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The temperature dependence of zero-shear viscogjtpr( The parameters identified by fitting eq 2 or eq 3 to experimental
terminal flow relaxation timex( is one of the most fundamental ~ data are quite variable depending on chemical composition and
properties of polymer meltsGenerally, the viscositytemper- the experimentally accessible temperature range. Typically, for
ature behavior is divided in two regions, although Ngai and the VFT form,zo ~ 10712—10"2° s, B ~ 5002500 K, andTg
PlazeR have proposed four groups of relaxation mechanisms — To ~ 30—80 K. It is therefore logical that no master curve
above the glass transition temperat@gén the coupling model. can be constructed for the viscosity of different polymergvs
Each region is described by semiempirical functions involving — Tg.29 Similarly, the so-called “universalC,9 = 17.44 and
two or three adjustable parameters (whose physical significanceCz? = 51.6 WLF constants (fof, = Tg) only work in limited
is not always clear). The first region is located at temperatures cases. It is worth noting that Plazek and Nd&inormalized
well aboveTy, i.e., Ty + 100 °C or ~ 1.3Ty, and follows a the local segmental relaxation based on the temperature ratio
simple Arrhenius equation: (T — Ty)/Ty and the coupling constant (or the stretched exponent)

n.
E In this well-known context, Ding and Sokolbvhave very
7(T) =Aex;{—a) 1) recently made a rather surprising observation, i.e., that the
RT) temperature dependence of the terminal relaxation time of six
. ) polymers could be reduced to a master curve bly-acaled
whereR s the gas constant anidis the absolute temperature.  Aprhenjus plot. The authors indicate that obserVg scaling
The preexponential factdk is related to the polymer chemical  refiects the energetic scaling of the friction coefficient and state
composition (more specifically to the monomeric friction  {ha¢ it would be important to verify whether this universality
coefficient) as well as the molecular weight (MW) and its || hold also for chain relaxation in other polymeric systems”.
distribution. The parametek, is called the flow activation  \joreover, the results reported by Ding and Sokolov only cover
energy. It depends on chemical composition and architecture 5 narrowTy/T range from 0.825 to 1 (equivalent TT, from

but is independent of MW or distributich. . 1 to 1.2) and are located entirely in the non-Arrhenius (WLF)
At lower temperatures, in the range fromto Ty + 100°C, region. It would also be of interest to check whether the
the WLF equatiofihas to be used instead: universality extends in the “Arrhenius” region.
The objective of the present note is to verify and expand the
—C(T—-T) validity of the Ty/T universal scaling by analyzing a large set
log o = C,+(T—T) @ of dynamic moduli data in a broad temperature range. We have

compiled experimental results for 14 widely different amorphous
—16 \pnji i _
HereC; andC; are adjustable parameters. The shift facter Eglﬂrgr_?h%rdc;gc;lg?f ﬁ ex'zglrtlr(;'é-’l(;lq r;r;%ggfr(f)rr?wnl tol g?'lfﬁe
is defined as)(T)Tipi/i(Tr)Tp," wherep is the density and the o515 are shown in Figure 1, where a vertical shift (fadtdr
subscript r refers to properties of a reference state. Because 0{5 needed to superpose the data of other polymers on the PBD
the relatively small temperature dependencd@iiTp, or is curve. A universal dependenceaf vs Ty/T is indeed observed
nea_rly the same ag(T)/n(Tr). The WLF equation is stn_ctly for all the polymers in both the non-Arrhenius and Arrhenius
equivalent to the VogelFulcher-Tammann (VFT) expressidn:  oqions. Moreover, our observations are entirely coherent with
those reported in ref 11 since a set of datfor atactic
"Unité de Chimie et de Physique des Hauts Polyese Universite polypropylene (aPP) included in both papers is consistent with
catholique de Louvain. all others.
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Figure 1. Tg-scaled Arrhenius plots of shift factors (dynamic measurements) for different polymers: polycarbondtec{fel®) olefin copolymers
(COCs): four ethylenenorbornene copolymers and four ethylettetracyclododecene copolymers withfrom 80 to 177°C,'® polyisobutylene
(PIB),** polybutadiene (PBDY; polyisoprene (PI}® polystyrene (PS); atactic polypropylene (aPP).The errors in the shift factors are typically
within a factor 2. Vertical shift (factoA’) was applied for superposition. The bold line represents a linear relation fetrlog T/ T at T > 1.3T,.

Therefore, the flow activation energ¥, can be directly

correlated with the glass transition temperature: 32 4
Calculated from

E,= CRTg (6) L New Equations

n
o

with C a universal constant.

On the basis of free volume concepts, Wang and Fdrtere
proposed a semiempirical equation Ein the Arrhenius region
(for temperatures abovg; + 150 °C):

E*, Kcal/mol
>

_ RT(T,+ 150f
0.164(0.23, + 150)

() 8

a

The Wang-Porter relation has been validated for a large set of .

polymers as shown in Figure 2 (reproduced from Figure 4 of 120 200 280 360 440

ref 3). However, a lineaily dependence following eq 6 can Tg K

roughly capture the trend (bold line in Figure 2). Figure 2. Flow activation energy. of polymers as a function dF,.
The Wang-Porter equation is based on two assumptions. The The curve represents the WarBorter relation (eq 7). The bold line

first one is the SimhaBoyer relationt” which expresses that  represents a linear correlation betwegnand T, according to eq 6.

free volume affy is a constant: Reprinted with permission from ref 3. Copyright 1995 Springer Verlag.
0T, = 0.164 (8) The ratioTo/Ty is related tom as
whereq, is the volume expansion coefficient abokg Although TIT,~ 1 - 17 (11)
m

the Simha-Boyer equation does not work for all polymers, it
is obeyed in many casééTherefore, the parameté in the
VFT equation is directly and universally related Tg.3 The
second assumption for the WanBorter equation is the
Adams-Gibbs relatior?

Combining eqgs 9 and 11 gives a value for m close to 50, which
is precisely what Ding and Sokolov have observed for the chain
relaxation time'!
The universal scaling illustrated by Figure 1 can further be
T,=0.7TT, 9) linearized by using a suitable function of the rescaled temper-
9 atureT = T/Ty. With the help of eqs 8 and 9, the VFT equation
(eq 3-1) can be simplified as follows:

@) =log K + log (aA) =

Mo

Equation 9 is based on the GibbBiMarzio lattice modef

and relatesly to the temperaturd@y at which the equilibrium
g | y N ( B/2.303  CyT

conformational entropy becomes zero. This relationship is |oqg = =
T—-T, T-0.77T
9

consistent with an observation made by Ding and Sokdlov

about the “fragility” parametem() describing the steepness of C,
the temperature dependence of the relaxation time: T —077 (12)
— dlogr (10) wherernq is related to the polymer chemical composition and

= lr=t
d(Tg/T) 9 MW, the constanK = #(T,)/no for PBD, A’ is a vertical shift
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Figure 3. Data of Figure 1 replotted as lagrA' vs Ty/(T — 0.77Ty). The dashed line corresponds a slope of 3. NoteT*1# 0.77) range from

1 to 3 corresponds td/Ty ranging from 1.1 to 1.77.

factor (same as in Figure 1) for superposing the data of other
polymers on the PBD data, ai@j is a constant. When all data
in Figure 1 are replotted as lagfA’) vs (T* — 0.77) 1 in Figure

3, a universalinear relation is found for all tested polymers in
the non-Arrhenius as well as the Arrhenius regioBg.is a
universalconstant with a value close to 3 (dashed line in Figure
3). To our knowledge, this universiihear relationship has not
been shown before. Van Krevelen and Hofty2drave previ-
ously proposed a universal relation for viscosity with a rescaled
T/Ty temperature. However, they use an additiomapirical
parameter to arbitrarily compress or extend the vertical axis.

The universal relationships can also be used for practical
purposes. If the preexponential facté®r 7o in eq 1 or 3 are
known from single point measurements on a given polymer,
the viscosity can be estimated for all molecular weights in a
broad range of temperature¥/ Ty ~ 1.1-1.8 in Figure 3) by
combining the universal temperature dependence with the well-
known 3.4 power law dependence for molecular weight.
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