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Abstract

We address the closure problem for the most elementary non-linear kinetic model of a dilute polymeric solution,
known as the Warner finitely extensible non-linear elastic (FENE) dumbbell model. In view of the closure problem,
the FENE theory cannot be translated into an equivalent macroscopic constitutive equation for the polymer
contribution to the stress tensor. We present a general framework for developing closure approximations, based on
the concept of canonical distribution subspace first introduced by Verleye and Dupret (in: Developments in
Non-Newtonian Flows, AMD-Vol. 175, ASME, New York, 1993, 139–163) in the context of fiber suspension
modeling. The classical consistent pre-averaging approximation due to Peterlin (that yields the FENE-P constitutive
equation) is obtained from the canonical approach as the simplest first-order closure model involving only the second
moment of the configuration distribution function. A second-order closure model (referred to as FENE-P2) is derived,
which involves the second and fourth moments of the distribution function. We show that the FENE-P2 model
behaves like the FENE-P equation with a reduced extensibility parameter. In this respect, it is a close relative of the
FENE-P* equation proposed by van Heel et al. (J. Non-Newton. Fluid Mech., 1998, in press). Inspired by stochastic
simulation results for the FENE theory, we propose a more sophisticated second-order closure model (referred to as
FENE-L). The rheological response of the FENE-P, FENE-P2 and FENE-L closure models are compared to that of
the FENE theory in various time-dependent, one-dimensional elongational flows. Overall, the FENE-L model is
found to provide the best agreement with the FENE results. In particular, it is capable of reproducing the hysteretic
behaviour of the FENE model, also observed in recent experiments involving polystyrene-based Boger fluids (Doyle
et al., J. Non-Newton. Fluid Mech., submitted), in stress versus birefringence curves during startup of flow and
subsequent relaxation. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The continuum mechanical [4] and kinetic [5] approaches to the analysis of flowing polymers
are best viewed as complementary. Ideally, one would wish to use in complex flow simulations
a macroscopic constitutive equation derived from a kinetic theory model, the goal being to take
account in a detailed (though coarse-grain) manner of the flow-induced configurations of the
polymer molecules. Unfortunately, only the very crudest kinetic models yield equivalent
macroscopic constitutive equations. With more sophisticated kinetic theories, constitutive equa-
tions can in some cases be derived using so-called closure approximations. What physics are lost
in the approximation process remains for the most part an open issue, especially in complex
flows. In particular, recent work [6,7] on simple kinetic theories for dilute polymeric solutions
(the Warner finitely extensible non-linear elastic (FENE) dumbbell model), motivated by
experimental observations for Boger fluids (e.g. [3]), showed that classical closure approxima-
tions can have a significant impact on the statistical and rheological properties of the resulting
model. This important observation motivates the development of micro–macro numerical
techniques that use the kinetic theory model as stress calculator instead of the approximate
constitutive equation, as pioneered by Laso and O8 ttinger with their CONNFFESSIT method
[8]. Although accurate micro–macro techniques for complex flow simulations are becoming
available [9–12], there is still a need for the much less computing-intensive macroscopic
constitutive equations, especially in engineering design work.

In the present paper, we propose a general framework for addressing the closure problem. For
illustrative purposes, we focus on the simplest non-linear kinetic theory of a dilute polymeric
solution, known as the FENE dumbbell model [5]. The fluid is modelled as a suspension of
non-interacting dumbbells in a Newtonian solvent. Each dumbbell consists of two beads
connected by a non-linear spring and it is convected by the macroscopic flow. Brownian forces,
Stokes drag and the spring force contribute to the deformation and orientation of the
dumbbells. In the present paper, we focus on one-dimensional transient elongational flows.
Indeed, as shown by Keunings [6], a simple one-dimensional version of the FENE theory
captures qualitatively and quantitatively the elongational behaviour of the actual three-dimen-
sional theory. All theoretical developments are thus given for the one-dimensional case.
Extension to three-dimensional kinematics (elongation, shear and complex flows) is documented
in a companion paper [13].

With the notations of Section 4.1 of [6], the one-dimensional FENE theory is obtained by
retaining only the x or xx component of all variables of interest, i.e. the velocity gradient
kxx(t)=(u/(x, where u is the x-component of the velocity vector, the connector Qx and the
polymer stress tp,xx ; all other components are assumed to vanish identically. The dumbbells are
thus aligned with equal probability in the positive or negative x direction, while the effect of the
flow is to modify their length. The resulting mathematical problem being scalar, we shall drop
all reference to the coordinate system, e.g. k=kxx. In the usual dimensionless form [6,7], the
Warner non-linear spring force then reads

F(Q)=
Q

1−Q2/b
, (1)
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where b is the dimensionless finite extensibility parameter and Q belongs to [−
b, 
b ]. The
space C of admissible configuration distribution functions is therefore made of functions c that
are even in Q, always positive and with a unit integral over the configuration space [−
b, 
b ].

The classical Kramers expression [5] provides the polymer contribution to the stress, i.e.

tp=�QF(Q)�−1, (2)

where the angular brackets denote the configuration space average

� ·�=
&

·c dQ. (3)

Finally, the diffusion equation that describes the evolution of the configuration distribution
function c reads [5]

Dc

Dt
=
(2

(Q2

!1
2

c
"
−
(

(Q
{k(t)Qc}+

(

(Q
!1

2
F(Q)c

"
. (4)

It is only in the limit of a linear Hookean spring (b��) that one can derive without any
closure approximation a macroscopic equation for the polymer stress. The self-consistent
pre-averaging approximation due to Peterlin,

F(Q)=
Q

1−�Q2�/b
, (5)

yields the FENE-P constitutive equation [14]. It has been shown recently [6,7] that the Peterlin
approximation has a significant impact, i.e. that the FENE-P model is a poor approximation of
the FENE kinetic theory, especially in transient flows. The goal of the present work is to provide
a general framework within which improved closure approximations can be derived.

The paper is organized as follows. In Section 2, we re-visit the stochastic simulation results
obtained by Keunings [6] for a complex time-dependent elongational flow. We show that the
FENE theory exhibits hysteretic behaviour in the stress versus molecular extension curve, as
seen in recent experimental work with Boger fluids and in the independent theoretical work by
Doyle et al. [3]. It is also found that the FENE-P model is not a good approximation of the
FENE theory and that it is unable to show hysteretic behaviour. These results are discussed in
terms of the evolution of the FENE distribution function, which is readily available from the
stochastic simulations. A general framework for addressing the closure problem is given in
Section 3, inspired by the work of Verleye and Dupret [1] in the context of fiber suspension
modeling. Within this framework, we derive in Section 4 first and second-order closure
approximations that involve respectively the first or first two even moments of the distribution
function. The first-order closure is in fact the FENE-P model. The proposed second-order
FENE-P2 model is found to behave like the FENE-P equation with a reduced extensibility
parameter. Finally, the second-order FENE-L closure is proposed on the basis of the stochastic
simulation results described in Section 2. In Section 5, we compare the predictions of the
FENE-P, FENE-P2 and FENE-L closure models to those of the FENE kinetic theory in several
time-dependent elongational flows. Overall, the FENE-L closure is the one that provides the
best agreement with the FENE theory. In particular, it is able to reproduce the hysteretic
behaviour in the stress versus birefringence curves. Limitations and possible improvements of
the FENE-L closure are discussed in Section 6.
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2. Hysteretic behaviour

The FENE-P constitutive equation is a good approximation of the FENE theory in
steady-state elongational flows. However, in time-dependent flows, the FENE and FENE-P
models show significantly different dynamics of molecular extension and stress [6,7]. Indeed, let
us consider the one-dimensional complex flow kinematics defined in [6] as

k(t)=
!100t(1− t) exp(−4t)

0
for 05 t51,
otherwise.

(6)

Fig. 1 illustrates the significant impact of the Peterlin approximation on the results for the
polymer stress and molecular extension [6]. We found it useful to analyze the results of Fig. 1
in a different manner, namely by plotting the polymer stress versus the mean square molecular
extension. The resulting curves, parameterized by the temporal variable, are shown in Fig. 2.
The main result here is that the FENE kinetic theory shows hysteretic behaviour, in qualitative
agreement with recent experimental data for dilute polymer solutions [3]. The FENE-P model,
however, is unable to predict the hysteresis in view of the fact that Kramers’ expression (Eq. (2))
together with the Peterlin approximation (Eq. (5)) yields a one-to-one relationship between

Fig. 1. One-dimensional complex flow: evolution of strain rate and strain. Comparison between FENE (thick curves)
and FENE-P (dashed curves) results for the polymer stress and mean square extension (b=50).
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Fig. 2. One-dimensional complex flow: polymer stress versus mean square extension (b=50). Comparison between
FENE (thick curve) and FENE-P (dashed curve) results. FENE distribution function at discrete values of time, also
defined in Fig. 1.

stress and molecular extension. The above observations have been made independently by Doyle
et al. [3].

Further insight into the hysteretic behaviour of the FENE theory can be gained by inspection
of the configuration distribution function. The latter is readily available from the stochastic
simulations. As shown in Fig. 2, the equilibrium distribution (specified at time t1) is first
distorted by the velocity gradient (Eq. (6)) in an affine manner (e.g. time t2). At later times (e.g.
time t3), the longer dumbbells tend to gather close to maximum extension, thus producing a
narrow peak in the distribution function; these dumbbells are essentially in an equilibrium state
wherein Stokes’ drag is balanced by the connector force. The shorter dumbbells however, still
experience stretching and produce a thinning tail in the distribution function. Finally, during the
relaxation process (e.g. time t4), the peak-shaped distribution never spreads out again, but
returns slowly to equilibrium.

Let us consider the fluid state at times t3 and t4, which occurs respectively, during stress
growth and relaxation. These two states have the same mean square extension but quite different
distributions. The distribution function at t3 is broader than at t4 due to the spreading effect of
Stokes’ drag. Consequently, the stress value, which results from the configuration average of a
non-linear connector force (Eq. (1)) with positive concavity, is greater at t3 than at t4. More
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intuitively, the longer dumbbells provide the major contribution to the stress, which explains
why the FENE model always shows a clockwise hysteretic cycle when experiencing successive
elongation and relaxation.

Clearly, any closure approximation which expresses the extra-stress as an algebraic function
of the mean square extension alone, such as the FENE-P approximation, will never be able to
reproduce the hysteretic behavior. Nevertheless, one can modify the FENE-P parameters in
order to bring the stress-extension curve inside the FENE hysteretic cycle. Recently, van Heel et
al. [2] proposed a modified FENE-P model in which the parameters are determined such that
important linear viscoelastic properties of the FENE theory are recovered. The resulting
FENE-P* model has a reduced extensibility parameter, relative to that of the FENE theory,
with the side effect of displacing the stress-extension function inside the FENE hysteresis.
Although the FENE-P* model is a markedly better approximation than the FENE-P model in
some flows (e.g. transient shear), it is unable to show hysteretic behaviour. The results discussed
in this section will guide us in the search for improved closure approximations of the FENE
theory.

3. The closure problem: A general framework

Inspired by the work of Verleye and Dupret [1], we propose a general framework for
addressing the closure problem. Although most of the theoretical developments are presented
for the particular FENE dumbbell theory, the approach can be adopted for other microstruc-
tural or molecular models.

Briefly, the main idea is to describe the fluid by a finite number of state variables. Evolution
equations for these state variables, derived from the diffusion equation (Eq. (4)), present a
closure problem which is addressed with a canonical distribution subspace, i.e. a given
finite-dimensional set of admissible distribution functions. The selection of state variables and
canonical subspace is obviously a crucial point. Here, the insight provided by stochastic
simulations is quite helpful.

3.1. State 6ariables and e6olution equations

As we wish to avoid the use of the full distribution function, we introduce a partial
description of the fluid through a set X of n state variables Xi ,

X={X1, X2, X3, …, Xn} ={A, B, C,…}. (7)

The state variables are defined as configuration space averages of given functions fi(Q) of the
dumbbell configuration,

Xi=� fi(Q)�. (8)

As shown in eq. 13.2–15 of [5], the state variables satisfy the following equation of change,
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which is readily derived from the diffusion equation (Eq. (4)):

DXi

Dt
=

1
2
# (2

(Q2 fi(Q)
$

XB
i

+k(t)
#

Q
(

(Q
fi(Q)

$
XD

i

−
1
2
#

F(Q)
(

(Q
fi(Q)

$
XC

i

.
(9)

The right-hand side of Eq. (9) involves three new state variables Xi
B, Xi

D and Xi
C for the

contribution of Brownian motion, hydrodynamic drag and connector force, respectively. Evolu-
tion equations can also be written for the new state variables, thus creating additional state
variables and so on. This endless procedure is well known in other fields such as turbulence and
fiber suspension modeling. The closure problem then appears when we want to describe the state
of the fluid only with a finite set of state variables without involving the distribution function
itself. It amounts to establish a relationship between the new state variables Xi

B, Xi
D, Xi

C

appearing in Eq. (9) and the original set X of state variables. In the present paper, we focus on
algebraic closures.

3.2. Selection of state 6ariables

In order to build exact or approximate closures which give good quantitative predictions, it
is first necessary to select a given set of state variables. Inspired by the FENE-P model, we take
the mean square extension as first state variable:

X1=�Q2�. (10)

In view of Eqs. (2) and (9), the associated equation of change and Kramers’ expression read

Í
Ã

Ã

Á

Ä

DX1

Dt

tp

=1+2k(t)X1−
1
2

XC
1 ,

=
1
2

XC
1 −1.

(11)

Here, only one new state variable X1
C appears. In the FENE-P model, Peterlin’s approximation

(Eq. (5)) provides the closure relationship between X1
C and X1, as discussed in Section 4.1.

For more accurate closures, we need to turn to second-order models involving two state
variables. It would seem natural to consider X1

C as the second state variable X2. With such a
choice for X1 and X2, the following evolution equations are obtained from Eqs. (2) and (9):

Í
Ã

Ã

Ã

Ã

Á

Ä

DX1

Dt
DX2

Dt

tp

=1+2k(t)X1−
1
2

X2,

=
1
2

XB
2 +k(t)XD

2 −
1
2
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2 ,

=
1
2

X2−1.

(12)
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Unfortunately, three new state variables X2
B, X2

D and X2
C appear in the second equation.

Moreover, they exhibit a complex algebraic form. This approach does not seem to be very
attractive and will not be pursued in the present work.

Another possible choice that yields a second-order closure is

X2=�Q4�. (13)

The associated equations of change and Kramers’ expression read

Í
Ã

Ã

Ã

Ã

Á

Ä

DX1

Dt
DX2

Dt

tp

=1+2k(t)X1−
1
2

XC
1 ,

=6X1+4k(t)X2−
1
2

XC
2 ,

=
1
2

XC
1 −1.

(14)

With this particular selection of state variables, the closure problem only arises for the connector
terms X1

C and X2
C. This result applies more generally to models of order n based on the n first

even moments Xi of the distribution function,

Xi=�Q2i�. (15)

The set of evolution equations then reads

Í
Ã

Ã

Á

Ä

DXi

Dt

tp

= i(2i−1)Xi−1+2ik(t)Xi−
1
2

XC
i ,

=
1
2

XC
1 −1,

(16)

with X0=1.
In view of the non-linearity of the connector force (Eq. (1)), it will in general be impossible

to obtain an exact closure relationship for X i
C. Similar difficulties would arise with more

elaborate non-linear kinetic models allowing for configuration dependent drag or hydrodynamic
interaction.

3.3. Canonical distribution subspaces

In order to build approximate closures, we follow the approach introduced by Verleye and
Dupret [1] in the context of fiber suspension modeling. The basic idea is to restrict the space C
of admissible distribution functions to a so-called canonical subset Cc of finite dimension m.
This subspace contains all instances of a parameterized canonical distribution function cp

c. The
latter involves a set p={a, b, …} of m independent parameters.
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In the canonical subspace, the state variables are approximated as follows:

Xi:� fi(Q)�c, (XB
i , XD

i , XC
i ):

�# (2

(Q2 fi(Q)
$

c

,
#

Q
(

(Q
fi(Q)

$
c

,
#

F(Q)
(

(Q
fi(Q)

$
c

�
,

(17)

where the averages � ·�c are computed with the canonical distribution function cp
c.

The consequence of replacing C by Cc is that the approximations (Eq. (17)) of the state
variables can now be considered as functions of the set p of parameters. Using a compact
notation, this property reads

X:F(p), (XB, XD, XC): (FB(p), FD(p), FC(p)). (18)

Now, assuming that F is invertible, it is straightforward to obtain the following approximate
closure relationships:

(XB, XD, XC): (FB(F−1(X)), FD(F−1(X)), FC(F−1(X))). (19)

A necessary condition for F to be invertible is that the dimension m of the canonical subspace
be equal to the number n of state variables.

The accuracy of the closure approximation (Eq. (19)) is governed by the selection of the
canonical subspace. Indeed, the closure is exact if the actual distribution function c(Q) belongs
to the canonical subspace Cc; it will be a good approximation if the exact configuration
distribution function stays sufficiently close to the canonical subspace during the flow process.

4. Examples of closure approximations

In the present section, we discuss several possible choices for the canonical subspace Cc and
the resulting closure approximations. In this paper, we focus on first and second-order closures
that use the first two even moments of the distribution function as state variables (cfr Eq. (14)).

For notational convenience, let us define X={A, B} with

A=X1=�Q2�, AC=XC
1 =2

# Q2

1−Q2/b
$

,

B=X2=�Q4�, BC=XC
2 =4

# Q4

1−Q2/b
$

. (20)

It is useful to identify the set of admissible values of the pair (A, B) for the FENE fluid [15].
For a given mean square extension A in [0, b ], the fourth-order moment B must lie between A2

and bA. This result is illustrated in Fig. 3. Moreover, the upper and lower bounds are reached
only with particular distribution functions. The lower bound B=A2 is reached for the
distribution function

c(Q)=
1
2

d−
A(Q)+
1
2

d
A(Q), (21)
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where dx(Q) denotes the Dirac distribution located at Q=x. The upper bound B=bA is
reached with the distribution function

c(Q)=
A
2b

d−
b(Q)+
�

1−
A
b
�

d0(Q)+
A
2b

d
b(Q). (22)

These results will be of particular interest in later discussions.

4.1. First-order Peterlin model (FENE-P)

As a first example, we derive the classical FENE-P model in the general framework of Section
3. We wish to develop a first-order model (n=1) with the second moment A as single state
variable. The canonical distribution function depends on a single parameter a (m=1). Follow-
ing Tanner [16], it is defined as the sum of two symmetric Dirac distributions shown in Fig. 3,

c c
a(Q)=

1
2

d−a(Q)+
1
2

da(Q), (23)

with a� [0, 
b ]. With this particular choice of canonical subspace, the relations (Eq. (18))
become

A:a2, AC:
2a2

1−a2/b
. (24)

Here, the inversion process is straightforward and the closure approximation (Eq. (19)) reads

AC:
2A

1−A/b
. (25)

This is the Peterlin closure approximation (Eq. (5)). Finally, the evolution equation and
Kramers’ expression (Eq. (11)) yield

Fig. 3. FENE-P canonical distribution function and admissible spaces for the second and fourth moments. Gray area,
FENE theory; lower boundary (thick line), FENE-P approximation.
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Fig. 4. FENE-P2 canonical distribution function and admissible spaces for the second and fourth moments. Gray
area, FENE theory and FENE-P2 approximation; thick line, FENE-P2 approximation for flow processes starting
from equilibrium.

Í
Ã

Ã

Á

Ä

DA
Dt

tp

=1+2k(t)A−
A

1−A/b
,

=
A

1−A/b
−1 ,

(26)

which is the FENE-P constitutive equation.
In Fig. 3, we compare the admissible spaces for the pair (A, B) obtained with the FENE and

FENE-P models. The FENE-P model yields B=a4=A2, which is the lower bound for the
FENE model and is consistent with Eq. (21).

All first-order closures, as the FENE-P model, are characterized by the fact that the fourth
moment is an algebraic expression of the second moment. This explains why those models fail
to predict any hysteretic behaviour. Let us now turn to second-order closure approximations.

4.2. Second-order Peterlin model (FENE-P2)

A first proposal for a second-order model is to select the two-parameter canonical distribution
function shown in Fig. 4:

cC
a,b(Q)=

b

2
d−a(Q)+ (1−b)d0(Q)+

b

2
da(Q), (27)

with (a, b)� [0, 
b ]× [0, 1]. With such a choice, the relations in Eq. (18) become

A:ba2, AC:
2ba2

1−a2/b
,
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B:ba4, BC:
4ba4

1−a2/b
. (28)

Here again, the inversion process is rather straightforward. The evolution equation and
Kramers’ expression (Eq. (14)) yield the following second-order closure model, which we shall
refer to as the FENE-P2 equation:

Í
Ã

Ã

Ã

Ã

Á

Ä

DA
Dt
DB
Dt

tp

=1+2k(t)A−
A

1−B/(Ab)
,

=6A+4k(t)B−
2B

1−B/(Ab)
,

=
A

1−B/(Ab)
−1.

(29)

In view of the convex character of the expressions in Eq. (28), the boundary of the set of
admissible values for (A, B) is the image of the corresponding boundary for (a, b). As depicted
in Fig. 4, we find

b1: b=0, a� [0, 
b ][B=0, A=0,

b2: a=
b, b� [0, 1][B=bA, A� [0, b ],

b3: b=1, a� [0, 
b ][B=A2, A� [0, b ],

b4: a=0, b� [0, 1][A=0, B=0. (30)

It would thus appear that the FENE and FENE-P2 models have identical admissible spaces
for the pair (A, B). This is not surprising since the FENE-P2 canonical subspace contains the
two particular distribution functions (Eqs. (21) and (22)) needed to reach the boundaries of the
FENE admissible space of state variables. Thus, the FENE-P2 model should be able to show
hysteretic behaviour. In reality however, for all flow processes starting from equilibrium, the
FENE-P2 state variables (A, B) never leave the thick line shown in Fig. 4, indicating degeneracy
into a first-order model. This can be shown as follows. In view of Eq. (29), we have B=3A2 at
equilibrium. This relation will hold at any later time, since

D(3A2)
Dt

=6A
DA
Dt

=
(29a)

6A+12k(t)A2−
6A2

1−B/(Ab)
=6A+4k(t)B−

2B
1−B/(Ab)

=
(29b) DB

Dt
.

(31)

Substituting B=3A2 in (29a), we find that the FENE-P2 model is equivalent to the first-order
closure model defined as follows
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Í
Ã

Ã

Á

Ä

DA
Dt

tp

=1+2k(t)A−
A

1−A/b*
,

=
A

1−A/b*
−1,

(32)

where b*=b/3. Starting from an equilibrium state, the FENE-P2 model thus behaves like a
FENE-P model with a modified extensibility parameter. In that respect, it is a close relative
of the FENE-P* equation proposed by van Heel et al. [2]. Finally, we note that the
FENE-P2 and FENE models have the same equilibrium value for the mean square extension
(Aeq=b/(b+3)), while the FENE-P equation yields Aeq=b/(b+1).

4.3. Second-order L-shaped model (FENE-L)

In order to select a better canonical subspace that would yield an improved second-order
closure, it is useful to exploit the stochastic simulation results obtained for the actual FENE
model [6]. In Fig. 2, one finds that the FENE distribution function not only shows a localized
peak, which would be well approximated in the FENE-P canonical subspace, but also a tail of
almost uniform probability density leading approximately to a symmetric L-shape.

Inspired by these observations, we propose the following 2-parameter canonical distribution
function, depicted in Fig. 5:

c c
a,b(Q)=

b

2
d−a(Q)+

(1−b)
2a

[H−a(Q)−Ha(Q)]+
b

2
da(Q), (33)

where (a, b)� [0, 
b ]× [0, 1] and Ha(Q) denotes the Heaviside unit step function located at
Q=a.

Fig. 5. FENE-L canonical distribution function and admissible spaces for the second and fourth moments. Dark and
light gray areas, FENE theory; dark gray area, FENE-L approximation. The symbol � marks the junction between
boundaries b1 and b2 of the FENE-L admissible space.
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With this particular choice, the relations in Eq. (18) become

A:ba2+
(1−b)a2

3
,

B:ba4+
(1−b)a4

5
,

AC:
2ba2

1−a2/b
+2(1−b)b

�
b
a

ln
�
b+a


b−a

�
−1

n
,

BC:
4ba4

1−a2/b
+4(1−b)b2 �
b

a
ln
�
b+a


b−a

�
−1−

a

3
b

n
. (34)

The admissible space for the pair (A, B), shown in Fig. 5, is obtained using the same method
as for the FENE-P2 canonical distribution. Its boundaries are given by

b1: b=0, a� [0, 
b ][B=
9
5

A2, A� [0, b/3],

b2: a=
b, b� [0, 1][B=
b
5

(6A−b), A� [b/3, b ],

b3: b=1, a� [0, 
b ][B=A2, A� [0, b ],

b4: a=0, b� [0, 1][A=0, B=0. (35)

The FENE-L closure has a two-dimensional admissible space for the pair (A, B), which is the
key property needed to show hysteretic behaviour. It is seen, however, to fill the admissible
space of the FENE model only partially. This is due to the fact that the FENE-L canonical
subspace does not include the particular distribution function (Eq. (22)).

Inverting the relationships in Eq. (34) between (A, B) and (a, b) is not as straightforward as
in the previous examples, but it remains feasible analytically. Substitution of a2 from Eq. (34a)
into Eq. (34b) yields the following quadratic equation for b :

20Bb2+4(5B−9A2)b+ (5B−9A2)=0. (36)

For (A, B) within the admissible space, there is only one real value for b in [0, 1]. One thus finds

b=
(9A2−5B)+
(9A2−5B)9A2

10B
,

a=
' 5B

3A+
9A2−5B
. (37)

The FENE-L closure approximation is then obtained by substituting Eq. (37) in Eqs. (34c) and
(34d). Being rather lengthy, the resulting algebraic expressions for AC and BC are not detailed
here and are written as AC(A, B) and BC(A, B).
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Finally, the FENE-L constitutive equation is obtained from Eq. (14):

Í
Ã

Ã

Ã

Ã

Á

Ä

DA
Dt
DB
Dt

tp

=1+2k(t)A−
1
2

AC(A, B),

=6A+4k(t)B−
1
2

BC(A, B),

=
1
2

AC(A, B)−1

(38)

In contrast with the FENE-P and FENE-P2 models, the FENE-L constitutive (Eq. (38)) does
not prevent the state variables (A, B) from leaving their admissible space. Indeed, the following
arguments reveal that nothing prevents the state variables (A, B) from crossing the boundary b1,
while the boundaries b2 and b3 are impervious. With reference to Eq. (35) and Fig. 5, one finds
that boundary b2 is characterized by a non-vanishing probability of dumbbells with maximum
elongation 
b. This causes (AC, BC) to become singular, which repels (A, B) from b2 through
Eq. (38). However, the boundary b3 is shared with the FENE model. In its vicinity, the
canonical subspace Cc tends to contain the actual FENE distribution, since b3 can only be
reached with the particular distribution function (Eq. (21)) which belongs to Cc. As a result, in
the vicinity of b3, the FENE-L closure approximation becomes asymptotically exact and the
further evolution of (A, B) will be the same as that predicted by the FENE model, i.e. crossing
of b3 is forbidden.

The situation is quite different for boundary b1 however, since it is not shared with the FENE
model. This boundary is characterized by the disappearance of the Dirac distributions in cp

c (i.e.
b=0 in Eq. (33)) and not by the fact that dumbbells have reached maximum extension. In order
to prevent the pair (A, B) from crossing boundary b1 in a general flow process, which is
necessary for inverting Eq. (34), it is therefore essential to add the following constraint to the
FENE-L constitutive (Eq. (38)):

BB
9
5

A2. (39)

Similar constraints could arise with more sophisticated closure approximations endowed with
non-repelling boundaries.

5. Simulation results

In this section, we compare the predictions of the FENE-P, FENE-P2 and FENE-L closure
models to those of the FENE kinetic theory in several time-dependent one-dimensional
extensional flows. In all cases, we specify b=50 and the initial state is that of equilibrium. Being
classical, the numerical techniques are only briefly described. Some care is however needed in the
numerical implementation of the FENE-L model, as explained below.
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5.1. Numerical techniques

For specified kinematics k(t), the behaviour of the FENE model is computed by means of the
predictor-corrector stochastic simulation technique proposed by O8 ttinger [17] and discussed in
Section 3 of [6]. We use 105 realizations for each stochastic simulation, which is enough to
provide accurate results not only for the averages of interest (e.g �Q2�, �Q4� and �QF�), but
also for the distribution function c itself. The latter is obtained directly from the stochastic
simulations, in the form of normalized histograms of the dumbbell configurations [6].

The constitutive Eqs. (26) and (29) for the FENE-P and FENE-P2 models respectively, are
solved by means of a fifth-order Runge–Kutta technique with adaptive time stepping. For
solving the constrained FENE-L constitutive Eqs. (38) and (39), we use a penalty method which
consists in adding the following repelling force F r to the right-hand side of Eq. (38b):

F r(A, B)=K max
�

0, B−
9
5

A2�2

, (40)

where K is a large positive penalty factor. When numerical values for (A, B) slightly cross the
boundary b1 of the FENE-L admissible space (Fig. 5), which is inevitable with a finite penalty
parameter, the connector state variables AC and BC are evaluated through Eq. (38) using the
limiting result B= (9/5)A2. Thus, the numerical implementation of the FENE-L model reads

Í
Ã

Ã

Ã

Ã

Á

Ä

DA
Dt
DB
Dt

tp

=1+2k(t)A−
1
2

AC�A, min
�

B,
9
5

A2��,

=6A+4k(t)B−
1
2

BC�A, min
�

B,
9
5

A2��−F r(A, B),

=
1
2

AC�A, min
�

B,
9
5

A2��−1.

(41)

With the above treatment of the constraint in Eq. (39), the FENE-L model (Eq. (41))
degenerates into the following first-order closure when the numerical values for (A, B) reach
boundary b1:

Í
Ã

Ã

Á

Ä

DA
Dt

tp

=1+2k(t)A−
1
2

AC�A,
9
5

A2�,

=
1
2

AC(A,
9
5

A2)−1.
(42)

The constraint in Eq. (39) is necessary when (A, B) is close to b1 and the growth of B is too
fast with respect to the growth of A. Adding a repelling force in the evolution equation for B
slows down the growth of B when necessary.

Eq. (41) can be stiff, in particular when reaching boundary b1. They are integrated by means
of a third-order Rosenbrock technique with adaptive time stepping. Convergence of numerical
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results has been checked by increasing the penalty factor and the accuracy demands for the
adaptive time stepping.

5.2. Complex one-dimensional elongational flow

We first consider the complex transient flow defined by Eq. (6). The mean square extension
and polymer stress predicted by the various models are shown in Fig. 6.

Among the three closure models discussed in the present paper, the FENE-L equation is
clearly the best approximation of the FENE kinetic theory. Inspection of Fig. 6 reveals that the
early FENE-P stress growth is slower than its FENE counterpart. In view of Eq. (26), this leads
to a relatively faster increase of the mean square extension, which leads at later times to a strong
overprediction of both extension and stress maxima. In other words, an initially-slower stress
growth causes subsequent overprediction of the stress due to a faster growth of molecular
extension. This phenomenon is also present for the FENE-L closure model, but it is far less
pronounced. In particular, the maximum value of the polymer stress arises at about the right
time and is only slightly overpredicted. The FENE-P2 closure however, approximates the FENE

Fig. 6. One-dimensional complex flow: evolution of strain rate and strain. Comparison between FENE-P, FENE-P2,
FENE-L and FENE results for the polymer stress and mean square extension (b=50). Upper dashed curve, FENE-P;
lower dashed curve, FENE-P2; thin curve, FENE-L; thick curve, FENE.
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behaviour well at small times, but is quite inaccurate at later times because of the reduced
maximum extension.

Fig. 7 shows the polymer stress as a function of mean square molecular extension. While the
FENE-P and FENE-P2 models predict a single-valued curve, the FENE-L approximation is able
to show hysteretic behaviour that is qualitatively very similar to that of the FENE model. Also
shown in Fig. 7 are the FENE and FENE-L distribution functions at selected values of time ti
(also defined in Fig. 6). Clearly, the FENE-L canonical subspace is able to reproduce the
evolution of the FENE distribution quite satisfactorily during the entire flow process. Up to
time t2, the essentially Gaussian FENE distribution is approximated by a uniform FENE-L
distribution (i.e. b=0 in Eq. (33)) that is narrower, leading to a slight underprediction of the
stress. The fact that no Dirac component is present in the FENE-L distribution up to time t2
means that the constraint in Eq. (39) is active at these early stages of the flow. At time t3, the
typical L-shape is fully developed and FENE and FENE-L distributions are in very good
agreement. During stress relaxation, e.g. at time t4, the L-shape subsists and agreement between
the two models remains excellent. The number of dumbbells near maximum extension is low,
meaning that the non-linearity of the connector force is not as important as at t3. Knowing the

Fig. 7. One-dimensional complex flow: polymer stress versus mean square extension (b=50). Dashed curve (left),
FENE-P2; dashed curve (right), FENE-P; thin curve, FENE-L; thick curve, FENE. Comparison between FENE and
FENE-L distribution functions at four selected times, also defined in Fig. 6. The symbols 2 and � mark these times
on the FENE-L and FENE hystereses, respectively.
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Fig. 8. One-dimensional complex flow (b=50): evolution of fourth moment versus second moment for FENE-P,
FENE-P2, FENE-L and FENE models (thick curves) with their admissible space (gray areas). The symbol � marks
the junction between boundaries b1 and b2 of the FENE-L admissible space. The FENE and FENE-L hysterese are
travelled clockwise.

precise shape of the distribution function is therefore not so crucial to compute the stress and
even a simple approximation such as that of Peterlin gives good results.

Further insight into the results is provided in Fig. 8 where we plot the fourth-order moment
B versus the second-order moment A. While the FENE-P and FENE-P2 models yield a
one-to-one relation, hysteretic behaviour is predicted by the FENE theory and its FENE-L
approximation. We also see that the constraint in Eq. (39) is active during a significant part of
the FENE-L extension growth, which grinds the hysteresis curve. At later times, the FENE-L
and FENE hystereses are very similar.

5.3. Startup of elongation followed by relaxation

We now consider the startup of elongation followed by relaxation. The specified velocity
gradient is

k(t)=k(H0(t)−H9/k(t)), (43)

where k is the applied strain rate set to 2, 4 and 6 respectively. In all cases, the maximum strain
is 9.



G. Lielens et al. / J. Non-Newtonian Fluid Mech. 76 (1998) 249–279268

First, we discuss the results for the higher strain rate (k=6). In Fig. 9, we observe that the
FENE-L model produces again the best approximation for both the mean square extension and
the polymer stress, with the exception of the steady state values, for which the FENE-P model
is slightly more accurate. The FENE-P2 approximation is unable to predict correctly the
steady-state, due to the reduced maximum elongation.

The early stages of the flow are shown in Fig. 10. As in the complex flow of the previous
section and for the same reasons, the FENE-L stress growth is somewhat slower than for the
FENE, while the FENE-P stress growth is slower still. The FENE-P2 approximation however,
is slightly more accurate at the very first stages, but at later times, it overpredicts the polymer
stress, to finally diverge from FENE behavior and reach its reduced maximum extension.

Fig. 11 illustrates the results in terms of stress versus molecular extension. It is seen that the
FENE and FENE-L models show a very similar hysteretic behaviour. Overall, the FENE-L
canonical subspace is able to yield accurate approximations of the FENE distribution function.
At time t1 however, the tail of the FENE distribution still resembles the equilibrium Gaussian
shape which cannot be approximated accurately within the FENE-L canonical subspace. The
FENE-L distribution is narrower, thus leading to the early divergence of the hysteresis curves.

Fig. 9. Startup of elongation followed by relaxation: evolution of strain rate and strain. Comparison between
FENE-P, FENE-P2, FENE-L and FENE results for the polymer stress and mean square extension (b=50 and k=6).
Upper dashed curve, FENE-P; lower dashed curve, FENE-P2; thin curve, FENE-L; thick curve, FENE.
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Fig. 10. Results of Fig. 9 at the early stages of elongation. Upper dashed curve, FENE-P; lower dashed curve,
FENE-P2; thin curve, FENE-L; thick curve, FENE.

This is also visible in Fig. 12, where we observe that the constraint (Eq. (39)) is active during the
early stages of the flow.

The results for the smallest strain rate (k=2) are shown in Fig. 13. The conclusions are
identical, with one noticeable exception: the FENE-L steady-state results (at t3) are too low and
in fact less accurate than the FENE-P predictions.

Although unexpected, given that the FENE-L canonical subspace contains the FENE-P
canonical subspace and that we expect improved performance going from a first-order approx-
imation to one of second-order, this observation can be explained with the help of Fig. 14. For
a moderate strain rate, the FENE-L steady state value of B does not reach the steady value of
A2 and the distribution still exhibits a tail of finite thickness which is not present in the FENE
distribution. Although somewhat spread out, this FENE steady distribution is thus better
approximated by a simple Dirac, i.e. within the FENE-P canonical subspace. This drawback of
the FENE-L closure is less noticeable at the higher strain rate (k=6) as seen by comparing the
results of Fig. 11 and Fig. 14.

One also observes from this comparison that the early stages (e.g. time t1) of the hysteresis
curves are in closer agreement for the smaller strain rate. This is due to the fact that the L-shape
of the distribution develops faster and that the FENE-L hysteresis curve of Fig. 15 is less
grounded by the constraint (Eq. (39)).
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Fig. 12. Startup of elongation followed by relaxation (b=50 and k=6): evolution of fourth moment versus second
moment for FENE-P, FENE-P2, FENE-L and FENE models (thick curves) with their admissible space (gray areas).
The symbol � marks the junction between boundaries b1 and b2 of the FENE-L admissible space. The FENE and
FENE-L hystereses are travelled clockwise.

Inspection of Fig. 17 reveals that the results obtained for the first period of k(t) are very
similar to those of the previous sections; the FENE-L closure performs very well indeed. The
picture is a bit different for the second and third cycles, where a periodic regime is reached.
Here, the FENE-P results are virtually exact, while the FENE-L closure somewhat underpre-
dicts the stress and molecular extension. Not surprisingly, the FENE-P2 approximation is quite
inaccurate after the early stages of the first cycle, again due to its reduced extensibility
parameter.

Insight into the behaviour of the FENE-L closure in the periodic regime can be gained from
Fig. 18. The FENE theory settles to a very thin limit cycle in the stress-molecular extension
plane, that is indeed very well approximated by the FENE-P single-valued curve. While the
FENE-L closure accurately captures the first cycle of the periodic flow (up to time t2), it then
reaches a wider limit cycle. The main point here is that at time t2, which corresponds to a
minimum in molecular extension and is the starting point of the second cycle, the FENE
distribution is not that of equilibrium. It is rather a somewhat localised peak whose width and
location vary at later times in a periodic manner (see results at t3 and t4). This behaviour is very
well captured by the simple Dirac functions of the FENE-P canonical subspace. The more
sophisticated FENE-L distributions perform overall quite satisfactorily, but not as well. Between
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t2 and t3, the FENE distribution is displaced towards higher dumbbell lengths and develops a
small tail which does not however, extend back to the origin of the Q-axis. The FENE-L model
captures this behaviour, but of course with a uniform tail, which has the effect of displacing the
Dirac distribution slightly too far in the direction of higher dumbbell lengths. The net result is
that the stress is somewhat overpredicted, which explains the divergence of the FENE and
FENE-L limit cycles between t2 and t3 (Fig. 18). Finally, at time t4, a slight ‘parasitic’ tail
remains in the FENE-L distribution, as in the examples of Section 5.3, with the same effect of
slightly underpredicting the maximum in stress and molecular extension.

Fig. 19 confirms that once in the periodic regime, the FENE behaviour degenerates into that
of the FENE-P closure. Indeed, the limit cycle is very thin and lies close to the diagonal
boundary of the diagram, which precisely contains the FENE-P response. Overall, the FENE-L
closure behaves very well, but it predicts a limit cycle that is slightly too thick.

6. Discussion

It is clear from the results of the previous section that the FENE-L model is overall the best
available closure approximation of the FENE kinetic theory. Its behaviour in three-dimensional

Fig. 13. Startup of elongation followed by relaxation (b=50 and k=2): evolution of strain rate and strain.
Comparison between FENE-P, FENE-P2, FENE-L and FENE results for the polymer stress and mean square
extension. Upper dashed curve, FENE-P; lower dashed curve, FENE-P2; thin curve, FENE-L; thick curve, FENE.
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Fig. 14. Startup of elongation followed by relaxation: polymer stress versus mean square extension (b=50 and k=2).
Dashed curve (left), FENE-P2; dashed curve (right), FENE-P; thin curve, FENE-L; thick curve, FENE. Comparison
between FENE and FENE-L distribution functions at four selected times, also defined in Fig. 13. The symbols2 and
� mark these times on the FENE-L and FENE hystereses, respectively.

flow kinematics (elongation and shear) is also quite good, as documented in a companion paper
[13]. Improvements of the FENE-L closure are of course possible. In this section, we make a few
proposals that alleviate the limitations of the FENE-L closure, at the expense of much higher
numerical complexity.

As seen in Section 5.3, the first drawback to eliminate is the presence of a ‘parasitic’ tail which
somewhat perturbs the steady-state elongation results. This problem arises because a Dirac
distribution function alone is too narrow to satisfy steady-state for both A and B. A natural
solution is to use a broader distribution to represent the peak at the end of the tail, for example
a rectangle starting at Q=a and of width w(a). The width function w(a) may be selected such
that there always exists a value of a which satisfies equilibrium for A and B under any rate of
steady elongation. This function will of course depend on the extensibility parameter b, which
implies that the canonical subspace depends on this parameter:

c c
a,b(Q)=

b

2
P−a(Q)+

1−b

2a
[H−a(Q)−Ha(Q)]+

b

2
Pa(Q) (45)
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Fig. 15. Startup of elongation followed by relaxation (b=50 and k=2): evolution of fourth moment versus second
moment for FENE-P, FENE-P2, FENE-L and FENE models (thick curves) with their admissible space (gray areas).
The symbol � marks the junction between boundaries b1 and b2 of the FENE-L admissible space. The FENE and
FENE-L hystereses are travelled clockwise.

with
!Px(Q)= [Hx(Q)−Hx+w(x)(Q)]/w(x)

Px(Q)= [Hx−w(−x)(Q)−Hx(Q)]/w(−x)
for x\0
for xB0

(46)

With this more sophisticated canonical subspace, but still of second order, the ‘parasitic’ tail
disappears at steady state.

Fig. 16. Startup of elongation followed by relaxation for different strain rates (k=2, 4 and 6): polymer stress versus
mean square extension (b=50). Comparison between FENE (left) and FENE-L (right).
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Fig. 17. Periodic flow: evolution of strain rate and strain. Comparison between FENE-P, FENE-P2, FENE-L and
FENE results for the polymer stress and mean square extension (b=50). Upper dashed curve, FENE-P; lower dashed
curve, FENE-P2; thin curve, FENE-L; thick curve, FENE.

The second drawback of the FENE-L closure, maybe less important, is the underprediction of
the polymer stress in the early stages of rapid elongation, starting from equilibrium. The
problem arises because the FENE distribution as a tail of Gaussian shape there, before
becoming more or less uniform at later times. The solution to this problem is of course to take
this shape into account in the canonical subspace, e.g. with a tail close to a Gaussian
distribution when the peak is low and ever more uniform as the peak grows. This is achieved in
a natural way with the following canonical distribution function:

c c
a,b(Q)=h(a, b)d−a(Q)+Gb(Q)[H−a(Q)−Ha(Q)]+h(a, b)da(Q), (47)

where Gb(Q) denotes a Gaussian distribution with mean 0 and variance b, and h(a, b)=
	a
� Gb(Q) dQ.

Combining Eqs. (45) and (47), we obtain the following canonical distribution function

c c
a,b(Q)=h(a, b)P−a(Q)+Gb(Q)[H−a(Q)−Ha(Q)]+h(a, b)Pa(Q), (48)
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which is shown in Fig. 20 for different values of the parameters a and b. Obviously, the
resulting canonical subspace is even more capable of an accurate description of FENE
behaviour than that of FENE-L, without being of higher dimension. The price to pay,
however, is that the new closure cannot be derived analytically as the FENE-L is, since the
integrals and inversion processes involved must be performed numerically.

One problem where the FENE-L closure is slightly inaccurate and which is not addressed
by any 2-parameter canonical distribution, is the startup of elongation from non-equilibrium
conditions (cfr Section 5.4). In fact, a second-order model will never solve this problem since
it cannot distinguish a distribution with a long and thin tail from one with a short and thick
tail. This effect can be seen as a weak second-order hysteresis, where two different distribu-
tions share the same second and fourth-order moments, but yield slightly different polymer
stresses.

Although the general framework presented in Section 3 would allow the development of
third or higher-order closure approximations, we feel that the resulting numerical complexity
is not worth it. Moreover, only two output state variables are really relevant, namely AC

Fig. 18. Periodic flow: polymer stress versus mean square extension (b=50). Dashed curve (left), FENE-P2; dashed
curve (right), FENE-P; thin curve, FENE-L; thick curve, FENE. Comparison between FENE and FENE-L
distribution functions at four selected times, also defined in Fig. 17. The symbols 2 and � mark these times on the
FENE-L and FENE hystereses, respectively.
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Fig. 19. Periodic flow: evolution of fourth moment versus second moment for FENE-P, FENE-P2, FENE-L and
FENE models (thick curves) with their admissible space (gray areas). The symbol � marks the junction between
boundaries b1 and b2 of the FENE-L admissible space. The FENE and FENE-L hystereses are travelled clockwise.

which is used to calculate the polymer stress, and the second moment A, which is the most basic
description of the polymer configurations. Those quantities can be compared with experimental
data from rheometry and birefringence techniques, respectively. A second-order model thus
appears to be a good compromise between accuracy and complexity.

7. Conclusions

We have proposed a general framework for deriving closure approximations for non-linear
kinetic theories. Within this framework, the proposed FENE-L approximation of the FENE
dumbbell kinetic theory is shown to behave very well in various one-dimensional, transient
elongational flows. In particular, it is able to show hysteretic behaviour in flows involving
growth and subsequent relaxation, which is out of reach for a first-order closure approximation
such as the FENE-P or FENE-P* models. Extension of the FENE-L closure to three-dimen-
sional flow kinematics is documented in [13]. Stochastic simulation of the underlying model
(here, the FENE theory) is the key to the appropriate selection of canonical subspace. It is also
a practical tool for testing the performance of new closure approximations. Finally, we wish to
argue that the development of ever more accurate and thus increasingly complex closure
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Fig. 20. Proposal for an improved second-order closure: canonical distribution function (Eq. (48)) for different values
of the parameters a and b (a1\a2, b1Bb2Bb3).

approximations is not useful if pursued too far. In that respect, the FENE-L closure appears to
offer a good compromise between accuracy and complexity.
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[15] G. Lielens, PhD thesis, Université catholique de Louvain, Belgium, in preparation.
[16] R.I. Tanner, Stresses in dilute solutions of bead-nonlinear-spring macromolecules. II. Unsteady flows and

approximate constitutive relations, Trans. Soc. Rheol. 19 (1975) 37–65.
[17] H.C. O8 ttinger, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation

Algorithms. Springer, Berlin, 1996.

.


