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Synopsis

We study the rheometrical and complex flow response of the double-convection-reptation~DCR!
model with chain stretch proposed recently by Ianniruberto and Marrucci~2002! for entangled
linear polymers. The single- and two-mode differential versions of the model are used, with the
parameter values identified by Ianniruberto and Marrucci~2002! for a nearly monodisperse
polybutadiene solution. These authors found that the DCR model with stretch predicts the
rheometrical shear behavior of the fluid well in the modest experimental range of deformation rates.
Our calculations for the higher shear rates reached in simulations of complex flow reveal anomalous
or questionable behavior, namely, shear thickening over an intermediate range of shear rates and
large chain stretch in fast shear flows. This behavior is shown to be shared by the original
integro-differential DCR theory, of which the differential DCR model is actually a mathematical
approximation. We also show that the original DCR theory with stretch predicts excessive shear
thinning at high shear rates, while its differential approximation remains stable for all shear rates.
Using the backward-tracking Lagrangian particle method@Wapperomet al. ~2000!#, we investigate
the response of the differential DCR model in start-up flow through an axisymmetric contraction/
expansion geometry. We compare the single- and two-mode model predictions~in terms of the
steady-state vortex structure, chain stretch, and overall pressure drop!, and correlate these with the
steady and start-up rheometrical responses in shear and extension. Significant chain stretch is
predicted in the vicinity of the axis of symmetry and in thin boundary layers located at the
constriction wall. As a result, the DCR predictions significantly depart from the stress-optical rule
in these flow regions. Chain stretch also affects the flow kinematics, with the appearance of a large
upstream steady-state vortex. Surprisingly, however, the predicted pressure drop is not affected
much by these kinematical changes, and is qualitatively described by a simple inelastic,
shear-thinning model. ©2003 The Society of Rheology.@DOI: 10.1122/1.1530619#
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I. INTRODUCTION

The development of a definitive molecular-based constitutive theory for entangled
linear polymers has had exciting advances over the last few years. The most successful
models are extensions of classical reptation theory@Doi and Edwards~1986!#, with much
of the progress being due to the creative efforts of Professor G. Marrucci. In particular, he
recognized the importance of flow-induced constraint release effects, and introduced the
convective constraint release~CCR! mechanism@Marrucci ~1996!#.

In a recent paper, Ianniruberto and Marrucci~2001! developed a single-mode consti-
tutive theory known as the double-convection-reptation~DCR! model, which accounts
for CCR and stretch effects. The original DCR theory involves an integral equation for
the average orientation of tube segments, and a differential equation for the average chain
stretch. The characteristic time for orientational relaxation depends in a series-parallel
way on three basic mechanisms, namely, reptation, constraint release~both thermal and
convective!, and Rouse relaxation. Constraint release is assumed to have no impact on
chain stretch. Furthermore, an alternative strain measure@Marrucci et al. ~2001!# based
on a force balance on entanglement nodes is used in the integral orientation equation in
order to obtain a simpler differential form. In a companion paper, Ianniruberto and Mar-
rucci ~2002! proposed a multimode version of the differential DCR model with stretch,
which involves a spectrum of disengagement and Rouse times. Using only two modes,
the multimode theory was shown to yield already much improved predictions for the
linear and non-linear shear response of monodisperse polymers.

The goal of the present work is to study by way of numerical simulation the response
of the DCR model with stretch in start-up flow through an axisymmetric contraction/
expansion geometry. The numerical technique is the backward-tracking Lagrangian par-
ticle method@Wapperomet al. ~2000!#, which we have used previously to simulate com-
plex flows of entangled linear and branched polymers@Wapperom and Keunings~2000,
2001!#. We consider the single- and two-mode DCR models, using the parameter values
identified by Ianniruberto and Marrucci~2002! for a nearly monodisperse polybutadiene
solution. Since the range of deformations spanned by the numerical simulations is much
wider than that considered by Ianniruberto and Marrucci~2002!, it is useful to investigate
in more detail the rheometrical response of the model. Interestingly, we find that the DCR
theory predicts anomalous shear thickening and large chain stretch in fast shear flows.
These features are found both in the original integro-differential model and its differential
approximation. Moreover, the integro-differential model shows excessive shear thinning
at high shear rates, whereas the differential form has a monotonic flow curve. In view of
these results, complex flow simulations are reported for the differential version of the
DCR theory. We compare the single- and two-mode model predictions at steady state, in
terms of the vortex structure, molecular stretch, and pressure drop, and correlate these
results with the rheometrical response in shear and extension. Simulations reported by
Wapperom and Keunings~2000! with the Marrucci–Greco–Ianniruberto~MGI! model,
an earlier version of the theory that ignores chain stretch@Marrucci et al. ~2001!#, show
a continuous decrease of the upstream vortex with increasing Weissenberg number. The
present results reveal that chain stretch has a significant impact on flow kinematics, and
leads eventually to a dramatic growth of the upstream vortex.

II. SINGLE- AND MULTIMODE DCR MODELS WITH STRETCH

The single-mode DCR model with stretch proposed by Ianniruberto and Marrucci
~2001! includes an evolution equation for the average tube orientationS and a separate
evolution equation for the average chain stretchl. The original orientation equation is of
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integral type, with a strain measure derived from a simple three-chain model that obeys
force balance at the entanglement nodes. This integral equation is conveniently approxi-
mated by the following differential equation for the square of the orientation tensor
@Marrucci et al. ~2001!#:

DS2

Dt
5 k–S21S2

•kT22S2~k:S!2
2

t S S22
1

3
SD . ~1!

Here,D/Dt denotes the material derivative andk is the transpose of the velocity gradi-
ent. The right-hand side of Eq.~1! consists of a convective part and a term that describes
relaxation. The effective relaxation timet is given by

t 5
1

2S 1

td
1uk:Su D 1tR . ~2!

This formulation accounts for reptation~through the reptation timetd), for CCR~through
uk:Su!, and for the intrinsic friction of the chain~through the Rouse timetR). The factor
of 2 in Eq.~2! expresses double reptation and CCR2. For slow flows, reptation dominates
and t ' td/21tR ( ' td/2 for well entangled polymers!. For faster flows, CCR de-
creases the relaxation timet. Note that the absolute value must be included in the CCR
contribution to assure a positive relaxation time. In reversing flows, the velocity gradient
changes sign instantaneously, while the orientation has a finite relaxation time, causing
k:S to become negative@Wapperom and Keunings~2000!#. For very fast flows, when
uk:Su @ 1/td , t reaches a non-vanishing minimum value equal to the Rouse timetR .
~This is in contrast with the MGI model@Marrucci et al. ~2001!# in which t approaches
zero at high flow rates, thus causing an almost instantaneous response.!

At flow rates larger than the reciprocal Rouse time, polymer chains get stretched. This
is described by a separate evolution equation for the average stretch ratiol,

Dl

Dt
5 lk:S2

lmax

tR

l21

lmax2l
. ~3!

The chain stretch is unity at equilibrium and has an upper limit equal tolmax. The latter
is equal to the square root of the number of Kuhn steps between consecutive entangle-
ments at equilibrium. The first term on the right-hand side of Eq.~3! accounts for affine
convection of the chain, while the second describes stretch relaxation with the Rouse time
taken as the characteristic time.

Finally, the polymer stressT and refractive indexn are related to the stretchl and
orientationS by the following algebraic relations:

T 5 Gl2
lmax21

lmax2l
S, ~4!

n 5 Kl2S. ~5!

Here,G is the shear modulus andK the corresponding optical quantity. The single-mode
DCR theory thus has four material parameters~G, lmax, td , and tR), which can in
principle all be determined from linear viscoelastic data. It should be noted that the model
obeys the stress-optical rule only when the stretch is much smaller thanlmax. We shall
come back to this point in Sec. VI where we discuss simulation results in a complex flow
geometry.
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The single-mode DCR theory assumes that all chain segments behave in the same
way. In the multimode version of the DCR model@Ianniruberto and Marrucci~2002!#,
chain segments are classified intoN categories, each having its own characteristic disen-
gagement and Rouse times. This enables one to distinguish between internal chain seg-
ments~which relax by reptation! and segments at the end of the chain~which disengage
by fluctuation!. Constraint release~thermal and convective! gives rise to interactions
between the different categories of segments. This is taken into account in the theory
throughN2 orientation tensorsSi j pertaining to segments of typei that are entangled with
segments of typej. The final set of equations proposed by Ianniruberto and Marrucci
~2002! reads

DSi j
2

Dt
5 k–Si j

2 1Si j
2
–kT22Si j

2 ~k:Si j !2
2

t i j
S Si j

2 2
1

3
Si j D , ~6!

tij 5
1

S 1

tdi
1

1

tdj
1uk:Si u1uk:Sj u D 1tRi , ~7!

Si 5 (
j 5 1

N

wjSi j , ~8!

Dli

Dt
5 lik:Si2

lmax

tRi

li21

lmax2li
, ~9!

T 5 G (
i 5 1

N

wil i
2 lmax21

lmax2li
Si , ~10!

n 5 K (
i 5 1

N

wil i
2Si . ~11!

Here, wi is the mass fraction of chain segments of typei, while Si and l i are their
average orientation and stretch, respectively. The multimode DCR theory thus requires
N2 equations to describe orientation andN equations to describe stretch. It involves
3N12 parameters, namely, the shear modulusG, the maximum stretchlmax ~which is
the same for all segment types!, the set ofN fractional weightswi , and theN disengage-
ment and Rouse times,tdi andtRi . In principle, however, all such times can be related
to one another, so that one basic time scale only must be specified@Ianniruberto and
Marrucci ~2002!#.

III. FLUID PARAMETERS AND RHEOMETRICAL RESPONSE

Ianniruberto and Marrucci~2002! used the DCR theory with stretch to describe the
experimental shear data obtained by Menezes and Graessley~1982! for a 7.5% by volume
solution of nearly monodisperse polybutadiene (Mw 5 350 000) in a commercial hydro-
carbon oil. It was found that use of a two-mode model (N 5 2) instead of the single-
mode model (N 5 1) already improves the predictions significantly. For the single-mode
theory, a fit of the steady-state data for the shear stress and first normal stress difference
yields the following parameter values:G 5 9000 Pa,td 5 1.5 s, tR 5 0.5 s, andlmax
5 2.5. For the two-mode model, Ianniruberto and Marrucci~2002! distinguish between
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internal segments~index 1! that relax slowly and end segments~index 2! that relax much
faster. All parameters are identified by fitting the linear viscoelastic data, with the excep-
tion of the maximum stretch which is estimated from the number of Kuhn segments
between consecutive entanglements at equilibrium. This yields the following values:G
5 19 800 Pa,w1 5 0.65 ~hencew2 5 0.35), lmax 5 10, td1 5 2.1 s, td2 5 0.08 s,

tR1 5 0.12 s, andtR2 5 0. A vanishing second Rouse time implies that the stretchl2
remains equal to its equilibrium value,l2 5 1. The steady-state data for shear stress and
first normal stress difference of Menezes and Graessley~1982! are described well by both
the single- and two-mode parameter sets. The two-mode model provides, however, a
much better prediction of the start-up shear stress data, particularly at short times.

For our simulations of the flow through a constriction, we shall adopt the above
parameters so as to guarantee that the single- and two-mode versions of the DCR model
give essentially indistinguishable results in steady shear flow, at least in the shear rate
window of the experiments by Menezes and Graessley~1982!. One should point out that
experimental data are only available up to shear rates of the order of 20 s21. The value
of the maximum stretchlmax is in fact rather inconsequential for such modest shear rates.
It does, however, have a great impact on the simulation results for constriction flow. As
discussed in Sec. VI, the deformation rates that develop in the wall boundary layers are
of the order of 100–200 s21. This induces significant levels of chain stretch~and thus of
polymer stress!, which are very sensitive to the actual value oflmax.

In order to better understand the behavior in complex flow, we first discuss the differ-
ences in rheometrical flow response between the single- and two-mode models for the
above parameter values. We shall limit ourselves to those quantities that are most relevant
for flow through an axisymmetric constriction. All rheometrical results were obtained
with a simplified version of the numerical method that we discuss briefly in Sec. V, in
order to verify the numerical implementation of the models.

As shown in Fig. 1~a!, the steady-state shear stressTxy is identical for both models at
low shear rates. At intermediate shear rates, when CCR dominates, the shear stress for the
two-mode model is only slightly larger. For shear rates larger thanġ ' 50 s21, however,
chain stretch is significant and the predictions become sensitive to the value of the
maximum stretch. Since shear stress eventually reaches a plateau value which is propor-

FIG. 1. Steady-state shear response of the single- and two-mode DCR models with stretch, using parameter
values obtained by Ianniruberto and Marrucci~2002!: ~a! shear stressTxy and~b! shear viscosityh as a function
of shear rateġ.
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tional to the square oflmax @Ianniruberto and Marrucci~2002!#, differences between the
single- and two-mode results are substantial indeed.

In Fig. 1~b!, we compare the corresponding steady-state shear viscosities. Although
merely a scaling of the shear stress axis by the shear rate, the viscosity curves show some
properties that cannot readily be observed from the stress plot. First, we observe that the
slope at high shear rates always remains larger than21. Second, the two-mode DCR
model predicts shear-thickening behavior at deformation rates between 102 and 103 s21,
which clearly is physically unrealistic. On the other hand, the single-mode theory predicts
a small change in slope at somewhat lower rates, but it does not show shear thickening.
The reason is mainly due to the very different values oflmax. This can be understood
from Fig. 2~a!, where chain stretch is displayed as a function of the shear rate. We
observe that the one-mode version stretches earlier, but the change from the equilibrium
value of 1 to the maximumlmax 5 2.5 is rather gradual. For the two-mode version,
however, stretch occurs at higher flow rates and the transition from 1 tolmax 5 10 is
much steeper. The nonlinear multiplicative factor that involvesl in the stress equation,
Eq. ~10!, increases faster with the shear rate thanSxy decreases, resulting in an increase
in viscosity. Prediction of shear-thickening behavior for a range of shear rates is a general
problem in the DCR theory, and it would also occur with the single-mode version should
a larger value oflmax be used.

We also observe from Fig. 2~a! that the chain stretch predicted by the DCR theory
eventually reaches the maximum stretchlmax at high shear rates. Whether this is physi-
cally realistic is unresolved. The results for uniaxial extension are very similar to those
for shear flow, except that chain stretch in elongation occurs at lower deformation rates,
as expected. The maximum stretch is reached asymptotically as well, but this of course
makes sense in extension. The corresponding results for the extensional viscosity are
depicted in Fig. 2~b!. As for the shear viscosity, a difference in plateau value is observed
which is caused by the difference in maximum stretch.~The plateau extensional viscosity
is also proportional to the square oflmax.) A second difference is observed at interme-
diate elongation rates. With the two-mode model, since chain stretch occurs at higher
elongation rates than in the single-mode version, the extensional viscosity first decreases
due to CCR before showing an increase due to chain stretch. The CCR-dominated de-
crease in extensional viscosity is similar to the behavior of the MGI model discussed by
Wapperom and Keunings~2001!. Since the latter model does not include stretch and has

FIG. 2. Single- and two-mode DCR models with stretch:~a! chain stretchl in steady-state shear and uniaxial
extension and~b! elongational viscosityhE as a function of deformation rateġ or ė.
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a vanishing effective relaxation time at high deformation rates, its extensional viscosity
decreases monotonically.

We conclude our discussion of the DCR steady-state rheometrical response with re-
sults for the first normal stress differenceN1 and stress ratioSR in shear flow. The latter
is a measure of the fluid’s elasticity. It is defined as

SR 5
N1

2Txy
. ~12!

Single- and two-mode results forN1 are very similar until chain stretch comes into
play, again due to the different values oflmax. At large shear rates,N1 becomes propor-
tional to ġ1/2. The corresponding stress ratio results are shown in Fig. 3~b!. For both
models,SR increases monotonically. It is proportional toġ at small shear rates, and to
ġ1/2 at large shear rates, likeN1 . For the one-mode model, the transition occurs quite
abruptly, whereas the two-mode model tends to reach a plateau before showing its
asymptotic behavior. We note for further reference that, in view of the larger stress ratio,
a lower maximum Weissenberg number is expected to be reached in complex flow simu-
lations with the single-mode model.

Finally, we briefly compare the stress response in startup of shear and uniaxial elon-
gation. The transient shear viscosityh1 is depicted in Fig. 4. For low and intermediate
shear rates, the stress growth at short times is considerably faster for the two-mode model
due to the smaller disengagement time of the second mode. At these deformation rates,
both models predict a small overshoot before the steady-state value is reached. For high
shear rates, however, the single-mode model shows overshoots of increasing amplitude,
whereas these overshoots disappear completely with the two-mode model.

Results for the transient extensional viscosityhE
1 depicted in Fig. 5 show strain

hardening due to chain stretch, before reaching a steady-state value. The latter is reached
ever more quickly with increasing deformation rate. Here again, differences between the
single- and two-mode results are mainly due to the different values oflmax. As for the
transient shear response, the stress growth at short times is considerably faster for the
two-mode model.

FIG. 3. Single- and two-mode DCR models with stretch:~a! first normal stress differenceN1 and ~b! stress
ratio SR as a function of shear rateġ.

253COMPLEX FLOWS OF ENTANGLED LINEAR POLYMERS



IV. IMPACT OF THE DIFFERENTIAL APPROXIMATION

As noted earlier, the differential evolution equation, Eq.~1!, for the orientation tensor
is actually a mathematical approximation of the original, DCR integral equation@Ianniru-
berto and Marrucci~2001!#. At this point, it is appropriate to investigate whether the
anomalous or questionable behavior of the DCR model discussed in Sec. III~i.e., shear
thickening for a range of shear rates and large chain stretch reached in fast shear flows!
is really intrinsic to the DCR theory or an artifact of the approximation process. In the
original DCR theory, the average orientation at present timet is given by the memory
integral,

S 5 E
2`

t
m~ t;t8!Q~ t;t8!dt8, ~13!

with a memory functionm(t;t8) defined as

m~t;t8! 5
1

t~t8!
expS2E

t8

t dt9

t~t9!
D. ~14!

FIG. 4. Transient shear viscosityh1 as a function of timet for an imposed deformation rate between 0.01 and
500 s21: ~a! single-mode and~b! two-mode DCR models with stretch.

FIG. 5. Transient uniaxial elongational viscosityhE
1 as a function of timet for an imposed deformation rate

between 0.001 and 50 s21: ~a! single-mode and~b! two-mode DCR models with stretch.
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Here, the effective relaxation timet is defined by Eq.~2!, like for the differential version.
The orientation tensorQ takes the form

Q 5
AB

trAB
, ~15!

whereB denotes the Finger strain tensor. The latter evolves according to

DB

Dt
5 k–B1B–kT. ~16!

The equations governing chain stretch and stress are the same as those in Sec. III. The
full set of equations is thus of integro-differential form.

In order to compare the integral and differential versions of the DCR model, we
consider the single-mode theory using the same parameter values as before~in particular,
lmax 5 2.5). The impact of the differential approximation on the steady shear viscosity
is shown in Fig. 6~a!. In the range of shear rates where CCR is active, the integral and
differential models are in good agreement. This agreement comes as no surprise, and
indeed it was already noticed in the absence of chain stretch in both rheometrical and
complex flows@Marrucci et al. ~2001!; Wapperom and Keunings~2000!#. For larger
shear rates where the effective relaxation timet reaches the Rouse time, however, the
integral model shows excessive shear thinning. The logarithmic slope of the viscosity
curve very quickly becomes smaller than21, which implies a material instability, and
would limit computations in complex flow geometries to moderate values of the Weis-
senberg number.

A larger value of the maximum chain stretch does not prevent the excessive shear
thinning predicted by the original integral DCR model. This can be seen in Fig. 6~b!,
where we compare the single-mode differential and integral models forlmax 5 10. From
Fig. 6~b!, it also becomes apparent that anomalous shear-thickening behavior is predicted
for large ~but physically relevant! values oflmax, and that it is not an artifact of the
differential approximation.

Results for the chain stretch are shown in Fig. 7~a!. In shear, the integral model also
predicts that chain stretch approacheslmax at high deformation rates, although not as fast
as the differential approximation. This particular result is thus intrinsic to the DCR theory

FIG. 6. Steady-state shear viscosity for the single-mode integral and differential DCR models with stretch:~a!
lmax 5 2.5 and~b! lmax 5 10.
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with stretch. In uniaxial extension, the predicted stretch curves are in excellent agreement
indeed. This also holds true for the corresponding elongational viscosity, shown in Fig.
7~b!.

Similar results would be obtained with the multimode version of the theory. We thus
conclude that predictions of shear-thickening behavior and large chain stretch in fast
shear flows are not artifacts of the differential approximation for the orientation equation.
Also, the original integral DCR model shows excessive shear thinning at shear rates for
which chain stretch is dominant. This difficulty is not found with the differential approxi-
mation. Improvement of the theory is clearly needed, and we shall return to this point in
Sec. VII.

The above results suggest several other considerations. First, they reveal that it is not
easy to derive a differential version that is really equivalent to a given integral constitu-
tive equation. We know that this derivation requires some mathematical approximations
in the general case, while only very simple integral equations~e.g., the Lodge equation!
have an exact differential equivalent~i.e., the upper-convected Maxwell model!. More
complex equations, such as the integral DCR model, only have a differential ‘‘analog.’’
The differential form, Eq.~1!, proposed by Marrucciet al. ~2001! was derived using a
procedure suggested by Larson~1987!. It consists of first looking for a differential form
exactly equivalent to the integral equation for the limiting case of a deformation jump.
@Even this initial calculation step is not necessarily successful. For instance, there is
apparently no hope if the integral contains the Doi–EdwardsQ tensor, whereas it is
successful with the simplerQ tensor, Eq.~15!, adopted by Marrucciet al. ~2001!; the
latter is nonetheless a very good approximation of the Doi–EdwardsQ tensor!# The
procedure is then completed by adding to the differential equation a relaxation term
which reduces to a simple exponential in the linear limit, as is the case for the integral
equation. Although this procedure guarantees that the integral and differential equations
are essentially equivalent in slow or even moderately fast flows, it does not ensure that
the two equations remain alike~not even qualitatively! in highly nonlinear situations.
This definitely requires further investigation.

Finally, the discrepancies at very high shear rates between the integral and differential
equations for the orientation tensor are not only a mathematical issue. As is apparent from
Fig. 6, the integral equation predicts an instability in very fast shear flows, whereas the
differential equation is stable. To understand such a difference in behavior, we first note

FIG. 7. Single-mode integral and differential DCR models with stretch (lmax 5 10): ~a! chain stretch in
steady-state shear and uniaxial extension and~b! steady uniaxial elongational viscosityhE .
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that, when chains start to be stretched, they abandon the CCR-induced plateau value of
the orientation, eventually becoming fully oriented along the direction of flow. However,
if chains tend to align slowly enough, stretch effects can compensate for the orienting
action. The difference between the integral and differential equation merely lies on the
way in which chains are predicted to orient along the flow direction. In the high shear rate
limit, the differential equation givesSxy proportional toġ21/2, while the integral equa-
tion gives a steeper slope, i.e.,Sxy nearly proportional toġ20.9. In the differential case,
orientation and stretch effects exactly balance each other, generating a shear stress pla-
teau~following that due to CCR!, while in the integral case, the orientation effect domi-
nates, thus inducing an instability.

V. COMPLEX FLOW: NUMERICAL METHOD AND PROBLEM DESCRIPTION

We now turn to simulations of complex flow. We have performed simulations with the
original integro-differential DCR theory using methods similar to the ones implemented
by Wapperom and Keunings~2000, 2001! for the MGI and pom-pom models. In view of
the excessive shear thinning of the original theory, however, these very intricate simula-
tions are limited to moderate values of the Weissenberg number. They will not be re-
ported here. In the sequel, we shall exclusively use the differential version of the DCR
theory.

In the simulation of complex flows, the constitutive equation is coupled with the
conservation laws. Here, we consider incompressible, isothermal, and inertialess flow.
The conservation laws for mass and linear momentum then reduce to, respectively,

¹–v 5 0, ~17!

2¹p1¹–T 5 0, ~18!

wherev is the fluid velocity andp the hydrodynamic pressure. The polymeric stressT is
given by either Eq.~4! or ~10! for the single- and multimode versions of the DCR model,
respectively. Note that Eq.~18! only contains the polymer stress and does not include any
purely viscous component.

The governing equations are solved with the backward-tracking Lagrangian particle
method developed by Wapperomet al. ~2000! to solve transient viscoelastic flows using
a macroscopic or micro–macro approach. At each time step, the Eulerian solution of the
conservation laws is decoupled from the Lagrangian integration of the evolution equation
for orientation and stretch. This allows us to use different solution methods for the
conservation laws and the evolution equations. The equations of motion, Eqs.~17! and
~18!, are discretized by means of the Galerkin finite element method. The discrete elastic-
viscous stress splitting~DEVSS! method@Guénette and Fortin~1995!# has been used to
enhance the stability of the numerical scheme. Here, the discontinuous velocity gradient
is taken at time leveln11, while the continuous linear velocity gradient is taken at time
level n, i.e., at the same level as the viscoelastic stress. This guarantees a nonsingular
matrix when solving for the conservation laws. To obtain the polymer stressT, we
integrate the evolution equations for orientation and stretch along discrete particle trajec-
tories. The main difference with respect to other Lagrangian particle methods is that we
track the motion of a particle backwards in time. This allows us to directly evaluate the
stress or stretch at pre-defined, fixed particle locations. At the same time, this minimizes
the number of particles, so that CPU time and memory requirements are reduced consid-
erably. A detailed description of the numerical method can be found in the precursor
paper by Wapperomet al. ~2000!.
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We consider the start-up flow through an axisymmetric 4:1:4 constriction with
rounded corners, as depicted in Fig. 8. The smallest gap~at z 5 0 in Fig. 8! has a radius
R, while all rounded corners have radius of curvatureR/2. The lengths of the inlet and
outlet regions are equal to 19.5R, and at both the inlet and outlet we impose fully
developed velocity boundary conditions, which have been calculated separately. No-slip
velocity boundary conditions are specified at the wall and symmetry conditions hold at
the centerline.

The results shown below were obtained with the ‘‘medium’’ mesh, used by Wapperom
and Keunings~2000, 2001! for the MGI and pom-pom models, for which it was shown to
be sufficiently refined. The mesh, depicted in Fig. 8, contains 1288 quadrilateral elements
and is particularly refined near the constriction wall where steep boundary layers may
develop. The smallest element has an area ofVe 5 2.031023, scaled with aR2.

In all simulations, we consider creeping flow, so that, in the absence of a solvent
viscosity, the characteristic dimensionless numbers are the Weissenberg numbers for ori-
entation and stretch. Henceforth, we use the orientation Weissenberg number to charac-
terize the flow. For the single-mode model, we use as the fluid time scale the effective
relaxation time at equilibrium, namely,t0 5 td/21tR . For the two-mode model, we use
the largest equilibrium relaxation time,t0 5 td1/21tR1 (td2 is small compared to the
first mode!. The orientation Weissenberg number is now defined as We5 t0U/R, where
U is the average velocity in the section of smallest gap width.

The calculations were performed on a single processor of an Origin 2000 with a 300
MHz MIPS R12000 processor. Although the number of orientation tensors increases by a
factor of 4 by going from the single- to the two-mode DCR model, the CPU time only
increased 20%. The reason for this is threefold. First, approximately 70% of the time is
spent solving the equations of motion. The CPU time in the integration of the constitutive
equations therefore only increases from 90 to 150 min in going from 1 to 4 configuration
tensors. A major reason for this is that the particle trajectories and velocity gradients only
need to be computed once. Finally, loading of the local values of the configuration tensor
can be done more efficiently. For the lower Weissenberg number calculations, this re-
sulted in a total CPU time of approximately 5 h or 1.8 s pertime step.

FIG. 8. Zoom of 4:1:4 axisymmetric constriction geometry with rounded corners and a finite element mesh
with a medium level of refinement. Indicated are the smallest gap widthR at z 5 0 and the length of the
constriction, which is equal to the smallest gap width.
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VI. RESULTS OF CONSTRICTION FLOW SIMULATIONS

Although the flow problem is transient, we focus here on the steady-state regime
obtained as the long-time limit of the simulations, starting from the equilibrium state.
With the single-mode model, a stable steady state was found up to We5 30, whereas we
could reach We5 100 with the two-mode model.

First, it is instructive to identify the range of deformation rates spanned by the simu-
lations. In Fig. 9, we display contour lines of the second invariantII d 5 A2d:d of the
rate-of-deformation tensord 5 (k1kT)/2 for the highest Weissenberg numbers ob-
tained. At the constriction wall, we have a pure shear flow andII d reduces to the shear
rate ġ. Along the axis of symmetry, the kinematics are those of uniaxial extension and
II d reduces toA3ė. Both the single- and two-mode models predict a thin boundary layer
with high II d values at the constriction wall. As can be seen from the zooms, the main
part of the boundary layer is located downstream, where the maximum value~of the order
of 100 s21! is attained at the wall for the single-mode model, and slightly off the wall~of
the order of 200 s21! for the two-mode model.

Characteristic of viscoelastic contraction flows is the appearance of vortices. In Fig.
10, we compare the steady-state streamlines obtained with the single- and two-mode
DCR models. The streamline patterns at We5 1 already show significant deviation from
the inertialess Newtonian case, in which the streamlines would be symmetric aboutz
5 0. For this relatively low Weissenberg number, the steady-state rheometrical re-

sponses are practically identical for both models, and the streamline patterns are almost
indistinguishable as well. The impact of the higher transient shear and elongational vis-
cosities at short times for the two-mode model appears to be minimal. At higher Weis-
senberg numbers, the predictions of the downstream vortex are very similar, but the
upstream vortices differ dramatically. This is consistent with the large differences in
extensional response of the two models at moderate and high deformation rates@cf. Fig.

FIG. 9. Second invariantII d of the rate-of-deformation tensor for the single-mode~We 5 30; top! and two-
mode ~We 5 100; bottom! DCR models with stretch. The flow is from left to right, and a zoom of the
constriction region is shown.
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2~b!#. For the single-mode model, there is already significant growth of the upstream
vortex at We5 10, which is due to chain stretch and the corresponding increase in
extensional viscosity. For the two-mode model, the size of the upstream vortex decreases
at first, in view of the CCR-dominated decrease of the extensional viscosity at interme-
diate deformation rates. At We5 30, the single-mode model shows a huge upstream
vortex. The upstream vortex for the two-mode model, however, continues to decrease in
size. Its eventual increase occurs only at much higher Weissenberg numbers, when chain
stretch comes into play. At We5 100, the upstream vortex size is comparable to that
predicted by the single-mode theory at We5 10. All these observations are consistent
with the rheometrical response of the two models in steady uniaxial extension. Note that
the MGI model ~which does include CCR but not chain stretch! shows a monotonic
decrease of the size of the upstream vortex, while the integro-differential pom-pom model

FIG. 10. Steady-state streamlines at various values of the Weissenberg number We for the single-mode~left!
and two-mode~right! DCR models with stretch. Flow is from left to right.
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for branched polymers~which includes chain stretch! shows vortex growth that is quali-
tatively similar to what is predicted by the DCR theory@Wapperom and Keunings~2000,
2001!#.

When dealing with highly shear-thinning fluid models, it is always useful to compare
the predictions of the complete viscoelastic theory with those of an inelastic, generalized
Newtonian fluid ~GNF! model with a similar viscosity curve. Here, we consider the
Carreau–Yasuda GNF model@Bird et al. ~1987!#, whose shear viscosity is given by

h 5 h0~11@lII d#a!~n21!/a. ~19!

The four adjustable parameters are the zero-shear-rate viscosityh0 , a time constantl
~which of course does not have the meaning of a relaxation time!, the power-law indexn,
and a numerical parametera.

We have identified the parameters of the Carreau–Yasuda model by fitting the shear
viscosity of the single-mode DCR theory. The fit selected is shown in Fig. 11~a!; it is
obtained with parameter valuesh0 5 1853 Pa s,l 5 1.58 s,n 5 0.16, anda 5 1.3.
Note that the change in slope seen in the DCR results, caused by chain stretch, cannot be
captured by the inelastic model, so there is always a discrepancy in the fit, either for
intermediate or for large values ofġ. This particular fit was chosen since high values of
ġ in shear deformations are only attained very locally in the constriction flow. Using
these parameters, the elongational viscosity predicted by the inelastic model is shown in
Fig. 11~b!. As should be, it is similar to the shear viscosity curve. The DCR increase in
viscosity due to chain stretch cannot be described by the inelastic model.~This is in sharp
contrast with the MGI model, which does not include a Rouse time and corresponding
chain stretch. For this model, the elongational viscosity nearly coincides with the inelastic
‘‘prediction’’ as was shown by Wapperom and Keunings~2000!.#

The steady-state streamlines computed with the inelastic Carreau–Yasuda model are
displayed in Fig. 12 as a function of the dimensionless flow rate~FR!. The latter is
defined such as to be directly comparable to the Weissenberg number for the viscoelastic
results. The absence of elasticity~and of inertia! yields symmetric streamline patterns,
and the monotonic elongation-thinning behavior of the Carreau–Yasuda model yields
vortices of ever-decreasing size. The difference relative to the viscoelastic DCR results in
Fig. 10 is striking indeed. This again is in sharp contrast with results obtained for the
MGI model @Wapperom and Keunings~2000!#.

FIG. 11. ~a! Fit of DCR shear viscosityh with the Carreau–Yasuda inelastic model and~b! corresponding
prediction of extensional viscosityhE .
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We now go back to the DCR viscoelastic results, and report predictions for chain
stretch. Results for the highest Weissenberg numbers are illustrated in Fig. 13. For both
the single- and two-mode models, a stretch boundary layer develops near the constriction
wall. As noted earlier, the large values of stretch predicted by the DCR theory in this
shear-dominated region may not be physically realistic. For the single-mode model
(lmax 5 2.5), the polymers are also severely stretched in the extensional flow at the
centerline~the stretch computed there is only slightly less than that near the constriction

FIG. 12. Carreau-Yasuda inelastic model: Steady-state streamlines as a function of the dimensionless flow rate.
Flow is from left to right.

FIG. 13. Chain stretchl for single-mode~We 5 30; top! and two-mode~We 5 100; bottom! DCR models.
Flow is from left to right and a zoom of the constriction region is shown.
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wall!. For the two-mode model (lmax 5 10), polymers are much more stretched near the
constriction wall than near the centerline.

Experimentally, a common way of measuring stress in complex flows of polymeric
fluids is to take birefringence data and apply the stress-optical rule, assuming that it
holds. Using the simulation results, we can readily quantify departures of the DCR theory
from this rule. To do so, we compute the ratio of the nondimensional stressT/G and the
refractive indexn/K. The stress-optical rule holds if this ratio is equal to 1. Using Eqs.
~4! and~5! for the single-mode model, we find that the stress-optical ratio reduces to the
scalar quantity (lmax21)/(lmax2l). Contour lines are displayed in Fig. 14. Clearly,
deviation from the stress-optical rule is severe in a significant part of the flow domain, not
only in the constriction region but also upstream. The stress-optical ratio is of the order of
2 at the centerline, where elongation dominates, while it reaches a value of 2.7 in the wall
boundary layer where shear dominates~and where the large DCR stretch predictions are
of questionable validity!. Downstream of the constriction, stress and stretch relax fast so
the stress-optical ratio quickly recovers its equilibrium value of 1.

Equations~10! and ~11! for the multimode model show that the stress-optical ratio
does not reduce to a simple scalar factor. For the sake of illustration, the ratio depicted in
Fig. 14 is calculated using therr components. Although the Weissenberg number is more
than three times as large as that for the single-mode model, the deviations from the
stress-optical rule are much smaller. Also, they are mainly located in a boundary layer
near the constriction wall. At the centerline, the maximum deviation is less than 15%. The
reason for this is that chain stretch for the single-mode model is relatively closer to its
maximum valuelmax ~see Fig. 13!, which results in a large ratio (lmax21)/(lmax2l).

The present work shows that chain stretch as implemented in the DCR theory has a
dramatic impact on upstream vortex growth in flow through a constriction. Wapperom
and Keunings~2001! made a qualitatively similar observation using the integro-
differential pom-pom model for branched polymers. They also observed, however, that

FIG. 14. Stress-optical ratio predicted by the single-mode~We 5 30; top! and two-mode~We 5 100; bottom!
DCR models with stretch. Flow is from left to right and a zoom of the constriction region is shown.
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the pressure drop in the constriction was not affected much by vortex growth: the pom-
pom pressure drop results are practically identical to those obtained with either the MGI
model or its Carreau–Yasuda inelastic fit. Following Wapperom and Keunings~2001!, we
define a dimensionless pressure drop as the ratio (Dp2Dp0)/Dp0, whereDp is the total
pressure drop in the flow domain andDp0 corresponds to fully developed Poiseuille flow
in a tube without constriction, i.e., of length 40R and radius 4R. The results are plotted
in Fig. 15. Although differences with the inelastic model are larger than those for the
pom-pom model@Wapperom and Keunings~2001!#, they are not qualitatively significant.
Since corresponding experimental data for monodisperse linear polymers are unfortu-
nately not yet available, it is too early at this stage to state that such a puzzling result
points to a basic problem with tube-based theories.

VII. CONCLUDING REMARKS

We have investigated the rheometrical and complex flow response of the DCR differ-
ential model with chain stretch. Both a single- and a two-mode model was used, with the
parameter values identified by Ianniruberto and Marrucci~2002! for a monodisperse
polybutadiene solution.

While the DCR theory provides satisfactory predictions of shear data in the narrow
range of experimental shear rates@Ianniruberto and Marrucci~2002!#, it shows anoma-
lous shear thickening over an intermediate range of~larger! shear rates. The model also
predicts that the maximum chain stretch is reached asymptotically in fast shear flows.
Whether this particular result is physically realistic is debatable. The original integro-
differential DCR model with stretch, the differential version of which is a mathematical
approximation, also predicts anomalous shear thickening and large stretch in fast shear
flows. Moreover, the integro-differential model shows excessive shear thinning at high
shear rates, while its differential approximation remains stable for all shear rates. These
results point to the need for further theoretical development. One common feature of
most available tube theories for entangled polymers, including the DCR model, is the use
of a decoupling approximation between orientation and stretch. The impact of this ap-
proximation is not known at present, but it deserves detailed investigation.

FIG. 15. Dimensionless pressure drop as a function of the Weissenberg number for the single- and two-mode
DCR models with stretch. We also show results for the inelastic Carreau–Yasuda fit.

264 WAPPEROM, KEUNINGS, AND IANNIRUBERTO



Finally, we have performed numerical simulations with the differential DCR model for
start-up flows through an axisymmetric constriction geometry. Significant chain stretch is
predicted in the vicinity of the axis of symmetry and in thin boundary layers located at
the constriction wall. As a result, the DCR predictions largely depart from the stress-
optical rule in these flow regions. Chain stretch also affects the flow kinematics, with the
appearance of a large upstream steady-state vortex. Surprisingly, however, the predicted
pressure drop is not affected much by these kinematical changes, and it can be described
qualitatively by a simple inelastic, shear-thinning model. Since corresponding experimen-
tal pressure data for monodisperse linear polymers are not yet available, it is too early to
state that something is missing in the theory in that regard.
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