
Journal of Non-Newtonian Fluid Mechanics, 20 (1986) 209-226 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

209 

ON THE HIGH WEISSENBERG NUMBER PROBLEM 

ROLAND KEUNINGS 

Center for Advanced Materials, Lawrence Berkeley Laboratory, Uniuersity of California, 
Berkeley CA 94720 (U.S.A) 

(Received September 12, 1985; in revised form December 13, 1985) 

We address the outstanding problem affecting the numerical simulation of 
steady viscoelastic flows in complex geometries, namely the existence of a 
critical value of the Weissenberg number beyond which no discrete solutions 
can be obtained. The flow of Maxwell and Leonov-like fluids through a 
sudden contraction is selected as a test problem. Discrete solutions are 
obtained by means of a mixed Gale&in/Finite Element method. We find 
that limit points of the discrete solution families are responsible for the loss 
of convergence of the iterative scheme. Intensive mesh refinement shows, 
however, that these limit points are numerical artifacts. 

1. Introduction 

It has been recognized for several years that the numerical computation of 
non-trivial viscoelastic flows is a very challenging enterprise. Ever since the 
early attempts of the mid 1970’s, researchers have repeatedly met with an 
outstanding problem, namely the failure of their numerical schemes to 
provide solutions beyond some critical value of the Weissenberg number, a 
dimensionless group that determines the elastic character of the flow. Often 
referred to in the literature as the high Weissenberg number problem, this 
major difficulty has been the central theme of the previous Workshops on 
Numerical Simulation of Viscoelastic Flows (see the editorials [1,2] and the 
reviews [3,4]). 

Computing the flow of a viscoelastic fluid in a complex geometry requires 
the solution of a set of non-linear partial differential (or possibly integro-dif- 
ferential) equations consisting of the conservation laws and a specific con- 
stitutive model. For isothermal flows, the unknown fields are typically the 
velocity, pressure, and extra-stress fields. We shall refer to this set of 
equations and the possible solutions as the continuous problem and the 
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exact solutions, respectively. Exact solutions cannot be obtained in most 
cases, and one has to resort to numerical solution procedures. A discretiza- 
tion method is used to transform the continuous problem into a set of 
non-linear algebraic equations; * this set is solved iteratively in terms of 
unknown coefficients that define an approximation of an exact solution. We 
shall refer to this set of equations and the possible solutions as the discrete 
problem and the discrete solutions, respectively. 

It is relevant to wonder whether the high Weissenberg number problem 
would not reflect some qualitative property of the continuous problem. In 
order to illustrate this point, let us consider the test problem of steady 
two-dimensional axisymmetric flow of a Maxwell fluid through a sudden 
contraction. Here, the Weissenberg number We is defined as the product of 
the relaxation time of the material and the wall shear rate in the downstream 
fully developed flow. Suppose that we can calculate exact solutions. Starting 
from the Newtonian result (We = 0), we wish to compute an exact solution 
family parameterized by We. One of the following cases will apply **: 

(A) The solution family emanating from the Newtonian solution exists 
and is stable whatever the value of We. 

(B) The solution family becomes unstable beyond a critical value We,,,, 
although it continues to exist. 

(C) The solution family terminates abruptly at a critical value Wecrit. 
(D) The solution family has a limit point at a critical value Wecrit and 

turns back on itself towards decreasing We. 
Case A is very unlikely to occur, since we are dealing with a highly 
non-linear system. Case B would indicate that steady two-dimensional 
axisymmetric flows of a Maxwell fluid cannot be maintained beyond Wecrit 
in the present geometry. Case C would mean that flows of the assumed type 
do not exist for We > Wecrit, at least in the solution family emanating from 
the Newtonian solution. Case D would not necessarily imply the loss of flow 
fields of the assumed type beyond Wetit; indeed, another limit point might 
be encountered on the return solution branch, after which the solution 
family would turn again towards increasing We. Note that bifurcation to 
flows of a different type (three-dimensional steady, for example) might ensue 
at Wedi, in cases B, C, and D. 

Let us consider now a discrete version of the same ploblem. Assuming 
that we know which of the four cases A to D applies to the exact solution 
family, can we infer therefrom the corresponding qualitative behavior of the 
discrete solution family? There is no general answer to this question. A 

* Here we consider steady flows; only a few transient viscoelastic flows in complex geometries 
have been studied so far (see e.g. [4-71). 
** We assume that continuation from the Newtonian solution is possible, 
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conservative approach, which as we shall see turns out to be a realistic one in 
the context of viscoelastic flow computations, is to recognize that no 
guarantee exists that the qualitative properties stated in cases A to D will be 
transferred without alteration from the continuous level to the discrete level. 

These considerations are more than mathematical issues for purists. 
Indeed, recent work has clearly identified the occurrence of limit points in 
the discrete solution families of certain viscoelastic flow problems [8,9]. This 
result is highly significant in that it explains per se the loss of convergence of 
conventional iterative schemes beyond the limit point. We believe, however, 
that the critical question raised earlier has not been answered unequivocally: 
are these limit points numerical artifacts or do they translate an intrinsic 
property of the continuous problem? The purpose of the present paper is to 
address this issue. 

We describe hereafter new results for steady two-dimensional flows of 
Maxwell and Leonov-like fluids through a$ planar. sudden contraction. Both 
fluids are particular cases of the constitutive model developed by Giesekus 
[lo]. The numerical technique used in the present work is an extension of a 
mixed Gale&in/Finite Element technique referred to as algorithm MIX1 in 
our previous publications (e.g. see [ll]). We combine a Newton-Raphson 
iterative scheme with a first-order continuation procedure to compute dis- 
crete solution families parameterized by the Weissenberg number. 

The results show that limit points in the discrete solution families are 
responsible for the high Weissenberg number problem. This confirms the 
conclusions of [8,9] based on other flow problems and different numerical 
techniques. A very intensive mesh refinement study demonstrates, however, 
that these limit points are not intrinsic features of the continuous problem, 
but rather have a numerical origin. These conclusions are drawn with both 
Maxwell and Leonov-like fluids, although the actual behavior of the numeri- 
cal scheme is drastically different from one case to the other. Finally, a 
numerical experiment conducted with the Maxwell fluid shows the limita- 
tions of the present Galerkin formulation and points to the need for 
improved discretization procedures. Preliminary results of the present study 
have been described in [12]. 

2. Test problem : formulation and numerical method 

The constitutive model developed by Giesekus [lo] for modeling poly- 
meric solutions and melts can be written as 
(I= -PI+ Tp+ T,, 0) 

T, = 2psD. (3) 
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Here, u denotes the Cauchy stress tensor, which is decomposed into an 
indeterminate pressure term -PI, a polymer contribution TP, and a Newto- 
nian solvent contribution T,. Z denotes the unit tensor, D is the rate of 
strain tensor, and the superscript v stands for the upper-convected deriva- 
tive. The parameters + and p, are constant viscosity coefficients, X is a 
zero-shear relaxation time, and a denotes Giesekus’s mobility parameter 

(0 < a < 1). 
Limiting cases of the Giesekus model include the Newtonian fluid ((Y = X 

= 0), the upper-convected Maxwell fluid (a = ,as = 0), the Oldroyd-B fluid 
(a = 0), and the Leonov-like model ((u = 0.5). The latter duplicates the 
Leonov fluid [13] in simple shear flows only. The Giesekus model with (Y > 0 
predicts a shear-thinning viscosity and non-vanishing first and second nor- 
mal stress differences in viscometric flows, a finite extensional viscosity for 
all values of the extensional rate, and stress-overshoot in start-up flows 
[10,14]. 

We consider here steady isothermal flows, in which case the conservation 
laws reduce to 

v.o=O, (4) 

v -u=o, (5) 

where z, is the velocity vector. We have neglected convective and body force 
terms in the momentum equation (4), and have assumed that the fluid is 
incompressible. 

We solve the set of governing equations (l-5) by means of a mixed 
Galerkin/Pinite Element technique originally developed for the case of the 
Maxwell fluid [15,16] and further extended to the Oldroyd-B and Phan 
Thien-Tanner fluids [11,17,18]. Briefly, we define standard finite element 
approximations for the elastic stress TP, the velocity vector u, and the 
pressure p as follows 

Tp* = f T;qi, 
A4 

i)* = c ui#i, p* = 5 p’+. 
I’ (6) 

i=l i-l j-1 

where Ti, vi, pj are unknown nodal coefficients, and \c/i, $ are given shape 
functions. Application of the Gale&in method to the governing equations 
(l-5) yields 

-cI+!J~; [I+a;T;]T;+A&2p,D’>c0, 

< (V+i)‘; -p*I + 2j.~~D* -t T; > = f i, (8) 
< Gjj; V . U* 7 = 0, (9) 
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with 1 G i G A4 and 1 <j G N; fi denotes the generalized nodal force at 
node i, and the angular brackets < ; > stand for the L*- scalar product. We 
use 9-node quadrilateral and 6-node triangular isoparametric elements to 
discretize the flow domain; the shape functions for the velocity and extra- 
stress fields are P*-Co polynomials, while those for the pressure field are 
P’-Co polynomials. Implementation details are given in [4] for the particular 
cases of Maxwell and Oldroyd-El fluids. 

We consider in the present paper steady two-dimensional flows through a 
4 : 1 planar sudden contraction. The boundary conditions are: (i) fully 
developed velocity and elastic extra-stress fields at the upstream section, (ii) 
no-slip at the wall of the contraction, (iii) fully developed velocity field at the 
downstream section, and (iv) symmetry conditions at the plane of symmetry. 
Three dimensionless groups arise in the present application: the mobility 
coefficient (Y, the viscosity ratio p = p,/(pS + yp), and the Weissenberg 
number We = XV/H (here, V is the average velocity in the downstream slit 
of half-thickness H). 

Equations (7-9) constitute a set of non-linear algebraic equations depend- 
ing on the three parameters (Y, p, and We. For fixed values of (Y and /3, we 
compute a solution family parameterized by We by means of the 
Newton-Raphson iterative scheme, starting from the Newtonian solution 
(We = 0). We use a first-order continuation strategy to obtain initial esti- 
mates for the Newton iterations. This procedure produces quadratically 
convergent iterates as long as the Jacobian matrix remains regular and 
sufficiently small increments in We are used. When a limit point is reached, 
convergence of the non-linear iterations is lost, the Jacobian matrix becomes 
singular, and arc-length continuation techniques must be devised if one 
wishes to compute the return branch (see e.g. [S]). In the present work, we 
are mainly interested in the locution in the parameter space of the first limit 
point in the solution family emanating from the Newtonian solution. 

Figures 1 and 2 show the five finite element meshes used in the calcu- 
lations; characteristic data of these meshes are listed in Table 1. Meshes Ml, 
M2, and M3 have been used in [18] for the study of entry flows of a Phan 
Thien-Tanner fluid, while M4 and M5 have been specially designed for the 
purpose of the present mesh refinement analysis. In ‘the context of the 
numerical computation of complex viscoelastic flows, it is clearly unfeasible 
to adopt a strategy of uniform mesh refinement, in which every element of a 
mesh would be divided in four to generate the next more refined mesh. 
Instead, we have to limit ourselves to a series of meshes that are successively 
more refined in the critical regions of the flow domain only, namely in 
regions where the unknown fields develop large spatial gradients. For the 
case of the 4 : 1 contraction, the critical region is the neighborhood of the 
re-entrant corner. We have listed in Table 1, for each mesh, the transversal 
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Fig. 1. Meshes Ml through MS used in the calculations. A closer view near the re-entrant 
comer is shown in Fig. 2. 

size of the small element located near the corner. This quantity can be 
regarded as a measure of the degree of refinement of our five meshes. We 
have taken much care in the design of M5 so as to avoid sudden steps in 
element size or unfavorable element aspect ratios. M5 examplifies the notion 
of intensive local mesh refinement so conveniently afforded by finite ele- 
ments. 

Most of the computations have been conducted on a CRAY X-MP vector 
supercomputer. A few runs have been repeated for comparison purposes on 
an IBM 3081/K, a high speed scalar machine. Table 1 shows the CPU cost 
for a single Newton-Raphson iteration performed on the CRAY X-MP, as a 
function of the mesh. These figures correspond to a vectorized version of our 
code which does not exploit the multiprocessing environment of the CRAY 
X-MP. The speed ratio between the CRAY X-MP and the IBM 3081/K 
depends significantly upon the degree of vectorization achieved on a given 
mesh; it varies in the present application between 8 (with Ml) and 30 (with 
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Fig. 2. Mesh configuration near the re-entrant comer for meshes Ml through M5. A further 
magnification is given for M5. 

TABLE 1 

Characteristic data of the finite element meshes 

Mesh Degrees of Size of the 
freedom comer element 

CPU time (s) 

Ml 3139 0.25 3.7 
M2 5059 0.20 7.8 
M3 3046 0.05 3.8 
M4 11172 0.02 27.4 
M5 40974 0.005 167 
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M5). The total cost of the computations reported in Section 3 amounts to 20 
CPU hours on the CRAY X-MP, which would roughly translate into 20 days 
on the IBM 3081/K and a year on a VAX 11/780. We mention finally that 
the very large number of nodal unknowns with M5 calls for careful i/o 
procedures during the frontal elimination process. Indeed, the triangulated 
Jacobian matrix fills up about 96 Megabytes of storage in this case, to be 
written to and read from disk at each Newton-Raphson iteration. 

3. Numerical results 

We have computed viscoelastic solutions with meshes Ml to M5 for two 
particular cases of the Giesekus fluid: the upper-convected Maxwell fluid 
and the Leonov-like fluid. Before discussing these results, we briefly consider 
the numerical solutions obtained for a Newtonian fluid. 

3.1. Newtonian fluid: (Y = We = 0 

In the case of a Newtonian fluid, the numerical scheme described in 
Section 2 allows us to choose arbitrary values for the viscosity ratio p. We 
have used the values fl= 0 and 1, which yield the classical mixed and 
displacement formulations of the Stokes problem, respectively [4]. The com- 
putations do not present particular difficulties with either technique, save 
approximation problems near the re-entrant corner. More precisely, conver- 
gence of the numerical solutions with mesh refinement is observed every- 
where in the flow domain except in the small corner elements, where the 
continuous representation (6) for the unknown fields fails to reproduce the 
singular behavior of the exact solution accurately. 

We present in Table 2 numerical values for the Couette correction 6p,, 
defined by 

ape,= CAP - ~PfMTv~ 00) 

where Ap is the calculated pressure drop in the contraction, Apfd is the 

TABLE 2 

Couette correction for a Newtonian fluid 

Mesh Couette correction 

Displacement method Mixed method 

Ml 0.369 0.356 
M3 0.375 0.372 
MS 0.374 0.374 
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pressure loss which would be obtained on the basis of fully developed flow 
in the upstream and downstream channels, and TV is the fully developed wall 
shear stress in the downstream channel. Inspection of these values reveals the 
consistency of the results obtained with the mixed and displacement tech- 
niques as the mesh is refined. We also note that there is no need in the 
Newtonian case for a highly refined mesh like M5 to obtain an accurate 
estimate of a global quantity such as a pressure correction. 

3.2. Maxwell fluid: ct - /3 = 0 

With each of the five meshes Ml to M5, a family of solutions para- 
meterized by We has been computed up to a critical value we. Every 
attempt to obtain convergent iterates for We > I&? failed, whatever the 
magnitude of the increments of We that were used in the continuation 
procedure. In addition, the sign of the determinant of the Jacobian matrix 
oscillated during these unsuccessful iterations, which implies the singularity 
of the Jacobian matrix inthe neighborhood of I% These facts indicate the 
presence of a limit point of the discrete solution families. 

Our best available estimates of the location Weii, of this limit point in the 
parameter space are listed in Table 3 for the five meshes. We define Weii,.,, as 
I?% + Am/2, where AWe is the smallest increment of We used in the 
unsuccessful attempts to pursue the calculations beyond we. As seen from 
Table 3, A%? is less than 10e2 for the five meshes. It is tempting to 
conclude from the results obtained with meshes Ml to M4 that the values of 
We,i, are sufficiently stable to mesh refinement to establish the presence of 
a limit point of the continuous problem. The use of our most refined mesh, 
however, clearly does not substantiate such a conclusion. The critical value 
of We is in this case frustratingly low. Viewed from another perspective, this 
shows that very intensive mesh refinement does not solve the high Weis- 

TABLE 3 

Location of the limit point for a Maxwell fluid; the uncertainty is defined in the text by 
Ape/2 

Mesh 

Ml 
M2 
M3 
M4 
M5 

Location We*im 
of the limit point 

0.873 
0.565 
0.556 
0.588 
0.112 

Uncertainty 

O.OOG98 
0.0005 
0.0005 
0.0025 
0.0042 
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senberg number problem, at least in the present application and with the 
present numerical technique. 

We now turn to the analysis of the quality of our numerical solutions. 
First, we wish to emphasize that the streamlines are well-behaved (namely, 
oscillation-free) in all the simulations reported in this paper. The same 
statement does not generally hold for the velocity and extra-stress fields. 
Clearly, inspection of the streamlines alone is not sufficient to assess the 
quality of viscoelastic computations. 

With each of our five meshes, solutions for values of We sufficiently 
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Fig. 3. Velocity u, along the entry section of the small channel as a function of the distance 
from the re-entrant comer (mesh MS). (A) Newtonian solution obtained with the mixed 
technique, (B) solution for a Maxwell fluid at We = 0.1083. 
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Fig. 4. Extra-stress q,, along the entry section of the small channel (mesh M5). (A) 
Newtonian solution obtained with the mixed technique, (B) solution for a Maxwell fluid at 
We = 0.1083. 

smaller than the critical value are smooth. When We is incremented towards 
IJV~,~~, however, spurious oscillations appear in the velocity and extra-stress 
fields near the re-entrant comer. This is illustrated in Figs. 3 and 4, where 
dimensionless velocity and extra-stress profiles obtained with M5 are shown - 
along the entry section of the small channel. In this case, the critical value We 
is so small (0.1083) that contour lines of the velocity field hardly show any 
oscillations at all. The very close look near the re-entrant corner provided in 
Fig. 3b reveals, however, the presence of a spurious bump in the comer 
element. This significantly impairs the approximation of the spatial gradients 
of the velocity field near the comer. The extra-stress field calculated at % 
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exhibits violent oscillations generated, again, at the corner. These numerical 
difficulties experienced in flow regions where the velocity and stress fields 
develop large spatial gradients are typical of viscoelastic computations with 
presently available discretization methods [4,8]. 

3.3 Leonov-like fluid: a = I /2, p = I / 9 

We have performed the same mesh refinement analysis with the Leonov- 
like fluid. The numerical difficulties appeared to be much less pronounced in 
this case than with the Maxwell fluid. The presence of a purely viscous term 
in the discretized momentum equations (8) has a definitive stabilizing effect 
on the numerical results, and shear-thinning behavior tends to reduce stress 
levels in regions of high velocity gradients. This is consistent with our 
previous investigations [11,17,18]. 

Nevertheless, a limit point of the discrete equations (7-9) has again been 
encountered with all our five meshes. The location of this limit point is given 
in Table 4 as a function of the mesh. We see that, proceeding from Ml to 
M3, increasingly higher values of We can be reached. This behavior of the 
present numerical scheme is similar to what we have observed with the Phan 
Thien-Tanner fluid [18]. Based on these three sets of calculations, one might 
expect that further mesh refinement would displace the limit point ad 
infinitum and, consequently, solve the high Weissenberg number problem. 
The results obtained with M4 and M5 clearly fall short of these expectations, 
as seen from Table 4. 

As mentioned earlier, the quality of the numerical solutions obtained with 
the Leonov-like fluid is significantly better than for the case of the Maxwell 
fluid. We show in Fig. 5 velocity and extra-stress profiles along the entry 
section of the small channel, obtained with M3 at We = 4.54. The calculated 
velocity field is very smooth, even for this relatively high value of We. The 
extra-stress field, however, exhibits spurious oscillations close to the re-en- 

TABLE 4 

Location of the limit point for a Leonov-like fluid 

Mesh Location Weti, 
of the limit point 

Uncertainty 

Ml 0.805 0.005 
M2 1.05 0.05 
M3 4.545 0.005 
M4 0.408 0.0025 
M5 0.610 0.0031 
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Fig. 5. Velocity and elastic extra-stress profiles along the entry section of the small channel. 
Results obtained for a Leonov-like fluid (mesh M3, We = 4.54). 

trant corner. Note that the calculated stress levels are much lower than for 
the Maxwell fluid. 

The reader may wonder what the results look like in the present appli- 
cation once a discrete solution family has turned back on itself at a limit 
point. The answer can be found in Fig. 6, where we show solutions for the 
Leonov-like fluid obtained with M2. Figure 6a shows the results obtained at 
We = 0.025, the initial guess for the iterative scheme being the Newtonian 
solution. The calculated unknown fields are smooth, and for such a small 
value of We, are practically identical to the Newtonian results. On the other 
hand, Fig. 6b shows the solution obtained for the Same value of We, but on 
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Fig. 6. Multiple solutions obtained for a Leonov-like fluid (mesh M2). (A) contour lines for 
the velocity u, at We = 0.025; results obtained from the Newtonian solution, (B) solution for 
the same value of We, but obtained on the return branch. 

the return branch. This second numerical solution is wildly oscillating, and 
does not, we believe, bear any resemblance to a possible exact solution of the 
continuous problem. Ill-behaved viscoelastic solutions calculated on the 
return branch have also been documented in [8,9]. 

4. Discussion 

The results presented in Section 3 confirm the conclusions of [8,9] based 
on other flow problems and different numerical techniques: it is the presence 
of limit points in the discrete versions of viscoelastic flow problems that 
induces the loss of convergence of the iterative scheme beyond some critical 
value of the Weissenberg number. In other words, these limit points are 
responsible for the high Weissenberg number problem. Our very intensive 
mesh refinement analysis has shown, however, that the location of the limit 
point in the parameter space depends upon the degree of refinement of the 
mesh. We have observed that the quality of the discrete solutions de- 
teriorates when the Weissenberg number is progressively increased towards 
the critical value. Furthermore, the discrete solutions obtained on the return 
branch, after the solution family has turned back on itself at the limit point, 
are ill-behaved even at low values of We and appear to be entirely spurious. 
These observations lead us to conclude that the limit points we have 
observed at the discrete level are not intrinsic properties of the continuous 
problem, but rather are the consequence of excessive discretization errors. To 
phrase it differently, the high Weissenberg number problem experienced in 
the present work has a definite numerical origin. 

What makes flows through a sudden contraction so difficult to compute is 
undoubtedly the singular behavior of the velocity and stress fields at the 
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re-entrant corner. We do not know the nature of the singularity for com- 
monly used viscoelastic models. At any rate, the present discretization 

method clearly does not properly take the singularity of the unknown fields 
into account. The same is true, by the way, for all numerical schemes 

developed so far for solving viscoelastic problems. The lack of a proper 
treatment of the singularity has no dramatic effect in the Newtonian case, 

but it might explain why the use of a very fine mesh significantly reduced the 

range of values of We for which viscoelastic solutions could be obtained. 
An explanation for the numerical difficulties observed when We increases 

might be the failure of the Gale&in principle to produce stable approxima- 
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Fig. 7. Extra-stress Ty,, along the entry section of the small channel. Results obtained for a 
Maxwell fluid on the basis of a Newtonian velocity field (mesh M3). (A) We = 0, (B) 
We = 0.17. 
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Fig. 8. Same conditions as in Fig. 7. (A) We = 0.555, (B) We = 3.3. 

tions of the non-self-adjoint operators that characterize viscoelastic differen- 
tial models. This type of failure has been clearly identified in the context of 
convection dominated transport phenomena [19]. In order to examine this 
question, we have solved the discrete constitutive equation (7) alone, given a 
well-behaved velocity profile (the Newtonian solution obtained by the dis- 
placement method). For the particular case of the Maxwell fluid, the reduced 
problem is linear in the extra-stress field and can thus be solved for any 
values of We. Figures 7 and 8 show solution profiles obtained with M3 
along the entry section of the small channel. As in the coupled problem 
(7-9), results for low values of We are quite smooth, and only a very close 
look in the corner region reveals some discretization problems. The quality 
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of the solutions deteriorates, however, for higher values of We. The results 
obtained at We = 3.3 exhibit violent oscillations which propagate far away 
from the corner. Similar observations have been made with our most refined 
mesh M5 [12]. The outcome of this numerical experiment shows the limi- 
tations of the present Gale&in method and clearly points to the need for 
alternative discretization procedures. 

5. Conclusions 

The goal of this work was to identify the origin of the high Weissenberg 
number problem affecting the numerical solution of viscoelastic flows in 
complex geometries. Detailed Gale&in/Finite Element computations of the 
flow of Maxwell and Leonov-like fluids through a sudden contraction have 
shown that limit points of the discrete solution families are responsible for 
the loss of convergence of the iterative scheme beyond some value of the 
Weissenberg number. A critical examination of the numerical solutions 
together with a very intensive mesh refinement study have revealed, however, 
that these limit points are numerical artifacts caused by excessive approxi- 
mation errors. We conclude that the high Weissenberg number problem 
experienced in the present application has a definite numerical origin. 
Recent studies [20,21] support the extension of our conclusion to other 
combinations of flow problems, constitutive models and numerical tech- 
niques. 
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