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Abstract

We propose a new numerical technique, referred to as the Lagrangian Particle Method (LPM), for computing time-

dependent viscoelastic flows using either a differential constitutive equation (macroscopic approach) or a kinetic theory model

(micro±macro approach). In LPM, the Eulerian finite element solution of the conservation equations is decoupled from the

Lagrangian computation of the extra-stress at a number of discrete particles convected by the flow. In the macroscopic

approach, the extra-stress carried by the particles is obtained by integrating the constitutive equation along the particle

trajectories. In the micro±macro approach, the extra-stress is computed by solving along the particle paths the stochastic

differential equation associated with the kinetic theory model. Results are given for the start-up flow between slightly

eccentric rotating cylinders, using the FENE and FENE-P dumbbell models for dilute polymer solutions. # 1998 Elsevier

Science B.V. All rights reserved.
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1. Introduction

To date, most numerical simulations of viscoelastic flows have been based on a purely macroscopic

approach where one solves numerically the conservation laws together with a suitable rheological
constitutive equation. Study of the monograph by Crochet, Davies and Walters [1] and of consecutive
review papers (e.g. [2±5]) reveals that progress in macroscopic viscoelastic flow computations has been
very impressive indeed. The subject, however, is by no means closed and further developments are still
called for, such as improved techniques for time-dependent and three-dimensional flows. Since the
pioneering work by Laso and OÈ ttinger [6,7], a complementary micro±macro approach to viscoelastic
flow simulations is now emerging that combines the solution of the conservation laws with the direct
use of a kinetic theory model describing the fluid's rheology (e.g. [8±12]). In the micro±macro
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approach, modeling is achieved at the coarse-grain level without resorting to closure approximations of
questionable value, thus providing a direct link between the flow-induced development of the
microstructure and the flow operating conditions.

In the present paper, we propose a new numerical technique, referred to as the Lagrangian Particle
Method (LPM), for solving time-dependent viscoelastic flows with either the macroscopic or the
micro±macro approach. LPM combines in a decoupled fashion the solution of the conservation laws
with a Lagrangian computation of the extra-stress at a number of discrete particles that are convected
by the flow. The extra-stress is computed by integrating along the particle paths either the relevant
differential constitutive equation (macroscopic approach), or the stochastic differential equation
associated to the kinetic theory model (micro±macro approach). For illustrative purposes, we consider
the start-up flow of a dilute polymer solution between slightly eccentric rotating cylinders. The polymer
solution is described by the kinetic theory of finitely extensible non-linear elastic (FENE) dumbbells.
The FENE theory is used as such in the micro±macro LPM simulations, while its approximate
macroscopic version, namely the FENE-P constitutive equation obtained with the Peterlin closure
approximation [13], is used in the macroscopic LPM runs. In the micro-macro LPM simulations, each
Lagrangian particle convected by the flow carries an ensemble of dumbbells. In LPM, these ensembles
of dumbbells can be statistically uncorrelated or correlated. The latter case yields in fact a numerical
approach that is equivalent, in the limit of vanishing discretization error, to the method of Brownian
configuration fields introduced recently by Hulsen et al. [11].

The paper is organized as follows. In Section 2, we detail the relevant governing equations. Section 3
describes the basic technical features of LPM. The simulation results are reported in Section 4. Finally,
we conclude in Section 5.

2. Governing equations

We consider the time-dependent isothermal flow of an incompressible viscoelastic fluid in a confined
geometry. Expressed in Eulerian form, the conservation laws for linear momentum and mass read [14]

�
Dv

Dt
� r � �ÿpI � s�; (1)

r � v � 0; (2)

where � is the density, p and v are the pressure and velocity fields, respectively, I is the unit tensor, s is
the extra-stress tensor, and �Dv=Dt� is the material time derivative �@v=@t� � v � rv. Note that we have
neglected body forces in Eq. (1). For describing the rheology of polymer solutions, it is customary to
define the extra-stress s as the sum of a viscous solvent contribution ss and a polymer contribution sp,

s � ss � sp; ss � 2�sD; (3)

where D is the rate of deformation tensor 1
2
�rv�rvT� and �s is the constant shear viscosity of the

solvent.
The conservation laws Eqs. (1) and (2) must be closed with a suitable model that relates the polymer

stress sp to the deformation of the fluid. In the present paper, we adopt for that purpose the kinetic
theory of Warner finitely extensible non-linear elastic (FENE) dumbbells [13]. In this framework, the
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polymer solution is viewed as a suspension of non-interacting dumbbells convected in a Newtonian
solvent. A dumbbell is made of two identical Brownian beads connected by a spring. While the beads
represent the interaction between the polymer and the solvent, the spring models intramolecular
interactions. Carried by the macroscopic flow, the beads experience Brownian force, Stokes drag and
the spring force. In this coarse grain picture, the configuration of the polymer is described by the length
and orientation of the vector Q connecting the two beads. For FENE dumbbells, the spring force Fc is
defined as

Fc�Q� � H

1ÿ Q2=Q2
0

Q; (4)

where H is a spring constant and Q0 is the maximum spring length. Although quite simple, the kinetic
theory of FENE dumbbells has been found recently to model many phenomena observed with dilute
solutions (e.g. [15,16]). In particular, it is able to predict hysteretic behaviour in stress growth/
relaxation experiments [17±19].

A central result of kinetic theory [13] is the diffusion equation that governs the evolution of the
configuration distribution function  �Q; t�, namely

@ 

@t
� ÿ @

@Q
� j � Qÿ 2

�
Fc�Q�

� �
 

� �
� 2kT

�

@

@Q
� @
@Q

 ; (5)

where � is the friction coefficient of the Brownian beads, T is the absolute temperature, k is the
Boltzmann constant, and j is the velocity gradient. The latter is assumed constant over the polymer
(dumbbell) length scale. In non-homogeneous flows, the distribution function generally depends upon
the spatial position x, and the time derivative in Eq. (5) becomes in fact the material derivative
D =Dt � @ =@t � v � @ =@x. A second key result of kinetic theory is an expression due to Kramers
[13] that yields the polymer contribution to the stress:

sp � ÿnkTI � nhQFc�Q�i; (6)

where n is the dumbbell number density and the angular brackets denote the configuration space
average

h�i �
Z
� dQ: (7)

For Hookean dumbbells (i.e. Q0!1 in Eq. (4)), it is possible to derive from Eqs. (5) and (6) a closed-
form constitutive equation for the polymer stress sp. This yields the Oldroyd-B model, with a relaxation
time � � �/4H and a polymer contribution to the shear viscosity �p�nkT� [13]. When Q0 has a finite
value, however, it is impossible to obtain a macroscopic constitutive equation that is mathematically
equivalent to the FENE kinetic model. In order to exploit Kramers' expression Eq. (6), one must either
solve the diffusion Eq. (5), or, as done in the present work, integrate along the flow trajectories the
associated ItoÃ stochastic differential equation [20]:

dQ � j � Qÿ 2

�
Fc�Q�

� �
dt �

��������
4kT

�

s
dW: (8)
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Here, W is the three-dimensional Wiener process, namely a Gaussian stochastic process with vanishing
mean and covariance hW�t1�W�t2�i � min�t1; t2�I. As discussed in [20], Eq. (8) is an evolution
equation for the Markovian process Q whose probability density  is solution of the diffusion Eq. (5).
In the stochastic simulation approach, the polymer stress sp is again obtained by means of Kramers'
expression Eq. (6), with the configuration average Eq. (7) computed as an ensemble average over many
realizations of the stochastic process Q.

In the present paper, we also propose a new approach to the numerical computation of viscoelastic
flow problems with a differential constitutive equation. The FENE-P equation is used for illustrative
purposes. It is based on a self-consistent pre-averaging approximation of the spring force Eq. (4) due to
Peterlin,

Fc�Q� � H

1ÿ hQ2i=Q2
0

Q: (9)

The Peterlin closure approximation allows one to derive from the diffusion Eq. (5) the following
evolution equation [13] for the configuration tensor A � hQQi:

@A

@t
� v � rAÿ j � Aÿ A � jT � 4kT

�
I ÿ 4H=�

1ÿ Tr�A�=Q2
0

A: (10)

Use of Kramers' expression Eq. (6) and of the force law Eq. (9) then yields the FENE-P polymer stress
in terms of the configuration tensor:

sp � ÿnkTI � n
H

1ÿ Tr�A�=Q2
0

A: (11)

As detailed in [13], Eqs. (10) and (11) lead to a non-linear differential constitutive equation for the
polymer stress sp. In numerical work, it is more convenient to solve the configuration Eq. (10), and then
compute the polymer stress using Kramers' expression Eq. (11).

The rheometrical responses of the FENE and FENE-P models are compared in [21,22], where it is
shown that the Peterlin closure approximation can have a significant impact indeed. (For a markedly
better closure approximation of the FENE theory, see [17].) The FENE and FENE-P models involve a
time constant � � �/4H and the dimensionless finite extensibility parameter b � HQ2

0=kT. We also note
for further reference that the polymer contribution to the zero shear rate viscosity is
�0

p � nkT�b=�b� 3� for the FENE-P fluid, and �0
p � nkT�b=�b� 5� for the FENE theory.

3. The Lagrangian particle method

3.1. Basic features

The LPM is depicted schematically in Fig. 1. We decouple the Eulerian solution of the conservation
Eqs. (1) and (2) from the Lagrangian computation of the polymer contribution to the stress. A typical
time step goes as follows. Using the current polymer stress values, computed in each element (at the
previous time step), a standard Galerkin finite element technique is applied to the conservation
equations to yield the updated velocity and pressure fields. The new velocity field is then used to update
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the polymer stress. In LPM, we compute the polymer stress at discrete Lagrangian particles which are
convected by the flow. This is achieved by solving along the computed particle trajectories either the
macroscopic constitutive Eqs. (10) and (11), or the stochastic differential Eq. (8) for a larger number of
dumbbells carried by each particle. The polymer stress values thus obtained at the Lagrangian particles
are converted into an Eulerian, element-by-element polynomial representation, which feeds the
discretized conservation laws and allows for the calculation of the velocity and pressure fields at the
next time step.

Let us now briefly review the main technical features of LPM.

3.2. Conservation equations

We consider time-dependent, two-dimensional (2D) flows in a domain 
 with a known boundary
@
. The flow domain is discretized by means of a fixed mesh of finite elements, over which the
Eulerian velocity and pressure fields are approximated as

va�x; t� �
XNv

i�1

vi�t� i�x�; pa�x; t� �
XNp

j�1

pj�t��j�x�: (12)

Here  i and �j are given finite element basis functions, while vi and pj are unknown, time-dependent
nodal values. The mesh being fixed, the shape functions depend on the spatial coordinates x only. We
use Galerkin's principle (e.g. [3]) to discretize the conservation laws Eqs. (1) and (2). Residuals
obtained after substitution of the approximations Eq. (12) in the governing Eqs. (1) and (2) are made
orthogonal to the set of basis functions, and an integration by parts is performed in the discretized

Fig. 1. Schematic of the Lagrangian particle method.
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momentum balance. The Galerkin equations readZ



 i �
Dva

Dt

� �
d
 �

Z



r T
i � �ÿpaI � 2�sD

a � sp� d
 �
Z
q


 it ds; (13)Z



�j�r � va�d
 � 0; (14)

for 1� i � N� and 1 � j � Np. In Eqs. (13) and (14), every term with the superscript a denotes the
corresponding finite element approximation obtained from the expansions Eq. (12), t is the contact
force, and s the arc length measured along the boundary.

The Galerkin Eqs. (13) and (14) can be used to compute the velocity and pressure fields provided the
polymer stress contribution to the discretized momentum balance Eq. (13), namelyZ




r T
i � sp d
; (15)

be known. In LPM, we treat Eq. (15) as a known pseudo-body force term. The Galerkin Eqs. (13) and
(14) thus constitute a set of first-order differential equations for the nodal values of va and pa. In the
current implementation of LPM, we discretize Eqs. (13) and (14) in time using the Euler forward/Euler
backward predictor-corrector scheme with a constant time step �tcons. The solution of the implicit
Euler backward equations is obtained by means of Newton's scheme, the initial guess being provided
by the explicit Euler forward prediction. Finally, we use biquadratic continuous basis functions for the
velocity, and bilinear continuous basis functions for pressure.

3.3. Tracking the motion of Lagrangian particles

In LPM, we compute the polymer stress sp at a number Npart of Lagrangian particles convected by the
flow. Over a typical time step �tn; tn�1 � tn ��tcons�, the trajectory of each Lagrangian particle is
determined using the Eulerian velocity field obtained at time tn. If s denotes the position vector of the
particle, one thus solves the kinematic equation

dr

dt
� va�r; tn�; (16)

for t in �tn; tn�1� and with the initial condition r(tn) known from the previous time step. We integrate Eq.
(16) by means of the tracking procedure proposed by Goublomme et al. [23] in the context of steady-
state flows of integral viscoelastic fluids. The basic idea is to solve Eq. (16) in the parent finite element,
using a fourth-order Runge±Kutta method. For this, we adopt a constant time step �ttrack such that
�ttrack � �tcons. Knowledge of the particle trajectories between tn and tn�1 allows us to compute the
polymer stress sp at time tn�1, as we now explain.

3.4. Differential constitutive equation

Most differential constitutive models currently used in computational rheology have the form

Dsp

Dt
� f �sp;j�: (17)
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With microstructural models such as the FENE-P equation, the evolution equation for the configuration
tensor (see Eq. (10)) has a similar form:

DA

Dt
� g�A;j�: (18)

In LPM, we solve Eq. (17) or Eq. (18) along the flow trajectory of the Npart Lagrangian particles. The
material derivative operator thus reduces to a simple time derivative taken along the pathlines. Over a
typical time step �tn; tn�1 � tn ��tcons�, we use the Eulerian velocity field obtained at time tn to
integrate Eq. (17) or Eq. (18). With the FENE-P model, one thus solves for each particle

DA�r�t��
Dt

� g�A�r�t��; ja�r�t�; tn��; (19)

along the trajectory fr�t�; t 2 �tn; tn�1�g and with the initial condition A�r�tn�� known from the previous
time step. For this, we use a fourth-order Runge±Kutta method with a constant time step �tconst such
that �ttrack��tconst��tcons. Having obtained A�r�tn�1��, we compute the updated polymer stress
sp�r�tn�1�� by means of Kramers' expression (11).

3.5. Kinetic theory model

Computation of the polymer stress with the kinetic dumbbell model is achieved by solving the
stochastic differential Eq. (8) along the trajectory of the Npart Lagrangian particles. For simplicity, we
write all subsequent equations in dimensionless form. The connector vector Q, the time t, the velocity
gradient and the polymer stress sp are made dimensionless with �kT=H�1=2; �; �ÿ1, and nkT,
respectively, and we define the notation h�x� � 1=�1ÿ x=b�. For FENE dumbbells, the dimensionless
connector force reads

Fc�Q� � h�Q2�Q; (20)

while for FENE-P dumbbells we have

Fc�Q� � h�hQ2i�Q: (21)

Finally, the dimensionless Kramers' expression Eq. (6) is

sp � hQFci ÿ I: (22)

Each Lagrangian particle carries a number Nd of dumbbells. Over the time step �tn; tn�1 � tn ��tcons�,
the configuration Q of each dumbbell is obtained by solving Eq. (8) using the Eulerian velocity field at
time tn,

dQ�r�t�� � �ja�r�t�; tn� � Q�r�t�� ÿ 1
2
Fc�Q�r�t���� dt � dW; (23)

along the trajectory fr�t�; t 2 �tn; tn�1�g and with the initial condition Q�r�tn�� known from the previous
time step. In view of Kramers' expression Eq. (22), the updated polymer stress carried by a particle is
then approximated by the ensemble average
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sp�r�tn�1�� � 1

Nd

XNd

i�1

Q�i��r�tn�1��Fc�Q�i��r�tn�1��� ÿ I; (24)

where Q�i� is an individual realization of the stochastic process Q, and Fc is evaluated using either the
FENE Eq. (20) or FENE-P Eq. (21) spring law.

For FENE-P dumbbells, we integrate Eq. (23) by means of the explicit Euler±Maruyama
scheme, using a constant time step �tstoch such that �ttrack��tstoch��tcons. This yields the simple
recurrence

Q�r�tj�1�� � Q�r�tj�� � �ja�r�tj�; tn� � Q�r�tj�� ÿ 1
2
Fc�Q�r�tj�����tstoch ��W j; (25)

for tj�1 � tj ��tstoch in the interval �tn; tn�1�. The vector of Wiener increments �W j has independent
Gaussian components with zero mean and variance �tstoch.

The Euler±Maruyama scheme Eq. (25) is of weak order 1 [20]. When used with FENE dumbbells, it
can lead to difficulties if �tstoch is too large. Indeed, an individual dumbbell can have its dimensionless
length become larger than the upper bound

���
b
p

, which is unphysical. Thus, for FENE dumbbells, we
solve Eq. (23) by means of the semi-implicit predictor±corrector scheme proposed by OÈ ttinger [20].
The predictor is the Euler scheme (25), which gives ~Q�r�tj�1��. The corrector has the form

�1� 1
4
h�Q2�r�tj�1����tstoch�Q�r�tj�1�� � d�Q�r�tj��; ~Q�r�tj�1��;�W j�; (26)

where the known vector d is given by

d � Q�r�tj�� � 1
2
�ja�r�tj�1�; tn� � ~Q�r�tj�1�� � ja�r�tj�; tn� � Q�r�tj��

ÿ 1
2
h�Q2�r�tj���Q�r�tj����tstoch ��W j: (27)

The update Q�r�tj�1�� is a vector with direction d and length q that is solution of a cubic algebraic
equation derived from Eq. (26). As shown in [20], q is unique and always in �0; ���

b
p �. The predictor±

corrector scheme Eqs. (26) and (27) is of weak order 2.
In Eqs. (25)±(27), the Gaussian increments �Wj can be replaced by other random variables that are

cheaper to generate. As in [22], we use uniformly distributed random numbers whose moments are
selected such as to keep unchanged the weak order of the numerical schemes [20].

An important issue to consider is that of the statistical correlation between ensembles of dumbbells
carried by neighboring Lagrangian Particles [24]. The standard approach [7] uses uncorrelated
ensembles in the sense that Npart�Nd independent Wiener processes govern the stochastic evolution of
the dumbbells. Alternatively, if the same initial ensemble of dumbbells is used in each Lagrangian
particles, and if the same Nd independent Wiener processes are generated to compute the configuration
of corresponding dumbbells in each particle, then strong correlations develop in the polymer stress
fluctuations at neighboring particles, which have almost identical flow histories. As discussed in [24],
variance reduction should result from the cancellation of these fluctuations when taking the divergence
of the polymer stress in the momentum balance Eq. (1). Use of correlated ensembles of dumbbells is
the basic idea behind the method of Brownian configuration fields introduced by Hulsen et al. [11]. As
discussed in [11,24], it dramatically reduces the spatial fluctuations of the computed velocity and stress
fields, while decreasing the cost of generating the random numbers. In fact, LPM with correlated
ensembles of dumbbells can de viewed as a Lagrangian particle solution of Eq. (11) in [11] that governs
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a particular configuration field. Their number Nf of configuration fields thus corresponds to our number
Nd of dumbbells carried by each lagrangian particle.

3.6. Computation of the polymer stress integral

At the end of a typical time step for the solution of the conservation laws, say at time tn�1, we thus,
have at our disposal values of the polymer stress sp at discrete Lagrangian Particle located at rl�tn�1�,
for l � 1; 2;��� ;Npart. The last computational task to discuss is that using out these Lagrangian results to
feed the Eulerian discretized momentum balance Eq. (13). In other words, one must compute the
polymer stress integral Eq. (15) that will be used in the momentum balance Eq. (13) to update the
velocity field at time tn�2 � tn�1 ��tcons.

To do so, we compute in each finite element the linear least-squares polynomial that best fits the
available polymer stress data, on the basis of the Lagrangian particles that are found present in the
element at time tn�1. The resulting piecewise-continuous Eulerian representation of sp is then used to
evaluate the integrand of Eq. (15) at all integration points of the finite element mesh. Clearly, this
procedure requires that at least three Lagrangian particles be present in each element at all discrete
times when the polymer stress integral is evaluated.

4. Results for start-up flow in a journal bearing

4.1. Problem description

We consider the time-dependent, planar flow of FENE and FENE-P fluids between slightly eccentric
cylinders, starting from the rest state (Fig. 2). The inner cylinder, of radius Ri, is rotating at a constant
angular velocity !, while the outer cylinder, of radius Ro, is fixed. The axes of the two cylinders are
separated by a small eccentricity e. We assume that the fluid sticks to the cylinder walls, and specify the
rest state as initial conditions. Thus, ma�x; t � 0� is set to 0 over 
. When using the macroscopic FENE-
P constitutive equation, the initial configuration tensor A is set to its equilibrium value identically (this
amounts to specifying sp�x; t � 0� � 0 over 
. In the stochastic simulations, the initial dumbbell
configurations in each Lagrangian particle are generated using the equilibrium distribution function
[13].

The particular flow parameters and material data used in this work are listed in Table 1. The present
flow problem is characterized by the dimensionless eccentricity � � e=�Ro ÿ Ri� � 0:1, the dimension-
less thickness � � �Ro ÿ Ri�=Ri � 0:1, the Reynolds number Re � �!Ri�Ro ÿ Ri�=��s � �0

p� � 1:1, the
Deborah number De � �!Ri=�Ro ÿ Ri� � 3, the dimensionless finite extensibility b�50, and the
viscosity ratio � � �s=��s � �0

p� � 1=9.

Table 1

Flow parameters and material data used in the simulations (expressed in an arbitrary consistent system of units)

Flow parameters Ri�10 Ro�11 e�0.1 !�0.1

Material data ��3 b�50 ��0.1 �s�0.1 �0
p�0.8
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A typical finite element mesh is shown in Fig. 2. We use structured grids with Nr � N� quadrilateral
elements, where Nr and N� are the number of uniformly-distributed elements in the radial and azimuthal
directions respectively. Most numerical results shown in this section have been obtained with the 4�80
mesh of Fig. 2. For validation purposes, computations have also been performed with 8�80 and 4�160
meshes, with identical results at the scale of the figures shown here [25]. The numerical solutions will
be presented in terms of the temporal evolution of the velocity and polymer stress in the region of
narrowest gap (Fig. 2).

4.2. Macroscopic LPM computations with the FENE-P model

The results obtained with LPM applied to the FENE-P constitutive model Eqs. (10) and (11) are
shown in Fig. 3. Contrary to the Newtonian solution (Re�1.1, De�0), the FENE-P velocity component
�y reaches its steady value in an oscillatory fashion. A similar behaviour is predicted for the
components of the polymer stress. These LPM results have been obtained with a total of Npart � 2880
Lagrangian particles that were uniformly distributed (i.e. 9 per element) at time t�0. The time steps
were set to �tcons � 10ÿ2 and �ttrack � �tconst � 10ÿ3.

In order to validate the LPM results, we have also computed the FENE-P solution using the mixed
finite element method implemented by Purnode and Crochet [26]. In this method, the Galerkin
principle is applied to both the conservation and constitutive equations. Quadrilateral elements are used
with linear, quadratic and 4�4 linear sub-elements for the pressure, the velocity and the configuration
tensor, respectively. The time stepping scheme is the Euler predictor-corrector method. Fig. 3 shows the
results obtained with the mixed method, using the mesh of Fig. 2 and a time step �t �10ÿ2. The
agreement with the results provided by LPM is excellent.

Fig. 2. Finite element mesh for computing the start-up flow in a journal bearing. The enlargement shows a number of

Lagrangian particles convected by the flow, as well as the locations where the computed polymer stress (�) and velocity (*)

are displayed in subsequent figures.
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4.3. Micro±macro LPM computations with FENE-P dumbbells

Before discussing results for the FENE kinetic theory, it is useful to evaluate the stochastic LPM
approach with FENE-P dumbbells. We plot in Fig. 3 the FENE-P results defined as the mean of three
independent micro±macro LPM simulations, using Nd � 4500 dumbbells in each of the Npart � 2880
Lagrangian particles. In these simulations, we used correlated ensembles of dumbbells. The time steps
were set to �tcons � 10ÿ2 and �ttrack � �tstoch � 10ÿ3. Agreement between the macroscopic and
micro±macro results is excellent. In comparison with the results obtained for the same problem by
means of the first-generation CONNFFESSIT code of Laso and OÈ ttinger (see Figs. 1 and 2 in Halin
et al. [27]), the micro±macro LPM results are almost devoid of stochastic noise, especially in the
velocity field. This is confirmed by inspection of Fig. 4 where we show the results of three individual
micro-macro LPM runs, obtained with correlated or uncorrelated ensembles of dumbbells. With the
rather large number of dumbbells for each Lagrangian particle, the fluctuations are only slightly
reduced using correlated ensembles.

The effect of variance reduction brought about by the use of correlated ensembles of dumbbells is
much more dramatic in Fig. 5. Here, we present the results of nine independent LPM simulations using
only Nd � 450 dumbbells in each Lagrangian particle. The fluctuations in the stress and velocity are
much reduced with correlated ensembles of dumbbells. One should note, however, that the polymer
stress results obtained with correlated ensembles, though much smoother, do vary a lot from one run to
the other. In addition, the average over the nine independent runs is less accurate than that computed
with uncorrelated ensembles. A plausible explanation is that, with such a small number of dumbbells in
each particle, the use of correlated ensembles does not allow for an accurate generation of the initial
equilibrium distribution.

Stochastic micro±macro simulations are mainly limited by the availability of computer memory.
Using a fixed set of numerical parameters, including Npart and Nd, it may be practically feasible to
average the results of a number NR of independent LPM realizations, while a single run with NR times

Fig. 3. Temporal evolution of velocity and polymer stress in the region of thinnest gap (see Fig. 2) obtained with the FENE-P

constitutive equation. The Newtonian velocity is shown for reference. Results of the macroscopic and micro±macro LPM

simulations are in excellent agreement with those obtained by means of the mixed finite element method (Eulerian macro).
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more dumbbells in each particle would not fit the available memory. In view of the non-linear coupling
between polymer stress and velocity, it is not obvious that this simple averaging procedure behaves
satisfactorily. Fig. 6 provides a positive answer in that regard, at least for the flow problem considered
here.

Let R�i��t� denote the result of the ith stochastic LPM run at time t. We take the corresponding
macroscopic LPM result Rmacro(t) as a reference solution. Using a number nr of independent results
(1� nr � NR), one obtains the average

R�nr�
av �t� �

1

nr

Xnr

i�1

R�i��t�: (28)

Fig. 4. Temporal evolution of velocity and polymer stress in the region of thinnest gap (see Fig. 2) obtained with the FENE-P

constitutive equation. Three individual micro±macro LPM simulation results, obtained with correlated or uncorrelated

ensembles of 4500 dumbbells in each Lagrangian particle, are compared to their macroscopic LPM counterparts. The average

of the three individual micro-macro results is also shown.
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An estimate of the numerical error carried by this average is given by the mean quadratic error

e�nr� � 1

tf ÿ t0

Z tf

t0

�R�nr�
av �t� ÿ Rmacro�t��2dt; (29)

where the relevant time interval [t0, tf] is set to [0, 15] in the present case (cfr. Fig. 4). Since we have a
total of NR independent LPM results at our disposal, there are N�nr� � NR!=nr!�NRÿ nr�! ways of
forming the average Eq. (28), each carrying a mean quadratic error Eq. (29). It is the average of these
errors, computed over the N(nr) possible combinations, that is plotted in Fig. 6 as a function of nr. Here,
the result R being considered is either the velocity or the polymer stress. The evolution of the average

Fig. 5. Temporal evolution of velocity and polymer stress in the region of thinnest gap (see Fig. 2) obtained with the FENE-P

constitutive equation. Nine individual micro±macro LPM simulation results, obtained with correlated or uncorrelated

ensembles of 450 dumbbells in each Lagrangian particle, are compared to their macroscopic LPM counterparts. The average

of the nine individual micro±macro results is also shown.
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error is indeed consistent with the 1=
�����
nr
p

behavior that would be obtained without the stress±velocity
coupling.

4.4. Micro±macro LPM computations with FENE dumbbells

Finally, we show in Fig. 7 the stochastic LPM results obtained with FENE dumbbells. As in Fig. 3,
we plot the average results computed over three independent LPM runs, with Nd � 4500, Npart � 2880
and correlated ensembles of dumbbells. The time steps are as in Section 4.3. Inspection of Fig. 7
reveals the significant impact of the Peterlin approximation, already observed in simple rheometrical
flows [21,22].

Fig. 6. Average error for the micro±macro LPM velocity and normal stress difference as a function of the number nr of

independent LPM realizations (FENE-P model).

Fig. 7. Temporal evolution of velocity and polymer stress in the region of thinnest gap (see Fig. 2) obtained with the FENE

kinetic theory and the FENE-P constitutive equation. Also shown are the FENE results obtained in [28] by means of the

method of Brownian configuration fields.
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We also show in Fig. 7 the results obtained by our T.U. Delft colleagues [28] for the same flow
problem, using their Brownian configuration fields approach [11]. The agreement with the LPM results
is very good indeed.

5. Discussion and conclusions

The above results demonstrate the ability of LPM to produce accurate numerical results in a non-
trivial time-dependent viscoelastic flow problem, using either a macroscopic constitutive equation of
the differential type or a kinetic theory model for the polymer dynamics.

Table 2 summarizes the computer resources (CPU time and main memory capacity) needed for
obtaining the results illustrated in Figs. 3±5 for FENE-P dumbbells with the 4�80 finite element mesh.
The particular computer used in this work is a SGI Indigo2 R10000 workstation.

We wish to point out that the data in Table 2 for the Eulerian macroscopic simulation are only shown
for the sake of completeness, and are not representative of the state-of-the-art of Eulerian methods for
transient viscoelastic flows. Indeed, the implicit mixed method implemented by Purnode and Crochet
[26] was not designed with transient flows in mind as it solves at each time step the full set of
discretized equations by means of a Newton scheme, which of course is rather expensive. At any rate,
the macroscopic LPM approach is quite attractive in terms of computer resources. Another strong point
of the new technique is the stability and accuracy of the Lagrangian integration of the constitutive
equation along the particle paths. Indeed, LPM takes account in a most natural way of the purely
convective nature of differential viscoelastic constitutive equations.

The micro±macro LPM runs, with either correlated or uncorrelated ensembles of dumbbells, are
significantly more expensive than macroscopic computations, but they remain feasible on available
hardware. This is of course the price to pay for the direct use in flow simulation of kinetic theory
models, such as the FENE dumbbell model, which cannot be translated into an equivalent macroscopic
constitutive equation. Use of correlated ensembles of dumbbells not only reduces the statistical noise
affecting the results but also does decrease the CPU time by almost a factor of two in the present case.
One should also note that tracking the motion of the Lagrangian particles and the expensive task of
evaluating the particle polymer stress can be implemented on parallel computers using algorithms
similar to those already developed for integral constitutive equations [29±31].

A number of numerical issues related to LPM still deserves further investigation. In particular,
theoretical developments are needed to better understand the transfer of information between the
Lagrangian stress calculation and the Eulerian conservation equations, and the smoothing effect that
this transfer may have. In this work, we used successfully a piecewise discontinuous least-squares

Table 2

Computer resources for the FENE-P simulations of Figs. 3±5, with �tcons � 10ÿ2 and [t0, tf] � [0,15]

Method Npart Nd CPU (s) Memory (MB)

Eulerian macro ± ± 62 285 81

LPM macro 2880 ± 2 607 16

LPM micro±macro (correlated ensembles) 2880 4500 94 900 313

LPM micro±macro (uncorrelated ensembles) 2880 4500 165 791 313
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interpolation of the Lagrangian polymer stress values. Use of continous least-squares interpolation
produced numerical instabilities [25] for reasons which remain to be understood. The numerical
implications of using correlated ensembles of dumbbells with LPM also deserve further study. As
demonstrated in the present work, LPM can also be used with uncorrelated ensembles of dumbbells for
problems where the physical fluctuations become relevant [24]. Finally, criteria remain to be developed
for selecting optimal values of the numerical parameters (number of Lagrangian particles, number of
dumbbells, and the various time steps) for a given flow problem and its spatial discretization.

The major next step in the development of LPM is the design of an adaptive algorithm that would
allow the automatic creation or deletion of Lagrangian particles when and where needed, in order to
meet specific accuracy requirements. Other useful extensions of LPM include the use of integral
constitutive equations and their related stochastic formulations [32,33], the implementation of
capabilities for free-surface flows, and porting to parallel computer. We plan to report on these
developments in the near future.
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