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Summary 

We describe a finite element algorithm for computing steady-state strati- 
fied flows of two immiscible viscoelastic fluids in complex geometries. The 
method is applied to the analysis of co-current axisymmetric flow of both 
Newtonian and Oldroyd-B fluids through an abrupt expansion or contrac- 
tion. Good agreement is found between the numerical predictions and 
experimental data reported by Van de Griend and Denn in the companion 
paper preceding this one. Predictions at high elasticity levels beyond the 
range of the experimental data reveal important kinematical differences 
relative to the Newtonian case. 

1. Introduction 

The numerical analysis of co-current flow of immiscible viscous liquids in 
complex geometries is of great practical significance as it relates to polymer 
processing operations such as co-extrusion and co-injection molding. Finite 
element techniques for computing the flow of a single Newtonian fluid have 
been adapted recently to the case of multi-Newtonian fluid systems by 
Mitsoulis [l], Mavridis et al. [2], Binding et al. [3], and Dheur and Crochet 
[4]. The major difficulty in the Newtonian case lies in the determination of 
the interface separating adjacent fluid layers. Interface locations are un- 
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known a priori, which renders the mathematical problem non-linear even for 
Stokesian flow. The numerical approaches adopted in the literature draw 
heavily on well known algorithms proposed by Nickel1 et al. [5] and Kistler 
and Striven [6] for extrusion flow simulations. 

The present paper is devoted to the numerical simulation of steady-state 
co-flow of two immiscible viscoelastic fluids in complex geometries. Single- 
viscoelastic fluid flow computation has been the subject of much research 
work over the last ten years (see the reviews by Keunings [7] and Crochet 
[S]). Evident progress has been achieved recently in that a number of 
viscoelastic simulations are now possible at elasticity levels relevant to 
polymer processing operations. Difficult challenges remain, however, nota- 
bly in the numerical treatment of stress singularities and of the mathemati- 
cal change of type of the governing equations, as well as in the selection of 
appropriate constitutive models and boundary conditions. 

We describe here a finite element technique for computing the flow of two 
immiscible Oldroyd-B fluids. The method is an extension of a mixed 
Gale&in finite element technique designed for single fluid calculations (see 
e.g. Crochet and Keunings [9]). Appropriate finite elements are developed 
for handling the dynamic conditions at the interface, and both Picard [5] 
and Newton-Raphson [6] iterative schemes are considered for solving the 
set of discretized equations. We apply the numerical scheme to the predic- 
tion of co-current axisymmetric flow of both Newtonian and viscoelastic 
liquids through a sudden expansion or contraction. The results are compared 
to experimental observations reported by Van de Griend and Denn [lo] in a 
companion paper. Predictions at high elasticity levels reveal important 
kinematical differences relative to the Newtonian case. Similar predictions 
have been reported recently by Dheur and Crochet [ll] using a different 
numerical approach. 

2. Governing equations 

We consider steady-state co-flows of two immiscible Newtonian or 
viscoelastic fluids. In order to identify each fluid phase, we use the super- 
script (Y taking the values 1 and 2. Let 8* be the flow domain occupied by 
fluid a; the interface between the two fluids is denoted by I? (Fig. 1). The 
momentum and continuity equations for an incompressible fluid hold on SY, 
i.e. 

D# 
’ Dt 

- = v * ua + p”g, XEW, 
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Fig. 1. Schematic of co-flow through an abrupt expansion or contraction. 

Here, v” is the velocity vector, u a is the Cauchy stress tensor and pa is the 
density for fluid cr; the operator D/Dt is the material time derivative va - v. 

The experimental fluids used by Van de Griend and Denn [lo] were 
modeled either as Newtonian or Oldroyd-B liquids. In the Newtonian case, 
we have 

u O1 = -pV + 2$D”, (3) 

where pa is the pressure, qQL is the constant shear viscosity, I is the unit 
tensor and Da is the rate of strain tensor ~(vv* + ~8~). The constitutive 
equations for an Oldroyd-B fluid are given by 

u a = -poll + ra, (4 

(5) 

where A: is the polymer relaxation time, A: is the retardation time and the 
operator S/&t is the upper-convected time derivative, i.e. 

SF Dra LYT 
~=Dt-Vv *7a-ru*Vva. 

For numerical purposes, it is useful to rewrite the Oldroyd-B model (5) in 
the equivalent form [9]: 

72 a = 2r/;D*, (9) 

where 
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The partial stresses T? and T; are usually referred to as the polymer and 
solvent components of the extra-stress, respectively. 

We complete the mathematical formulation of co-flows with interface 
conditions. Let XV denote the boundary of flow domain Qa, oriented 
counterclockwise. At a point P of the interface P, we define the outward 
unit normal and the unit tangent to XY as nn and sa, respectively (Fig. 1). 
In steady-state problems, there is no fluid flow across the interface. This 
leads to the kinematic condition 

u” * ?la = 0, XElY. (11) 

Assuming there is no relative slip between the two fluids at the interface, we 
also have 

t? =u2, XE I-. 02) 

The contact force per unit area acting on fluid (Y at point P is given by 

ta=ca..a_ (13) 

Equilibrium of the interface in the absence of surface tension effects requires 
that 

tl = -t2, x E r. (14) 

It should be pointed out that condition (14) does not necessarily imply 
continuity of the extra-stress components and pressure across the interface. 
This important feature of co-flows is taken into account in the numerical 
scheme. 

3. Numerical method 

The numerical technique is based on a mixed Galerkin finite element 
discretization of the flow domain, interface and field variables. The entire 
flow domain Q = 0’ u Q2 is covered by a mesh of finite elements such that 
the initially guessed interface coincides with element sides. The unknown 
field variables r:, Us and pa are discretized by means of nodal values and 
finite element shape functions, i.e. 

i j k 

We substitute the approximations (15) into the governing equations (l), (2) 
and (8), and apply Gale&in’s principle in order to obtain algebraic equa- 
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tions for the nodal values. This standard procedure yields [7] 

a Doa - - 
’ Dt 

+i + v+;. (-pv + 2$D” + ~1”) 1 dQ* 

(16) 

(17) 

where n is the outward unit normal to the boundary i3Q. 
If fluid (Y is Newtonian, we set 7): = n” and X”p = $, = 0 in (16) and (17); this 
defines the classical velocity-pressure formulation of Newtonian flow. Alter- 
natively, we can set X”p = 0 and TJ*~ # 0, which defines a mixed method [7]. 
Both formulations have been used in the present work with virtually 
identical results. We use isoparametric nine-node quadrilateral and six-node 
triangular elements to discretize the flow domain Q. The interface l? is thus 
discretized by means of one-dimensional quadratic elements. We select 
second-order polynomials of class Co for the velocity and extra-stress shape 
functions. The continuity condition (12) is thus automatically satisfied. Since 
the extra-stress TV can be discontinuous across the interface, double nodal 
values of r1 are defined at each interfacial node. For pressure, we use 
first-order shape functions of class C.‘; this interpolation makes possible a 
pressure discontinuity at the interface. Note that the equilibrium condition 
(14) is satisfied in the Gale&in sense through (16). 

The computation of the interface location remains to be discussed. For 
the case of co-flow of two Newtonian fluids solved with the velocity-pres- 
sure formulation, we adopt the coupled approach developed by Kistler and 
Striven [6]. The location of interfacial nodes is determined by means of 
pre-defined spines and unknown nodal coefficients h,. Each spine is defined 
by a base point ~8 and a direction vector ei; the position of interfacial node 
Pi is then given by 

X( Pi) = & + h,e,. (19) 

Nodes that do not lie on the interface must also belong to a spine; the 
position vector of such a node P” is thus given by a relation of the form 

x( P”) = xf3 + C”hjej, (20) 
where C” is a constant. The displacement of the finite element nodes in the 
iterative process is thus anchored to that of the interface in a way that 
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preserves the initial topology of the elements layout. In order to compute the 
coefficient hi, we impose the kinematic condition (11) in the Gale&in sense, 
i.e. 

(21) 

where the &‘s are one-dimensional quadratic shape functions. Equations 
(16), (18) and (21) constitute in the Newtonian case a set of nonlinear 
algebraic equations for the velocity, pressure and interface nodal values. In 
compact form we have 

A($, pi, h,) = 0. (22) 
We solve (22) by means of Newton-Raphson’s iterative scheme. The compu- 
tation of the Jacobian matrix components aAi/ahj is very tedious but 
straightforward. 

The coupled approach described above can also be used when the 
co-flowing fluids are viscoelastic [ll]. Derivation of the corresponding 
Jacobian matrix is, however, very lengthy since the discretized constitutive 
equations (17) are now part of the final algebraic system. In this work, we 
have adopted a simpler Picard iterative scheme to update the location of the 
interface when at least one of the two fluids is viscoelastic. Equations 
(16)-(18) are solved on a fixed mesh for the nodal values of $, @ and p” 

by means of Newton’s method. The newly-computed velocity field is then 
used to integrate the kinematic condition (11) in its differential form [5]: 

u, dr - v, dz = 0, x E r. (23) 

where u, and u, are the radial and axial velocity components, respectively 
(Fig. 1). Finally, the internal nodes are displaced in the manner prescribed 
by (20) and the process is repeated until convergence. This simple scheme 
has been found to be quite satisfactory in our co-flow simulations. Its 
convergence behavior is linear and indeed similar to that found in extrusion 
flow calculations [5,9]. 

4. Flow parameters and boundary conditions 

The numerical technique has been used to simulate co-flow experiments 
conducted by Van de Griend and Denn [lo]. These authors studied co-cur- 
rent flows through axisymmetric sudden expansions or contractions involv- 
ing two immiscible Newtonian or viscoelastic fluids. Newtonian fluids used 
in the experiments were silicone oils and corn syrups, while the viscoelastic 
liquids were dilute solutions of polyacrylamide in corn syrup. The numerical 
simulations reported below correspond to the experiments carried out with 
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Fig. 2. A typical finite element mesh used in co-flow simulations. 

the silicone oils SF96-1000 and Viscasil 10000, and the polymer solutions 
C13PA-E and C130PA-E; these fluids are characterized in Table 1 of [lo]. 

A schematic of the flow geometry is given in Fig. 1 for the case of a 1: 4 
sudden expansion. In both Newtonian/ Newtonian and viscoelastic/ 
viscoelastic computations, the more viscous fluid flows in the core of the 
expansion while the less viscous fluid is in contact with the expansion wall. 
The boundary conditions are as follows: 

(i) fully-developed velocity and viscoelastic extra-stress profiles at the 
flow inlet, 

(ii) no-slip condition at the die wall, 
(iii) fully-developed flow conditions at the flow outlet, and 
(iv) symmetry conditions along the axis of symmetry. 
The boundary condition (iii) is specified in terms of radial velocity and 

axial traction in the Newtonian case; both radial and axial velocity compo- 
nents are specified in the viscoelastic case. The flow rate of each fluid phase 
(and thus the inlet interface location) is assigned the dimensional value set in 
the experiments [lo]. 

Figure 2 shows a typical finite element mesh used in the computations. 
Mesh refinement is needed close to the wall (i.e. in the less viscous fluid 
phase) to capture the larger stress and velocity gradients. The spines used in 
the interface calculation are lines of constant axial position. Typical Newto- 
nian simulations involved about 2500 degrees of freedom and required of 
the order of 10 seconds of CRAY X-MP CPU time per Newton iteration. 
The corresponding figures for viscoelastic runs are 5500 degrees of freedom 
and 20 CPU seconds (per Picard iteration). 

5. Results 

5.1 Newtonian/Newtonian 

Numerical results for the two silicone oils are compared to the experimen- 
tal observations in the companion paper [lo]. Inner to outer fluid flow rate 
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ratio is equal to 3.8. The large viscosity ratio between the two fluids (i.e. 8.5 
in the present case) gives rise to significant corner vortex activity in the less 
viscous fluid phase. Agreement between observed and computed streamlines 
is excellent. There is, however, a small but systematic deviation between 
measured and predicted axial velocity developments [lo]. A possible cause is 
a magnification of the slight asymmetry of the experimental flows resulting 
from sensitivity to small changes in the interface location. Indeed, one side 
of the streakline photograph taken by Van de Griend and Denn gives an 
estimated value of 0.56 for the dimensionless vortex reattachment length 
L/D (Fig. l), while the other side of the same photograph yields 0.68. 
Numerical experiments with successively refined meshes give a value of 0.60 
for L/D. 

5.2 Viscoelastic / Viscoelastic 

Viscoelastic computations were conducted to simulate the experiments of 
Van de Griend and Denn [lo] with the polyacrylamide solutions C13PA-E 
(outer fluid) and C130PA-E (inner fluid). The elasticity data for the outer 
fluid are A, = 0.15 s and X, = 0.09 s, while those for the inner fluid are 
X, = 1.6 s and X, = 1 s. The inner to outer fluid viscosity and flow rate 
ratios are 10 and 1.81, respectively. The experimental flow parameters are 
such that the outer fluid can be considered as Newtonian [lo]. Our numeri- 
cal results with the outer fluid taken as a Newtonian or an Oldroyd-B fluid 
produced virtually identical results. The Weissenberg number We, as de- 
fined by eqn. (5b) of [lo], is equal to 0.14 for both expansion and contrac- 
tion flows. This corresponds to a value of 3.7 if one uses the definition of 
We adopted by Dheur and Crochet [ll], i.e. 

We = A/,/R,, (24 

where R, is the radius of the inner fluid core in the small diameter tube and 
VI is the corresponding average velocity. Experimental observations re- 
ported in [lo] show only small viscoelastic effects on the flow kinematics for 
that value of We. The same is true of the present numerical simulations. 

Figure 3 shows a comparison between experimental and computed 
streamlines for the case of expansion flow. Agreement is excellent. A large 
corner vortex is present in the quasi-Newtonian fluid phase, due to the high 
viscosity ratio. Profiles of axial and radial velocity components obtained 
downstream of the expansion plane are given in Fig. 4. As in the Newtonian 
case, agreement between predicted and observed velocity profiles is good, 
even though there is a systematic deviation possibly due to the slight 
asymmetry of the experimental flow field. The predicted interface location is 
clearly marked in Fig. 4 by a discontinuity in the velocity gradient. Com- 
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Fig. 3. Co-flow of two viscoelastic fluids through an abrupt expansion; experimental flow 
field [lo] and streamlines computed with the Oldroyd-B model. The dashed line denotes the 
predicted interface. 
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Fig. 4. Axial and radial velocity components in co-flow through an abrupt expansion; 
experimental data points [lo] and numerical predictions based on the Oldroyd-B model. 
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Expansion Flow 
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0.26 
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0.8 

Fig. 5. Interface development in co-flow through an abrupt expansion; experimental data for 
both sides of the laser specklegram [lo] (+- + Left, 0 -0 Right) and numerical 
prediction based on the Oldroyd-B model (El- 0). The symbol h denotes the radial 
distance between the interface and the die wall. 

puted and observed interface developments in the expansion region compare 
rather well, as shown in Fig. 5. 

Identical conclusions can be drawn with our co-flow simulations of the 
same two fluids through an abrupt 4 : 1 contraction. Figure 6 shows a 
comparison between predicted and observed streamlines. There is only a 
small difference in the computed interface curvature between expansion and 
contraction flows at this elasticity level. The vortex‘strength, however, is 28% 
higher for the contraction flow. A comparison between observed and com- 
puted velocity components upstream of the contraction plane is given in Fig. 
7. Note that numerical results are shown at three slightly different axial 
positions such as to take into account the 4% experimental uncertainty in the 
axial position of the contraction plane. Interface development in the con- 
traction region is depicted in Fig. 8. Agreement with the experimental data 
is excellent. 

5.3 High elasticity results 

The above viscoelastic simulations were carried out further at elasticity 
levels beyond the range covered by the experiments of Van de Griend and 
Denn. The relaxation time A, of the inner fluid was increased from 1.6 s to 
15 s, all other material and flow parameters being kept constant. The highest 
value for the relaxation time corresponds to We = 1.2 with the definition 
used in [lo], or We = 34 with that of eqn. (24). Pursuing the computations to 
higher elasticity levels did not seem to be difficult but would have required 
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Fig. 6. Co-flow of two viscoelastic fluids through an abrupt contraction; experimental flow 
field [lo] and streamlines computed with the Oldroyd-B model. The dashed line denotes the 
predicted interface. 
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Fig. 7. Axial and radial velocity components in co-flow through an abrupt contraction; 
experimental data points [lo] and numerical predictions based on the Oldroyd-B model. 
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Fig. 8. Interface development in co-flow through and abrupt contraction; experimental data 
for both sides of the laser specklegram [lo] (+ -+ Left; O- 0 Right) and 
numerical predictions based on the Oldroyd-B model (l%----- 0). The symbol h denotes the 
radial distance between the interface and the die wall. 

the use of very long (and thus expensive to discretize) exit regions in order to 
allow the viscoelastic stress field to reach a fully-developed profile. Success 
of these highly elastic flow simulations is undoubtedly due to the presence of 
a Newtonian fluid phase adjacent to the expansion wall which renders the 
corner stress singularity both more physically reasonable and numerically 
tractable than in single-viscoelastic fluid flow calculations [7]. 

Figure 9 shows, in the case of expansion flow, the predicted interface 
locations and recirculation zones for A, = 1.6 s and 15 s. The interface 
reaches its fully-developed location more rapidly as elasticity of the inner 
fluid increases. This trend is accompanied by a significant decrease in vortex 
strength and reattachment length with increasing inner fluid elasticity. 
Predicted vortex size and strength are shown in Fig. 10 as a function of the 
inner fluid relaxation time. There is an initial increase at low elasticity levels, 
followed by a monotonic decrease beyond some critical value of the inner 
fluid relaxation time. Numerical experiments with various viscosity ratios 

Fig. 9. Influence of inner fluid elasticity on interface location and recirculation zone in 
co-flow through an abrupt expansion; numerical predictions based on the Oldroyd-B model. 
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Fig. 10. (a) Vortex strength and (b) reattachment length as a function of inner fluid elasticity 
in co-flow through & abrupt expansion; numerical predictions based on the Oldroyd-B 
model. 

indicate that existence of the initial increase in the vortex characteristics 
curves only occurs for sufficiently high viscosity ratios. Viscoelastic effects 
on co-flow kinematics similar to those described in this section have been 
computed recently by Dheur and Crochet [ll] with the upper-convected 
Maxwell fluid. 

6. Conclusions 

We have presented a finite element technique for solving the steady-state 
co-flow of two immiscible viscoelastic fluids in complex geometries. Numeri- 
cal predictions for both Newtonian and viscoelastic co-flows through abrupt 
expansions and contractions are in good agreement with the detailed experi- 
mental observations of Van de Griend and Denn [lo]. Results for a highly 
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elastic inner fluid lubricated by a virtually Newtonian outer layer reveal 
important kinematic differences relative to the Newtonian case. 
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