
E L S E V I E R  J. Non-Newtonian Fluid Mech., 68 (1997) 85-100 

On the Peterlin approximation for finitely extensible dumbbells 
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Abstract 

For the simplest non-linear kinetic theory of dilute polymeric solutions (FENE dumbbells), the pre-averaging 
Peterlin approximation used to derive a macroscopic constitutive equation (FENE-P) is shown to have a significant 
impact on the statistical and rheological properties of the model. This is illustrated in simulations of transient 
elongational flows by means of standard and stochastic numerical techniques. © 1997 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

Kinetic theory provides a rational framework for modelling the flow of  polymeric liquids [1,2]. 
It is particularly useful when it yields a constitutive equation for the polymer contribution to the 
stress tensor that can be used in analytical or computat ional  flow analyses [3]. Unfortunately,  it 
is often necessary to invoke closure approximations in order to derive a constitutive equation 
from a kinetic model. The impact of  these approximations on the rheological response can be 
significant, both qualitatively and quantitatively [2]. The closure problem also arises in microme- 
chanical theories for suspensions [4]. 

In the present paper, we address the closure problem for the most elementary non-linear 
kinetic model of  a dilute polymer solution, known as the Warner  Finitely Extensible Non-linear 
Elastic (FENE) dumbbell model [1]. The polymer solution is described as a suspension of  
non-interacting dumbbells in a Newtonian solvent. Each dumbbell consists of  two beads 
connected by a spring which models intramolecular interactions. As they move through the 
solvent, the beads experience Brownian motion, Stokes drag and the spring force. For  F E N E  
dumbbells, the spring force reads 

H 
F ~ -  Q, (1) 

1 -  Q2/Q~ 
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where H is a spring constant, Q is the vector connecting the two beads and Qo is the maximum 
spring length. In the limit of a linear Hookean spring (Q0 ~ oo), it is possible to derive without 
any closure approximation a constitutive equation for the polymer stress. Together with the 
Newtonian contribution of the solvent, this yields the classical Oldroyd B model [1]. For finite 
values of Qo, however, it is impossible to obtain a constitutive equation that is mathematically 
equivalent to the FENE theory. The self-consistent pre-averaging approximation due to Peterlin, 

H 
FC= 1 - (QZ>/Q2o Q' (2) 

yields the FENE-P constitutive equation [5]. In Eq. (2), the angular brackets denote the 
configuration space average <. > = j'. ¢(Q, t) dQ, where ~, is the distribution function. 

It is usually believed that the FENE-P constitutive equation derived from (2) is a good 
approximation of the FENE kinetic theory, particularly in elongational flows where the 
distribution of dumbbell configuration can be assumed to be highly localized [6]. The Perterlin 
approximation is indeed accurate in steady state extension [7,8]. In the present paper, however, 
we show that such is not the case in time-dependent elongational flows. 

Using standard and stochastic numerical techniques, we compare the behaviour of FENE and 
FENE-P dumbbells in various time dependent extensional flows, i.e. (i) one-dimensional start-up 
problem, (ii) one-dimensional problem with a time-dependent elongation rate and (iii) inception 
of uniaxial elongation. We also discuss results for the FENE-CR constitutive equation proposed 
by Chilcott and Rallison [9]. The latter is a close parent of the FENE-P equation, and it has 
been used in a number of recent numerical simulations of dilute solutions in complex flows (e.g. 
[9-12]). The FENE-CR equation is a modified FENE-P model designed to have a constant 
shear viscosity; it is expected to behave like the FENE-P model in elongation. 

The main points made in this paper are as follows. 
(i) The Peterlin approximation leading to the FENE-P constitutive equation radically changes 

the statistical properties of the underlying kinetic theory. The configuration distribution 
function for FENE-P dumbbells is indeed always Gaussian, and thus never localized, 
whatever the flow kinematics. 

(ii) A direct result of (i) is that nothing prevents individual FENE-P dumbbells from deforming 
beyond the maximum allowed length Qo of the FENE theory. It is only the average <Q2> 
that is bounded for FENE-P dumbbells. 

(iii) In transient elongational flows, FENE and FENE-P dumbbells exhibit significantly differ- 
ent dynamics of molecular extension and stress. Furthermore, the levels of stress achieved 
in these time-dependent flows can differ markedly as well. 

(iv) As expected, the FENE-P and FENE-CR constitutive equations yield almost identical 
results in time-dependent elongation. 

(v) The stochastic simulation approach is a mathematically sound and accurate alternative to 
classical numerical techniques for computing viscoelastic stresses. It allows the direct use of 
kinetic theory models in flow simulations, thereby avoiding the need for mathematical 
closure approximations whose impact on rheological behaviour can be significant. 

Although points (i) and (ii) have already been made in the literature of kinetic theory, notably 
by Ottinger [13], Wiest et al. [14], Wedgewood and Bird [15] and Wiest and Tanner [16], they 
appear to have remained unnoticed in the field of computational rheology. In our opinion, 
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points (i) and (ii) are important, as they imply that results obtained with approximate FENE 
constitutive models should be treated with caution, should one insist on interpreting them in the 
framework of the underlying kinetic theory. (Clearly, the approximate FENE constitutive 
equations are perfectly valid phenomenological models in the framework of continuum mechan- 
ics. They could in fact be more successful than (or as limited as) the original FENE kinetic 
theory in describing experimental data for polymer solutions. We do not address this important 
issue here). 

Points (iii) and (iv) have been made as well by Herrchen and Ottinger [7] in a paper submitted 
to this journal during the course of our work. (The results presented in Section 4.3 confirm and 
complement those described in Section 5.6 of [7].) Point (iii) is of obvious importance in the 
quantitative evaluation of the FENE kinetic theory. Note that a similar conclusion has been 
drawn by van den Brule [17] in his Brownian dynamics simulations of finitely extensible chains. 

Finally, point (v) has been beautifully illustrated by Ottinger [18] in his book on stochastic 
simulations. At this stage in the development of stochastic techniques for polymeric liquids, 
however, it remains important to show convincing experimental evidence of their feasibility and 
numerical accuracy. We hope the present work contributes to this. 

The paper is organized as follows. In Section 2, we summarize the FENE kinetic theory, as 
well as the FENE-P and FENE-CR constitutive equations. The stochastic simulation approach 
is described in Section 3, while the results are presented in Section 4. Their implications for the 
analysis of complex polymer flows are briefly discussed in the conclusions. 

2. Kinetic theory and constitutive equations 

The FENE kinetic theory involves a relaxation time 2u = ( / 4 H  and a dimensionless finite 
extensibility parameter b = HQ2o/kT, where ( is the friction coefficient, k is Boltzmann's constant 
and T is the absolute temperature. In the present paper, we specify b- -50  for the sake of 
illustration. This is within the range of values that are consistent with the underlying kinetic 
framework, as discussed in [1,7]. 

All subsequent equations are written in dimensionless form. The connector vector Q, the time 
t and the velocity gradient x are made dimensionless with ( kT /H)  1/2, "~H and 2~ ~ respectively. 
The magnitude of the dimensionless velocity gradient ~ can thus be viewed as a Weissenberg 
number. The polymer stress "['p is made dimensionless with nkT, where n is the dumbbell number 
density. Finally, it is convenient to define the following notation: 

1 
h(x) 1 - x / b "  (3) 

The diffusion equation that describes the evolution of the configuration distribution function 
¢/(Q, t) is then 

= -  ,eU - + ¢ '  (4) 

For FENE dumbbells, the dimensionless connector force F c is given by 
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FC(Q)  = h ( Q 2 ) Q ,  (5) 

while for FENE-P dumbbells 

FC(Q)  = h ( ( Q Z ) ) Q .  (6) 

The link between the statistical distribution of dumbbell configurations and the polymer stress 
Zp is provided by Kramers' expression 

tp  = ( Q F  ~) - ~, (7) 

where ~ is the unit tensor. Note that % = 0 at equilibrium. 
It is possible to derive from (4) an evolution equation for the covariance tensor A = ( Q Q ) :  

dA 
d---[ - t¢ " A - A . K t = ~ - ( Q F ~ ) .  (8) 

For FENE dumbbells, the last term of (8) induces a closure problem which makes it impossible 
to derive an equivalent constitutive equation for %. For FENE-P dumbbells, however, use of the 
Peterlin approximation (6) closes Eq. (8) as follows: 

dA 
d---7 - K-A - A.K* = ~ -- h [tr(A)]A. (9) 

Then Kramers' expression (7) becomes 

% = h [ t r ( A ) ] A  - O. (10) 

Eqs. (9) and (10) thus yield a macroscopic constitutive equation for the polymer stress of 
FENE-P dumbbells [5]. 

The Peterlin approximation has a profound impact on the statistical character of the 
distribution function. Indeed, for Gaussian initial conditions, the solution of the diffusion Eq. 
(4) for FENE-P dumbbells remains Gaussian with zero mean [13]. Within a normalization 
constant, the FENE-P distribution function is thus given by 

~(Q, t) ~ exp[ - ½Q "A- ' ( t )"  Q]. (11) 

We shall illustrate this important fact in Section 4.3. 
In the present paper, we compare FENE and FENE-P polymer stresses obtained for specified 

homogeneous kinematics to(t). For FENE dumbbells, one can first solve the diffusion equation 
(4) for ~,, and then use Kramers' expression (7). Alternatively, one can adopt the stochastic 
simulation approach, as explained in Section 3. For FENE-P dumbbells, the simplest way is to 
solve the evolution equation (9) for the covariance tensor, and then to use Kramers' expression 
(10) for the stress. The stochastic approach, however, can be applied as well. 

For completeness, we shall also discuss results obtained with the FENE-CR constitutive 
equation proposed by Chilcott and Rallison [9]. For the FENE-CR model, the evolution 
equation for the second moment A reads 

dA 
d--t- - K" A - A" tot = h [tr(A)](~ - A), (12) 
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while the polymer stress is given by 

rp = h[tr(A)](A - ~). (13) 

The FENE-CR model is intended to behave like the FENE-P fluid in elongational flow [9]. 

3. Stochastic simulation 

Solving the diffusion equation (4) is mathematically equivalent [18] to solving the following. 
It6 stochastic differential equation: 

dQt = {K(t). Q, - ½ FC(Qt)} dt + dW,, (14) 

where W, is the three-dimensional Wiener process (i.e. an idealization of Brownian motion). 
More precisely, Eq. (14) is an evolution equation for the Markov process Q,, whose probability 
density ~, is solution to the diffusion equation (4). 

In the stochastic simulation approach, one solves (14) numerically for a large number Nd of 
dumbbells, namely for many individual realizations Q~0 of the stochastic process (i = 1, 2 ..... 
Nd). Macroscopic observables of interest, such as the polymer stress Zp or the mean square 
polymer extension t r (QQ) ,  are then approximated by ensemble averages. For example, the 
instantaneous polymer stress •p(t) is given by 

vp(t) ~ ~ ,~, FC(Q~ i)) - ~, (15) 

where either the FENE (5) or the FENE-P (6) spring law is used to evaluate F c. Inspection of 
(6) shows that an additional ensemble average is necessary to compute F ~ for FENE-P 
dumbbells. The statistical error implied in (15) is of order Nd- 1/2. 

Numerical techniques for solving stochastic differential equations are reviewed in [18,19]. The 
simplest technique is known as the explicit Euler-Maruyama scheme. Assuming a discretization 
of the time domain [to, tmax] with a constant time step At, successive approximations of the 
stochastic process Q, are obtained using the recurrence 

Q,,+, = Q,/ + { K ( t / ) . Q ,  s - ½ F ~ ( Q , ) } A t  + AWj, (16) 

where the vector of Wiener increments A W/= I4:,/.+ 1 -  W,/has independent Gaussian compo- 
nents with zero mean and variance At. 

The Euler-Maruyama scheme is of weak order 1. We use it for both FENE and FENE-P 
dumbbells. Although very simple to implement, it can lead to difficulties with FENE dumbbells. 
Indeed, if the time step is too large, an individual dumbbell can see its length become larger than 
the upper bound b 1/2, at which point the evaluation of the connector force F c for the next time 
step leads to unphysical results. A remedy is either to reject such bad moves [18], at the price of 
decreased numerical accuracy, or to prevent them altogether by using sufficiently small time 
steps. 

For FENE-P dumbbells, the equivalent problem of bad moves leading to unphysical 
connector forces would be that the ensemble average of dumbbell lengths become larger than 
bl/Z at the end of a time step. We have never encountered this problem in our simulations of 
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FENE-P dumbbells with the Euler-Maruyama scheme. Of course, and we shall come back to 
this point, individual FENE-P dumbbells are allowed to have their length go beyond b ~/2. This 
is an obvious consequence of the Gaussian character of the FENE-P distribution function (11). 

A markedly better numerical technique for FENE dumbbells, proposed by Ottinger [18], is the 
following semi-implicit predictor-corrector scheme. The predictor is in fact the Euler-  
Maruyama method (16), which yields 0,/+ ~. The corrector reads 

[1 1 2 1 -- + zh(Q9 + 1) At]Qt,+ = D(Qg, Qg+ ,' AW/), (17) 

where the vector D is given by 

O = Q9 + ½Ix(t;+ 1)" (~9+ , + x(t/)'Q9 - ½h(Qt2/)Q9 ] At q- AWj. (18) 

The correction Qg+, is directed along the known vector D, while its length is determined from 
a cubic equation derived from (17). This equation can be shown [18] always to yield a unique 
solution in [0, b l/2[. The predictor-corrector scheme thus completely eliminates the numerical 
issue of bad moves for FENE dumbbells. Furthermore, it is of weak order 2. 

Finally, we note that the Gaussian increments A Wj can safely be replaced by other random 
variables that are faster to generate. In this work, we use uniformly distributed random 
increments whose moments are such as to keep unchanged the weak order of the numerical 
schemes [18]. 

4. Results 

4.1. One-dimensional start-up problem 

Let us first consider a one-dimensional problem derived from the general theory of Section 2. 
We retain only the x or xx component of all variables of interest, namely the velocity gradient 
Xxx(t) = Ou/Ox, the connector Qx and the polymer stress %.xx; all other components are assumed 
to vanish identically. Since the resulting problem is scalar, we shall drop all reference to the 
coordinate system, e.g. Q = Qx. Thus, the dumbbells are aligned with equal probability in the 
positive or negative x direction, and the only effect of the flow field is to change their length. 

We specify the following start-up kinematics 

K(t) = We H(t), (19) 

where We denotes the Weissenberg number, while H(t) is the Heaviside unit step function. It is 
assumed that the dumbbells are at equilibrium at t = 0, or equivalently that rp(0)= 0. The 
present problem is a one-dimensional cartoon of start-up of uniaxial elongation. We shall see 
that the corresponding stress response is very similar to that of the actual three-dimensional flow 
(Section 4.3). 

Let us focus on FENE dumbbells first. In view of (5), the one-dimensional version of the 
diffusion Eq. (4) is 

~ ,  ~ 1 ~ 2 ~  t 
- 8Q{[We H(t) - ½h(Q2)]Q~} + ~ OQ-----i, (20) 

St 
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with IQ[ < b 1/2 and ~,( + b 1/2, t) = 0. The equil ibrium distribution///eq(Q) oc h(Q2) -~'/2 is imposed 
as initial condi t ion [1]. The full equat ion (20) cannot  be solved analytically. At steady state, 
however, an exact solution can be found [1], i.e. 

~'~t(Q) ~ h(Q2) --h/2 exp(We Q2), (21) 

which will serve as a check of  the numerical  results. Finally, we can note that  ~,(-Q, t) = ~,(Q, t). 
We have solved the transient problem (20) numerically by means of  an explicit central finite 

difference scheme of  first-order accuracy in time and second-order accuracy in space [20]. 
Numerically converged results, obtained with At = 10-6 and AQ = b ~/2/500, are shown in Fig. 1 
for We = 10 and b = 50. The initial transient (until t ~ 0.1) exhibits a gradual  spread of  the 
distr ibution function. F rom t - -0 .1  on, a very sharp peak develops close to the max imum 
dumbbell  length bl/2~ 7.1. The evolution is particularly fast between t = 0.1 and 0.2. A steady 
state is reached at about  t = 1. Note  in Fig. 1 (b) the excellent agreement  between the steady-state 
numerical  result and the analytical solution (21). 

Having computed  the distribution function ¢,(Q, t), we can evaluate the relevant t ime-depen- 
dent  averages, namely the mean square extension (Q2)  and, th rough (5) and (7), the polymer  
stress rp = (h(Q2)Q 2) - 1. These configuration space integrals are computed  by means of  the 
trapezoidal rule. The results are shown in Fig. 2, as individual circular symbols. As seen in Fig. 
2(a), the mean square extension gradually increases f rom its equilibrium value of  1 to a steady 
state that  is near the b = 50 upper  limit. The corresponding stress growth is shown in Fig. 2(b). 

Let us now solve the same problem for F E N E  dumbbells,  but  with the stochastic approach.  
The stochastic differential equat ion equivalent to Eq. (20) is 

- ~h(Q,)]Q,} dt + dW,. (22) d Q , =  { [ W e l l ( t )  1 2 

Fig. 2 shows the results obtained with the semi-implicit scheme (17). The time step is At = 1 0  - 3  

and the number  of realizations is Nj  = 10  4. We note the excellent agreement  between the 
stochastic results and those obtained f rom the numerical  integration of  the diffusion equation.  
The very small oscillations in the stress curve are indicative of  stochastic noise, which can be 
reduced by increasing Nd. 
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Fig. 1. Distribution function for F E N E  dumbbells in unidimensional elongation. Finite difference solution of  start-up 
of  diffusion equation (20) for We = 10 and b = 50. © (on the Q axis), upper limit b~/2. For  t > 0.2 (right), the 
distribution function is localized near this limit. *, exact steady-state solution (2l). 
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Fig. 2. Temporal growth of mean square extension and polymer stress in start-up of unidimensional elongation 
(We = 10, b = 50): - - -, FENE-P constitutive equation; - - - ,  stochastic results for FENE dumbbells obtained with 
second-order scheme (17), using At = 10-3 and N d = 104; O ,  FENE results computed from finite difference solution 
of diffusion equation (20). 

Also shown in Fig. 2 is the behaviour of the FENE-P model under the same flow conditions. 
In this one-dimensional problem, the evolution equation (9) is scalar and the relevant unknown 
is A = (Q2). We solve this equation by means of a fifth-order Runge-Kut ta  technique with 
adaptive time stepping. In view of (10), the polymer stress is given by rp = h (A)A - 1. Although 
identical steady states are reached in this problem with the FENE and FENE-P models, the 
results clearly show that the Peterlin approximation has a significant impact on the transient 
phase. The mean square extension for the FENE-P model grows faster than for the FENE 
theory. On the contrary, the FENE-P polymer stress develops more slowly than FENE at earlier 
times, but then it grows quite sharply to the steady-state plateau. 

As an additional check of the numerical accuracy of the stochastic results for FENE 
dumbbells, we show in Fig. 3 the distribution of dumbbell configurations as a function of time. 
The normalized histograms are drawn directly from the stochastic simulation, while the 
continuous curves correspond to the finite difference solution of the diffusion equation (20). The 
agreement between the two approaches is excellent. 

Finally, Fig. 4 illustrates the reduction of statistical errors with an increasing number of 
realizations. We focus on the solution at t = 0.15, and compare again the stochastic and finite 
difference results. Although the stochastic results with Nd = 100 are poor, convergence with 
increasing No is observed. The corresponding averages are compared with their finite difference 
counterparts in Table 1. We also give estimates [18] of the statistical errors •stat = [Var(X)/Nd] 1/2, 
where X is either Q2 or h(Q2)Q z. Convergence of the stochastic results is consistent with the 
expected NE 1/2 behaviour. 

4.2. One-dimensional complex flow 

The above results show that the Peterlin approximation has a dramatic impact on the 
dynamics of molecular extension and stress. We illustrate this point further for a more complex 
one-dimensional flow. Instead of the simple start-up kinematics (19), we specify the following 
time-dependent velocity gradient: 
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x ( t ) = S 1 0 0 t ( 1 - t ) e x p ( - a t )  f o r 0 < t < l  (23) [o otherwise. 

Fig. 5 illustrates the evolution of the velocity gradient x(t), which can be viewed as an 
instantaneous Weissenberg number. We have /Cma x ~ 7.2 at t ~ 0.2. 

Fig. 6 shows the simulation results for the FENE, FENE-P and FENE-CR models, with 
b = 50. We specify the equilibrium state as initial condition. The FENE results have been 
computed by means of the semi-implicit stochastic scheme (17), with At = 10 -2 and Nd = 104. 

Another simulation with At = 10-3 and Nd = 105 produced identical results at the scale of the 
drawing. For the FENE-P and FENE-CR models, we have integrated the scalar moment 
equations derived from (9) and (12) with the kinematics (23), using an adaptive fifth-order 
Runge-Kut ta  technique. This yields the second moment A, which is used in the scalar versions 
of (10) and (13) to compute the polymer stress Tp. Inspection of Fig. 6 confirms the significant 
impact of the Peterlin approximation in transient problems. The very sharp growth dynamics of 
the FENE-P model allow it to reach high levels of mean square extension before the relaxation 
process takes over. As a result, the FENE-P stress increases quickly, to more than twice the 
FENE stress at t ~ 0.4, before decaying eventually to zero. For the FENE model, the mean 
square extension grows more slowly, and the large values of the instantaneous Weissenberg 
number are unable to deform the dumbbells significantly before relaxation sets in. As in the 
start-up flow of Section 4.1, the FENE stress develops faster than the FENE-P in the beginning 
of the growth process. Finally, Fig. 6 shows that the FENE-P and FENE-CR models behave 
identically. This is expected since the present one-dimensional problem is an extensional flow. 
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Fig. 3. Distribution function for F E N E  dumbbells in start-up of unidimensional elongation (We --- 10, b = 50): - - ,  
finite difference solution of diffusion equation (20); histograms, stochastic simulation with second-order scheme (17) 
using At = 10-  3 and No = 104. © (on the Q axis), upper limit b 1,,2; for t > 0.2, the distribution function is localized 
near this limit. 
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Results at t=0.15 
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Fig. 4. Distribution function at t = 0.15 for F E N E  dumbbells in start-up of  unidimensional elongation (We = 10, 
b = 50): - - ,  finite difference solution of  diffusion equation (20); histograms, stochastic simulation using the 
second-order scheme (17), with At = 10-3  and N d ranging between 100 and 105. © (on the Q axis), upper limit b i,.2 

Table 2 illustrates the numerical convergence of the first- and second-order stochastic 
techniques as the time step is decreased. Here, we focus on the mean square extension of FENE 
dumbbells computed at t = 0.45 with No = 104. The superiority of the second-order scheme is 
evident. From the No realizations of Q2, we find that the statistical error is about 0.17. As 
observed in Table 2, it is unproductive in this problem to use the second-order scheme with a 
time step smaller than 10 -2 (while keeping Nd unchanged), since the temporal discretization 
errors are then of the same magnitude as the statistical error. 

Table 1 
Mean square extension and polymer stress at t = 0.15 in start-up of  unidimensional elongation (We = 10, b = 50) 

N O Extension ~'stat Stress E s t a t  

102 13.4 1.5 79 27 
103 14.0 0.5 103 8 
104 14.3 0.2 102.7 3 
105 14.48 0.05 105.8 0.8 
F D  14.47 105.55 

Stochastic results for F E N E  dumbbells, obtained with second-order scheme (17) using A t =  I0 3 and increasing 
values of  N d. The corresponding statistical errors e~tat are estimated from the No realizations. The last line gives the 
reference results computed from the finite difference solution of  the diffusion equation (20). 
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Fig. 5. Velocity gradient (23) specified in unidimensional complex flow. 
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Fig. 6. Temporal  evolution of  mean square extension and polymer stress in unidimensional complex flow (b = 50): 
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dumbbells obtained with second-order scheme (17), using At = 10 -2  and N d = 104. At the scale of  this drawing, 
F E N E - P  and F E N E - C R  results are identical. 

Finally, we wish to point out that the levels of dumbbell extension and polymer stress reached 
in this time-dependent problem are smaller than what would be obtained under steady state 
conditions for the same values of the instantaneous Weissenberg number. Consider for example 

st obtained for the FENE-P model, and let us compute what would be the steady state stress V p 

Table 2 
Mean square extension of  F E N E  dumbbells in unidimensional complex flow (b = 50) 

At First order Second order 

10 -2 27.0 28.9 
10 -3 28.6 29.0 
10 4 28.9 29.1 
10 -5 28.9 29.2 
10 -6  29.1 - -  

Results at t = 0.45, obtained by means of  the first- and second-order schemes (16) and (17) respectively (Na = 104). 



96 R. Keunings / J. Non-Newtonian Fluid Mech. 68 (1997) 85-100 

50 

c 

"~ 40 
e -  

~ ao 

~.2o 
rJ) 
c." 

FENE-P/CR 

100 

FENE-P/CR 

~ 80 

60 

4°  

C 

~ 20 

oJ 
o 

FENE 

0 1 2 3 1 2 3 
Time Time 

Fig. 7. Temporal evolution of mean square extension and polymer contribution to the elongational viscosity in 
start-up of uniaxial elongation (We = 3, b = 50): ---, FENE-P constitutive equation; - • -, FENE-CR constitutive 
equation; , stochastic results for FENE dumbbells obtained with second-order scheme (17), using At = l 0  - 2  and 
N d = 104; , stochastic results for FENE-P dumbbells obtained with first-order scheme (16), using At = 10 - 2  and 
No= 104 . 

s t  670, which is about 1.5 times larger than the maximum FENE-P  stress Kmax = 7.2. We find Tp = 
computed in the transient experiment (Fig. 6). 

4.3. Start-up of uniaxial elongation 

Lastly, we consider the three-dimensional flow problem of  inception of  uniaxial elongation. In 
Cartesian coordinates, the specified kinematics are 

r ( t )  = We H(t) diag( - ½, - l, 1), (24) 

and the polymer stress has the form -Cp = diag(rp .... Zp,yy, "Cp,zz ) with "gp,xx = "Cp,yy. At t---O, we 
specify the equilibrium state. The observables of  interest are the mean square extension, t r ( Q Q )  
and the dimensionless polymer contribution to the t ime-dependent elongational viscosity r7 ÷ -- 

- rp,xx)/We. 
The simulations are for We = 3 and b = 50. The F E N E  results have been computed by means 

of  the semi-implicit stochastic scheme (17), with At = 10 -2 and Nd = 104. Identical results have 
been obtained with the E u l e r - M a r u y a m a  technique, but at the expense of  a smaller time step 
(i.e. At = 10-3) so as to avoid the issue of  bad moves (Section 3). 

For  the FENE-P  and FENE-CR models, we have integrated the moment  equations (9) and 
(12) with the kinematics (24), using an adaptive fifth-order R u n g e - K u t t a  technique. This yields 
the second moment  ,4, which is used in (10) and (13) to compute the elongational viscosity. As 
yet another  check of  the stochastic approach, we have also solved the stochastic differential 
equation (14) with the FENE-P  spring law (6). This is achieved using the E u l e r - M a r u y a m a  
scheme with At = l0 -2 and No = 104. 

As seen in Fig. 7, the results for the F E N E  and FENE-P  models are qualitatively identical to 
those obtained in Section 4.1 for the one-dimensional start-up flow (cf. Fig. 2). In particular, the 
Peterlin approximation greatly alters the dynamics of  the mean square extension and of  the 
polymer stress. Fig. 7 also shows that the FENE-P and FENE-CR models behave very similarly, 
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Fig. 8. Distribution of dumbbell  length in start-up of uniaxial elongation (We = 3, b = 50): FENE dumbbells, 
stochastic simulation with second-order scheme (17); FENE-P dumbbells, stochastic simulation with first-order 
scheme (16); both simulations use At = 10 -2  and Nd = 104. Results shown in the form of raw (i.e. unnormalized) 
histograms of dumbbell  length. The vertical axis is the number  of events in each bin, while the horizontal axis is the 
dumbbell  length. © (on horizontal axis), FENE limit b 1/2. Note that many individual FENE-P dumbbells have passed 
this limit. The steady state is essentially achieved at t = 3 (see also Figs. 9 and 10). 

which is expected in elongational flow. Finally, we note that the above results confirm the recent 
computations of Herrchen and Ottinger [7], as can be seen by comparing their Fig. 1 l(b) with 
7(b). 
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Fig. 9. Steady state distribution of length for F E N E  dumbbells in uniaxial elongation (We = 3, b = 50): - - ,  
computed from exact solution (25); - - -, equilibrium distribution; normalized histograms (right), stochastic simulation 
with second-order scheme (17) and N o = 104; © (on horizontal axis), upper limit b ~/z. 
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scheme (16), with Nd = 103 and 105. (3 (on horizontal axis), FENE limit b 1/2. Note that many individual FENE-P 
dumbbells have passed this limit. 

Additional insight into the Peterlin approximation can be gained from Fig. 8, where we 
compare the evolution of the radial distribution (i.e. the distribution of dumbbell length) for the 
FENE and FENE-P models. These results are readily obtained from the stochastic simulations, 
in the form of histograms of the Na realizations of (Q2)m. Starting from the equilibrium state, 
the radial distribution for the FENE dumbbells evolves in time towards a highly extended steady 
state, localized near the b 1/2 ,,~ 7.1 upper limit. The FENE-P dumbbells behave in a very different 
manner. Indeed, many individual dumbbells do cross the b 1/2 limit as they are deformed by the 
flow field. Moreover, the steady-state radial distribution is drastically different from that 
obtained with the FENE dumbbells. These observations are consistent with the Gaussian 
character (11) of the FENE-P distribution function. 

An independent check of the accuracy of the FENE results is provided by the available 
analytical solution [1] for the steady-state configuration distribution function. In terms of the 
spherical coordinates (Q, 0, ~b), we have 

Cst(Q) oc h(Q 2) - b/2 exp[ -- ½ We Q2(1 - 3 cos20)]. (25) 

The exact result for the FENE steady-state radial distribution is then obtained by contracting 
(25): 

rad Q2 f0" Cs, (Q) oc ¢~t sin 0 d0. (26) 

We compute this integral by the trapezoidal rule. The analytical solution (26) is compared with 
the stochastic simulation result in Fig. 9. The agreement is excellent. 

Finally, the FENE-P stochastic results can also be checked as follows. Since the FENE-P 
distribution function ~,(Q, t) is Gaussian with zero mean, it can be fully determined through (11) 
once its second moment A(t) is known. We compute the latter by means of  an adaptive 
fifth-order Runge-Kutta integration of  the moment equation (9). We thus obtain the distribu- 
tion function, which is then contracted as in (26). This yields the transient FENE-P radial 
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distr ibution function, which can be compared  with the stochastic results. Excellent agreement  is 
found th roughou t  the transient process. For  example, we show in Fig. 10 the compar ison at 
t = 3 for two stochastic simulations with Nd = 103 and 105; the time step is At = 10 - 2 .  The good 
accord for Nd = 103 is notable; statistical errors are significantly reduced in the refined simula- 
t ion with N d = 10 s. 

5. Conclusions 

Our main conclusions having already been given in the in t roductory section, we only wish to 
add that  the present results, obtained for specified homogeneous  kinematics,  are relevant to 
more  complex flow situations. Indeed, in a complex flow field, the polymer  molecules experience 
a t ime-dependent  velocity gradient (at least in the Lagrangian sense) as they are convected along 
the flow trajectories. We thus expect drastic differences in simulations of  complex flows between 
the F E N E  kinetic theory and its approximate  FENE-P  version. This is indeed what  is observed 
in recent simulations of  F E N E  dumbbells  in flows between eccentric rotat ing cylinders [21,22]. 

As discussed by Ottinger [18], the stochastic simulation approach  can be applied to more  
sophisticated kinetic models  of  polymer  solutions and melts. It is hoped  that  the direct use of  
kinetic models  in flow simulations, made  possible by the stochastic approach,  will bring more  
insight into the theological behaviour of  polymeric liquids. 
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