under transposing
the matrices. Before we do that, let us prove a general result which states that for
path-complete graphs with quadratic Lyapunov functions as nodes, transposing the
matrices has the same effect as dualizing the graph.

Theorem 5.1. Let G(N,E) be a path-complete graph, and let G′(N,E′) be its
dual graph. Then,

ρ̂V2,G(AT ) = ρ̂V2,G′(A). (5.4)
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Proof. For ease of notation, we prove the claim for the case where the edge labels
of G(N,E) have length one. The proof of the general case is identical. Pick an
arbitrary edge (i, j) ∈ E going from node i to node j and labeled with some matrix
Al ∈ A. By the application of the Schur complement we have

AlPjA
T
l � Pi ⇔

[
Pi Al
ATl P−1

j

]
� 0 ⇔ ATl P

−1
i Al � P−1

j .

But this already establishes the claim since we see that Pi and Pj satisfy the LMI
associated with edge (i, j) ∈ E when the matrix Al is transposed if and only if P−1

j

and P−1
i satisfy the LMI associated with edge (j, i) ∈ E′.

Corollary 5.2. ρ̂V2,G(A) = ρ̂V2,G(AT ) if and only if ρ̂V2,G(A) = ρ̂V2,G′(A).
Proof. This is an immediate consequence of the equality in (5.4).
It is an interesting question for future research to characterize the path-complete

graphs for which one has ρ̂V2,G(A) = ρ̂V2,G(AT ). For example, the above corollary
shows that this is obviously the case for any path-complete graph that is self-dual.
Let us show next that this is also the case for graphs G1 and G′1 despite the fact that
they are not self-dual.

Corollary 5.3. For the path-complete graphs G1 and G′1 associated with the
inequalities in (5.1) and (5.2), and for any class of continuous, homogeneous, and
positive definite functions V, we have

ρ̂V,G1(A) = ρ̂V,G′1(A). (5.5)

Moreover, if quadratic Lyapunov functions are assigned to the nodes of G1 and G′1,
then we have

ρ̂V2,G1(A) = ρ̂V2,G1(AT ) = ρ̂V2,G′1
(A) = ρ̂V2,G′1

(AT ). (5.6)

Proof. The proof of (5.5) is established by observing that the GLFs associated
with G1 and G′1 can be derived from one another via V ′i (Aix) = Vi(x). (Note that we
are relying here on the assumption that the matrices Ai are invertible, which as we
noted in Remark 2.1, is not a limiting assumption.) Since (5.5) in particular implies
that ρ̂V2,G1(A) = ρ̂V2,G′1

(A), we get the rest of the equalities in (5.6) immediately
from Corollary 5.2 and this finishes the proof. For concreteness, let us also prove the
leftmost equality in (5.6) directly. Let Pi, i = 1, . . . ,m, satisfy the LMIs in (5.1) for
the set of matrices A. Then, the reader can check that

P̃i = AiP
−1
i ATi , i = 1, . . . ,m,

satisfy the LMIs in (5.1) for the set of matrices AT .

5.2. An approximation guarantee. The next theorem gives a bound on the
quality of approximation of the estimate resulting from the LMIs in (5.1) and (5.2).
Since we have already shown that ρ̂V2,G1(A) = ρ̂V2,G′1

(A), it is enough to prove this
bound for the LMIs in (5.1).

Theorem 5.4. Let A be a set of m matrices in Rn×n with JSR ρ(A). Let
ρ̂V2,G1(A) be the bound on the JSR obtained from the LMIs in (5.1). Then,

1
4
√
n
ρ̂V2,G1(A) ≤ ρ(A) ≤ ρ̂V2,G1(A). (5.7)
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Proof. The right inequality is just a consequence of G1 being a path-complete
graph (Theorem 2.4). To prove the left inequality, consider the set A2 consisting of all
m2 products of length two. In view of (1.6), a common quadratic Lyapunov function
for this set satisfies the bound

1√
n
ρ̂V2(A2) ≤ ρ(A2).

It is easy to show that

ρ(A2) = ρ2(A).

See e.g. [19]. Therefore,

1
4
√
n
ρ̂

1
2
V2(A2) ≤ ρ(A). (5.8)

Now suppose for some γ > 0, xTQx is a common quadratic Lyapunov function for
the matrices in A2

γ ; i.e., it satisfies

Q � 0
γ4(AiAj)TQAiAj � Q ∀i, j = {1, . . . ,m}2.

Then, we leave it to the reader to check that

Pi = Q+ATi QAi, i = 1, . . . ,m

satisfy (5.1). Hence,

ρ̂V2,G1(A) ≤ ρ̂
1
2
V2(A2),

and in view of (5.8) the claim is established.
Note that the bound in (5.7) is independent of the number of matrices. Moreover,

we remark that this bound is tighter, in terms of its dependence on n, than the
known bounds for ρ̂VSOS,2d for any finite degree 2d of the sum of squares polynomials.
The reader can check that the bound in (1.7) goes asymptotically as 1√

n
. Numerical

evidence suggests that the performance of both the bound obtained by sum of squares
polynomials and the bound obtained by the LMIs in (5.1) and (5.2) is much better
than the provable bounds in (1.7) and in Theorem 5.4. The problem of improving
these bounds or establishing their tightness is open. It goes without saying that
instead of quadratic functions, we can associate sum of squares polynomials to the
nodes of G1 and obtain a more powerful technique for which we can also prove better
bounds with the exact same arguments.

5.3. Numerical examples. In the proof of Theorem 5.4, we essentially showed
that the bound obtained from LMIs in (5.1) is tighter than the bound obtained from
a common quadratic applied to products of length two. Our first example shows that
the LMIs in (5.1) can in fact do better than a common quadratic applied to products
of any finite length.

Example 5.2. Consider the set of matrices A = {A1, A2}, with

A1 =
[

1 0
1 0

]
, A2 =

[
0 1
0 −1

]
.
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This is a benchmark set of matrices that has been studied in [4], [24], [3] because it
gives the worst case approximation ratio of a common quadratic Lyapunov function.
Indeed, it is easy to show that ρ(A) = 1, but ρ̂V2(A) =

√
2. Moreover, the bound

obtained by a common quadratic function applied to the set At is

ρ̂
1
t

V2(At) = 2
1
2t ,

which for no finite value of t is exact. On the other hand, we show that the LMIs in
(5.1) give the exact bound; i.e., ρ̂V2,G1(A) = 1. Due to the simple structure of A1 and
A2, we can even give an analytical expression for our Lyapunov functions. Given any
ε > 0, the LMIs in (5.1) with γ = 1/ (1 + ε) are feasible with

P1 =
[
a 0
0 b

]
, P2 =

[
b 0
0 a

]
,

for any b > 0 and a > b/2ε.
Example 5.3. Consider the set of randomly generated matrices A = {A1, A2, A3},

with

A1 =


0 −2 2 2 4
0 0 −4 −1 −6
2 6 0 −8 0
−2 −2 −3 1 −3
−1 −5 2 6 −4

 , A2 =


−5 −2 −4 6 −1

1 1 4 3 −5
−2 3 −2 8 −1

0 8 −6 2 5
−1 −5 1 7 −4

 , A3 =


3 −8 −3 2 −4
−2 −2 −9 4 −1

2 2 −5 −8 6
−4 −1 4 −3 0

0 5 0 −3 5

 .

A lower bound on ρ(A) is ρ(A1A2A2)1/3 = 11.8015. The upper approximations
for ρ(A) that we computed for this example are as follows:

ρ̂V2(A) = 12.5683

ρ̂
1
2
V2(A2) = 11.9575

ρ̂V2,G1(A) = 11.8097
ρ̂VSOS,4(A) = 11.8015.

(5.9)

The bound ρ̂VSOS,4 matches the lower bound numerically and is most likely exact for
this example. This bound is slightly better than ρ̂V2,G1 . However, a simple calculation
shows that the semidefinite program resulting in ρ̂VSOS,4 has 25 more decision variables
than the one for ρ̂V2,G1 . Also, the running time of the algorithm leading to ρ̂VSOS,4

is noticeably larger than the one leading to ρ̂V2,G1 . In general, when the dimension of
the matrices is large, it can often be cost-effective to increase the number of the nodes
of our path-complete graphs but keep the degree of the polynomial Lyapunov functions
assigned to its nodes relatively low.

6. Converse Lyapunov theorems and approximation with arbitrary ac-
curacy. It is well-known that existence of a Lyapunov function which is the pointwise
maximum of quadratics is not only sufficient but also necessary for absolute asymp-
totic stability of (1.2) or (1.3); see e.g. [23]. This is perhaps an intuitive fact if we recall
that switched systems of type (1.2) and (1.3) always admit a convex Lyapunov func-
tion. Indeed, if we take “enough” quadratics, the convex and compact unit sublevel
set of a convex Lyapunov function can be approximated arbitrarily well with sublevel
sets of max-of-quadratics Lyapunov functions, which are intersections of ellipsoids.
This of course implies that the bound obtained from max-of-quadratics Lyapunov
functions is asymptotically tight for the approximation of the JSR. However, this
converse Lyapunov theorem does not answer two natural questions of importance in
practice: (i) How many quadratic functions do we need to achieve a desired quality
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of approximation? (ii) Can we search for these quadratic functions via semidefinite
programming or do we need to resort to non-convex formulations? Our next theorem
provides an answer to these questions.

Theorem 6.1. Let A be a set of m matrices in Rn×n. Given any positive integer
l, there exists an explicit path-complete graph G consisting of ml−1 nodes assigned
to quadratic Lyapunov functions and ml edges with labels of length one such that the
linear matrix inequalities associated with G imply existence of a max-of-quadratics
Lyapunov function and the resulting bound obtained from the LMIs satisfies

1
2l
√
n
ρ̂V2,G(A) ≤ ρ(A) ≤ ρ̂V2,G(A). (6.1)

Proof. Let us denote the ml−1 quadratic Lyapunov functions by xTPi1...il−1x,
where i1 . . . il−1 ∈ {1, . . . ,m}l−1 is a multi-index used for ease of reference to our
Lyapunov functions. We claim that we can let G be the graph dual to the De Bruijn
graph of order l − 1 on m symbols. The LMIs associated to this graph are given by

Pi1i2...il−2il−1 � 0 ∀i1 . . . il−1 ∈ {1, . . . ,m}l−1

ATj Pi1i2...il−2il−1Aj � Pi2i3...il−1j

∀i1 . . . il−1 ∈ {1, . . . ,m}l−1,
∀j ∈ {1, . . . ,m}.

(6.2)

The fact that G is path-complete and that the LMIs imply existence of a max-of-
quadratics Lyapunov function follows from Corollary 3.5. The proof that these LMIs
satisfy the bound in (6.1) is a straightforward generalization of the proof of Theo-
rem 5.4. By the same arguments we have

1
2l
√
n
ρ̂

1
l

V2(Al) ≤ ρ(A). (6.3)

Suppose xTQx is a common quadratic Lyapunov function for the matrices in Al; i.e.,
it satisfies

Q � 0
(Ai1 . . . Ail)

TQAi1 . . . Ail � Q ∀i1 . . . il ∈ {1, . . . ,m}l.

Then, it is easy to check that7

Pi1i2...il−2il−1 = Q+ATil−1
QAil−1

+(Ail−2Ail−1)TQ(Ail−2Ail−1) + · · ·
+(Ai1Ai2 . . . Ail−2Ail−1)TQ(Ai1Ai2 . . . Ail−2Ail−1),
i1 . . . il−1 ∈ {1, . . . ,m}l−1,

satisfy (6.2). Hence,

ρ̂V2,G(A) ≤ ρ̂
1
l

V2(Al),

and in view of (6.3) the claim is established.

7The construction of the Lyapunov function here is a special case of a general scheme for con-
structing Lyapunov functions that are monotonically decreasing from those that decrease only every
few steps; see [1, p. 58].
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Remark 6.1. A converse Lyapunov theorem identical to Theorem 6.1 can be
proven for the min-of-quadratics Lyapunov functions. The only difference is that the
LMIs in (6.2) would get replaced by the ones corresponding to the dual graph of G.

Our last theorem establishes approximation bounds for a family of path-complete
graphs with one single node but several edges labeled with words of different lengths.
Examples of such path-complete graphs include graph H3 in Figure 2.3 and graph H4

in Figure 3.2.
Theorem 6.2. Let A be a set of matrices in Rn×n. Let G̃ ({1} , E) be a path-

complete graph, and l be the length of the shortest word in Ã = {L (e) : e ∈ E} . Then
ρ̂V2 ,G̃ (A) provides an estimate of ρ (A) that satisfies

1
2l
√
n
ρ̂V2 ,G̃ (A) ≤ ρ(A) ≤ ρ̂V2 ,G̃ (A).

Proof. The right inequality is obvious, we prove the left one. Since both ρ̂V2 ,G̃ (A)
and ρ are homogeneous inA, we may assume, without loss of generality, that ρ̂V2 ,G̃ (A) =
1. Suppose for the sake of contradiction that

ρ(A) < 1/ 2l
√
n. (6.4)

We will show that this implies that ρ̂V2 ,G̃ (A) < 1. Towards this goal, let us first
prove that ρ(Ã) ≤ ρl(A). Indeed, if we had ρ(Ã) > ρl(A), then there would exist8

an integer i and a product Aσ ∈ Ãi such that

ρ
1
i (Aσ) > ρl(A). (6.5)

Since we also have Aσ ∈ Aj (for some j ≥ il), it follows that

ρ
1
j (Aσ) ≤ ρ(A). (6.6)

The inequality in (6.5) together with ρ(A) ≤ 1 gives

ρ
1
j (Aσ) > ρ

il
j (A) ≥ ρ(A).

But this contradicts (6.6). Hence we have shown

ρ(Ã) ≤ ρl(A).

Now, by our hypothesis (6.4) above, we have that ρ(Ã) < 1/
√
n. Therefore, there

exists ε > 0 such that ρ((1 + ε)Ã) < 1/
√
n. It then follows from (1.6) that there exists

a common quadratic Lyapunov function for (1+ε)Ã. Hence, ρ̂V2((1+ε)Ã) ≤ 1, which
immediately implies that ρ̂V2 ,G̃ (A) < 1, a contradiction.

A noteworthy immediate corollary of Theorem 6.2 (obtained by setting Ã =⋃k
t=rAt) is the following: If ρ(A) < 1

2r
√
n

, then there exists a quadratic Lyapunov
function that decreases simultaneously for all products of lengths r, r + 1, . . . , r + k,
for any desired value of k. Note that this fact is obvious for r = 1, but nonobvious
for r ≥ 2.

8Here, we are appealing to the well-known fact about the JSR of a general set of matrices B:

ρ(B) = lim supk→∞maxB∈Bk ρ
1
k (B). See e.g. [19, Chap. 1].
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7. Conclusions and future directions. We introduced the framework of path-
complete graph Lyapunov functions for the formulation of semidefinite programming
based algorithms for approximating the joint spectral radius (or equivalently estab-
lishing absolute asymptotic stability of an arbitrarily switched linear system). We
defined the notion of a path-complete graph, which was inspired by concepts in au-
tomata theory. We showed that every path-complete graph gives rise to a technique
for the approximation of the JSR. This provided a unifying framework that includes
many of the previously proposed techniques and also introduces new ones. (In fact,
all families of LMIs that we are aware of are particular cases of our method.) We
shall also emphasize that although we focused on switched linear systems because
of our interest in the JSR, the analysis technique of multiple Lyapunov functions on
path-complete graphs is clearly valid for switched nonlinear systems as well.

We compared the quality of the bound obtained from certain classes of path-
complete graphs, including all path-complete graphs with two nodes on an alphabet
of two matrices, and also a certain family of dual path-complete graphs. We proposed
a specific class of such graphs that appear to work particularly well in practice and
proved that the bound obtained from these graphs is invariant under transposition
of the matrices and is always within a multiplicative factor of 1/ 4

√
n from the true

JSR. Finally, we presented two converse Lyapunov theorems, one for the well-known
methods of minimum and maximum-of-quadratics Lyapunov functions, and the other
for a new class of methods that propose the use of a common quadratic Lyapunov
function for a set of words of possibly different lengths.

We believe the methodology proposed in this chapter should straightforwardly
extend to the case of constrained switching by requiring the graphs to have a path
not for all the words, but only the words allowed by the constraints on the switching.
A rigorous treatment of this idea is left for future work.

Another question for future research is to determine the complexity of checking
path-completeness of a given graph G(N,E). As we explained in Section 2, well-
known algorithms in automata theory (see e.g. [14, Chap. 4]) can check for path-
completeness by testing whether the associated finite automaton accepts all finite
words. When the automata are deterministic (i.e., when all outgoing edges from
every node have different labels), these algorithms are very efficient and have running
time of only O(|N |2). However, the problem of deciding whether a non-deterministic
finite automaton accepts all finite words is known to be PSPACE-complete [10, p.
265]. We are yet to investigate whether the same is true for automata arising from
path-complete graphs which have a little more structure. Vincent Blondel showed
that the problem is at least NP-hard (personal communication). Of course, the step
of checking path-completeness of a graph is done offline and prior to the run of our
algorithms for approximating the JSR. Therefore, while checking path-completeness
is in general difficult, the approximation algorithms that we presented indeed run
in polynomial time since they work with a fixed (a priori chosen) path-complete
graph. Nevertheless, the question on complexity of checking path-completeness is
interesting in many other settings, e.g., when deciding whether a given set of Lyapunov
inequalities imply stability of an arbitrarily switched system.

Some other interesting questions that can be explored in the future are the follow-
ing. What are some other classes of path-complete graphs that lead to new techniques
for proving stability of switched systems? How can we compare the performance of
different path-complete graphs in a systematic way? Given a set of matrices, a class
of Lyapunov functions, and a fixed size for the graph, can we efficiently come up with
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the least conservative topology of a path-complete graph? Within the framework that
we proposed, do all the Lyapunov inequalities that prove stability come from path-
complete graphs? What are the analogues of the results of this chapter for continuous
time switched systems? To what extent do the results carry over to the synthesis
(controller design) problem for switched systems? These questions and several others
show potential for much follow-up work on path-complete graph Lyapunov functions.
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