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Abstract Experimental findings and rheological modelling
of chemically treated single-wall carbon nanotubes sus-
pended in an epoxy resin were addressed in a recent
publication (Ma et al., J Rheol 53:547–573, 2009). The
shear-thinning behaviour was successfully modelled by a
Fokker-Planck-based orientation model. However, the pro-
posed model failed to describe linear viscoelasticity using
a single mode as well as the relaxation after applying
a finite step strain. Both experiments revealed a power-
law behaviour for the storage and relaxation moduli. In
this paper, we show that a single-mode fractional diffusion
model is able to predict these experimental observations.
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Introduction

The rheological modelling of untreated and chemically
treated carbon nanotubes (CNTs) suspended in an epoxy
resin was addressed in Ma et al. (2008). The resulting
models were applied to simulate complex flows (Cueto
et al. 2008; 2010).

The untreated CNT suspensions exhibited significant
shear-thinning behaviour in a steady-state simple shear
flow and contained optically resolvable aggregate structures
depending on the applied shear rate (Ma et al. 2008). A sim-
ple orientation model, based on a Fokker-Planck advection-
diffusion description, failed to capture the experimentally
observed rheological responses for untreated CNT suspen-
sions. A new model named the ‘aggregation/orientation’
(AO) model was then developed to describe the experi-
mental findings (Ma et al. 2008). A hierarchy of states
between CNTs that are free from entanglement and a com-
plete CNT network were incorporated into the AO model,
thereby enabling different microstructure populations to
exist for different shear conditions. Using a small number
of adjustable parameters, it was found that the experimental
data could be fitted with reasonable accuracy. A comparison
between the rheology of CNTs and carbon black suspen-
sions was carried out in Yearsley et al. (2012). These studies
motivated our recent works on the modelling and simulation
of CNT aggregates (Abisset-Chavanne et al. 2013; 2014).

In the case of chemically treated CNTs suspended in
an epoxy resin, the aggregation is prevented and we can
consider that we are dealing with a large population of
free rods in the diluted regime or rods experiencing inter-
actions in the semi-concentrated or concentrated regimes.
Thus, when a suspension of functionalized CNTs was
subject to a steady-state shear flow, it exhibited a shear-
thinning behaviour, which was subsequently modelled by a
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Fokker-Planck (FP)-based orientation model (Ma et al.
2009). The model assumes that the shear flow aligns the
CNTs in the flow direction, but there are events such as
Brownian motion and tube-tube interactions that randomize
the orientation. In the FP-based orientation model, ran-
domizing events were modelled with an appropriate rotary
diffusion coefficient (Dr ) and the shear-thinning behaviour
was explained in terms of progressive alignment of CNTs
towards the shear direction.

With regard to linear viscoelasticity (LVE), small-
amplitude oscillatory measurements revealed mild elasticity
for semi-diluted, treated CNT suspensions. The exact origin
for this elasticity is not clear, and both tube-tube interac-
tions and bending/stretching of CNTs have been proposed
by other authors as possible origins (see Cruz et al. (2010)
and the references therein).

Intuitively, chemical treatment creates a weakly intercon-
nected network of CNTs and it is believed that the mild
elasticity originates from this weak network as well as other
randomizing events (Brownian motion and tube-tube hydro-
dynamic interactions). Step strain experiments confirmed
the presence of a weak network at small strains, which was
found to be destroyed at large strains.

Brownian dynamics modelling was addressed in Cruz
et al. (2010) and (2012), where the elasticity effects were
explained as a direct consequence of the bending of CNTs
having a non-straight natural configuration due to side-wall
defects.

Experimental LVE data of the treated CNT suspensions
were fitted in Ma et al. (2009) using the FP-based orien-
tation model with an effective diffusion coefficient term.
An empirical relation was subsequently identified for the
effective diffusion term that assumed a dependency of the
diffusion coefficient on the applied frequency in order to
avoid the introduction of a large number of mechanisms that
are difficult to support on physical grounds.

It should be noticed, however, that such an approach
based on the use of a single mode and a diffusion coef-
ficient depending on the applied frequency is inconsistent.
Indeed, we firstly assumed linearity, i.e. a diffusion coeffi-
cient independent on the applied frequency. Then, in order
to fit the experimental results, the diffusion coefficient was
assumed to be dependent on the applied frequency. Thus,
from a linear assumption, we concluded on a non-linear
behaviour that invalidated the analysis carried out. Con-
cerning the relaxation after applying a finite step strain, the
model presented in Ma et al. (2009) was unable to describe
the experimental results that again exhibit a power-law evo-
lution instead of the exponential one that the proposed
model predicted.

In this paper, we revisit the experimental results reported
in Ma et al. (2009) concerning chemically treated CNTs,
in particular those related to LVE and step strain relaxation

after applying a finite step strain. We show that a fractional
diffusion model with a single mode is only able to predict
the power-law behaviour observed in both experiments.

Experimental details

In what follows, we briefly summarize the experiments car-
ried out by Ma and Mackley in Cambridge, whose results
were reported in Ma et al. (2009).

Single-walled CNTs were produced by high-pressure
carbon monoxide disproportionation that were supplied by
Nanocomposites Inc., USA. In the case of treated CNTs,
aggregation was prevented by covalently attaching arene-
diazonium salts onto the sidewall of CNTs. The treated
CNT suspensions were stabilized via electrostatic repulsion
between CNTs.

Microstructure of resulting mixtures was optically char-
acterized using the Cambridge Shear System. Optical anal-
ysis proved that the suspension showed no optically resolv-
able aggregates of CNTs, and the mixture was well dis-
persed at the micron level. By contrast, the untreated CNT
suspension consisted of optically resolvable CNT aggre-
gates (Rahatekar et al. 2006).

Rheological measurements were made using an ARES
strain-controlled rheometer with 50-mm parallel plates and
a gap size of 0.3 mm. In the small-amplitude oscillatory
shear experiment, a strain amplitude of 1 % was used. In
order to minimize the possible complication from sample
loading, samples were slowly squeezed between the parallel
plates and were rested for at least 2 h before any measure-
ments were carried out. Step strain experiments were carried
out in order to explore the transition from small to large
strain deformations.

LVE of CNT suspensions was studied using small-
amplitude oscillatory measurements. Epoxy resin showed
the scattered G′ data with torque values very close to the
detection limit of the transducer, implying that the elastic-
ity of the matrix is negligible (G′

epoxy ≈ 0). Epoxy behaved
essentially as a Newtonian fluid with viscous dissipation
that is consistent with steady shear measurements. Addition
of CNTs increased the values of both G′ and G′′ as reported
in Ma et al. (2009). Measurements were made at a strain
of 1 %, which was well within the linear strain response of
the suspensions. The enhancement of G′ was concentration
dependent and more pronounced at high concentration lev-
els (0.2 and 0.5 %). The evolution of G′ as a function of
frequency is consistent with experimental results reported
by Song and Youn (2005) and Xu et al. (2005). The addi-
tion of CNTs increased the elasticity of the system as a
whole (Ma et al. 2009). This response is very different from
that of a typical short-fibre suspension, where the addition
of fibres was reported to have no extra contribution to the
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storage modulus (G′) of the suspending medium (Carter
1967; Ganani and Powell 1986).

To assess the relative importance of viscous and elastic
contributions at a given concentration, we show in Fig. 1 the
obtained data for G′, G′′ and η∗ for the 0.5 % CNT suspen-
sion. The value of G′′ was observed to be higher than that of
G′ within the full range of frequency studied, which implies
that the elasticity associated with the addition of CNTs is
mild. Although the elastic response is relatively weak, it is
interesting to note that the experimental evolution of G′ and
G′′ does not follow the prediction of a single-mode Maxwell
model.

A series of step strain experiments were carried out in
order to reveal a more detailed relaxation behaviour of the
treated CNT suspensions and to offer insights into the ori-
gin of elasticity. A finite step strain (γ0) was applied to
the CNT suspensions, and the process of stress relaxation
was followed using the strain-controlled ARES rheometer.
Figure 2 shows the time evolution of the relaxation mod-
ulus (G), which is defined as G = τ

γ0
, for a 0.5 % CNT

suspension and different values of the step strain. The step-
per motor had a response time of about 0.1 s (as indicated
in the figure), and for the epoxy matrix, the stress dissi-
pated almost instantaneously consistent with the fact that
it behaved essentially as a simple Newtonian fluid in both
steady shear and LVE experiments. The addition of CNTs
prolonged the stress relaxation process, with the CNT sus-
pensions showing a viscoelastic response. The effect was
progressive as the CNT concentration increased, and this
confirmed the earlier LVE experiments that the addition of
CNTs effectively increases the elasticity of the system as a
whole.

Fig. 1 Linear viscoelastic (LVE) data, which include the storage mod-
ulus (G′), the loss modulus (G′′) and the complex viscosity (η∗) as a
function of frequency for the 0.5 % treated CNT suspension (Ma et al.
2009)

Fig. 2 Stress relaxation data for the 0.5 % CNT suspension with
varying magnitudes of step strain (Ma et al. 2009)

Strains of different magnitudes were applied to the 0.5 %
CNT suspension. Figure 2 shows a strain dependence in
terms of the final mode of stress relaxation. At small strains
(1, 5 and 10 %), the CNT suspension responded essentially
as an entangled gel. At high strain, the CNT suspension
behaved in a dominantly viscous fluid manner. Intuitively,
the strain-dependence relaxation process can be explained
by yielding a network (Amari and Watanabe 1980; Mewis
and Meire 1984). Depending on the strength of the net-
work, if a large enough strain is applied, the network will
be broken down and will finally dissipate as a fluid. The
network for the 0.5 % suspension is considered to be a rel-
atively weak one, and it broke down at a strain level higher
than 10 %. These findings have two implications. Firstly, it
is highly probable that the mild elasticity observed in LVE
measurements is linked to the presence of a weak CNT net-
work. Secondly, the effect of elasticity is negligible at a high
strain level, in line with the non-linear experiments reported
in Ma et al. (2009) that revealed small diffusion effects
attributed to Brownian effects and tube-tube hydrodynamic
interactions.

Standard modelling

A standard modelling study was carried out in the study
of Ma et al. (2009) by considering Brownian suspensions
involving rods (ellipsoids of infinite aspect ratio). The main
ingredients of the model are summarized in this section.
For a more detailed discussion of the multiscale modelling
of non-Brownian and Brownian suspensions of rods, see
Chinesta (2013).

The extra-stress tensor of the suspension is given by

τ = 2ηD + 2ηNp (D : A) + βDr

(
a − I

d

)
(1)

where η is the viscosity of the suspending fluid (epoxy
resin), D is the rate of strain tensor (symmetric part of
the velocity gradient tensor ∇v), Np is the particle number
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that depends on the rod concentration, and a and A are the
second- and fourth-order orientation tensors, respectively,
defined as (Advani and Tucker 1987)

a(x, t) =
∫
�

p ⊗ p ψ(x, t, p) dp (2)

and

A(x, t) =
∫
�

p ⊗ p ⊗ p ⊗ p ψ(x, t, p) dp (3)

where the unit vector p defines the rod orientation, � is
the surface of the unit ball, and ψ(x, t, p) is the orientation
distribution function that gives the fraction of rods that at
position x and time t , are aligned along the direction p; Dr

is the diffusion coefficient, β is the parameter affecting the
diffusion term, I is the unit tensor, and d is the dimension of
physical space (d = 2 or 3).

The evolution equation for the second-order orientation
tensor was derived in detail in the study of Chinesta (2013)

ȧ = ∇v · a + a · (∇v)T − 2A : D − 2dDr

(
a − I

d

)
. (4)

In order to close the model, a suitable closure relation
expressing A as the function of a is needed. Among the
numerous available closure relations (Dupret and Verleye
1999; Kroger et al. 2008), we consider in what follows the
linear closure relation that becomes exact for an isotropic
distribution function (Advani and Tucker 1990).

LVE modelling

As LVE involves a small-amplitude oscillation applied to an
essentially isotropic suspension (aiso ≈ I

3 ), the linear clo-
sure relation is expected to be an accurate approximation for
describing A. The linear closure reads (Advani and Tucker
1990):

Alin
ijkl(a) = − 1

35

(
Iij Ikl + IikIj l + IilIjk

)

+1

7

(
aij Ikl + aikIj l + ailIjk + aklIij

+aj lIik + ajkIil

)
. (5)

To predict the shear stress τ12, we need to compute the
component (A : a)12 as well as the component a12 involved
in the diffusion term of Eq. 1. Taking into account that the
applied flow (small-amplitude oscillation) implies the strain
rate

D =
⎛
⎝ 0 γ̇

2 0
γ̇
2 0 0
0 0 0

⎞
⎠ (6)

and that it only induces a small perturbation of the isotropic
orientation state

aiso =
⎛
⎝

1
3 0 0
0 1

3 0
0 0 1

3

⎞
⎠ , (7)

the linear closure approximation (5) yields (A : D)12 ≈
(Alin(aiso) : D)12 = γ̇

15 .
Thus, the shear stress can be approximated in the general

3D case by

τ12 ≈ ηγ̇ + 2

15
ηNpγ̇ + βDra12 (8)

wherein we can identify a viscous component (the one
affected by γ̇ ) and an elastic one (the one that does not
depend on γ̇ ). Obviously, elastic effects will be associated
to the last contribution that in fact corresponds to diffusion
effects that depend linearly on component a12. In order to
evaluate the time evolution of a12, we consider (4) in the
general 3D case (d = 3):

ȧ = ∇v · a + a · (∇v)T − 2 · A : D − 6Dr

(
a − I

3

)
. (9)

Now, using the same approximations as in the previous
paragraphs, we obtain (∇v ·a+a ·(∇v)T −2 ·A : D)12 ≈ γ̇

5 .
Thus, (9) reduces to

ȧ12 ≈ γ̇

5
− 6Dra12. (10)

For the sake of notational simplicity, we define a12 ≡ a

and τ12 ≡ τ . Thus, the LVE model reads
{

τ ≈ ηγ̇ + 2
15ηNpγ̇ + βDra

ȧ ≈ γ̇
5 − 6Dra

. (11)

Now, let us apply the small-amplitude oscillation γ (t)

given by

γ = γ0e
iωt , (12)

with i = √−1, which results in the shear rate

γ̇ = iωγ0e
iωt . (13)

From the second equation in Eq. 11, we can expect that
a(t) has the same oscillation frequency, but with a certain
phase delay (ϕ), that is

a = a0e
iωt−iϕ = ã0e

iωt . (14)

Introducing expressions (13) and (14) into the second
equation in Eq. 11 and using the notations of Ma et al.
(2009), λ = 1

6Dr
and μ = 1

30Dr
, we obtain

iωλã0 + ã0 = iωμγ0, (15)
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from which we have

ã0 =
(

λμω2

1 + λ2ω2 + i
μω

1 + λ2ω2

)
γ0. (16)

With this result, we go back to the stress expression (first
equation in Eq. 11) and write the complex stress amplitude
according to

τ̃ = γ0

(
iωη

(
1 + 2

15Np

)
+ βDr

(
λμω2

1+λ2ω2 + i
μω

1+λ2ω2

))
,

(17)

from which we can identify the storage and loss moduli,{
G′ = 	(τ̃ )

γ0

G′′ = 
(τ̃ )
γ0

, (18)

where 	(τ̃ ) and 
(τ̃ ) denote the real and imaginary part of
τ̃ , respectively. We obtain

G′ = βDr
λμω2

1 + λ2ω2
, (19)

and

G′′ = ωη

(
1 + 2

15
Np

)
+ βDr

μω

1 + λ2ω2 . (20)

Thus, the loss modulus scales linearly with the fre-
quency (ω) of the applied oscillation in agreement with the
experimental findings.

The storage modulus (G′) scales at small frequencies
with the square ω2 of the applied frequency. This result,
however, is inconsistent with the experimental findings
reported in Ma et al. (2009). See Fig. 1, wherein the storage
modulus is observed to scale roughly as ω0.6.

In Eq. 19, we notice that Dr appears at the power −1
as both μ and λ are proportional to D−1

r . Thus, by assum-
ing that Dr is proportional to an adequate power (p) of
the applied frequency (ω), i.e. Dr ∝ ωp, one could con-
trol the fitting process. This was the route considered in
Ma et al. (2009). It is important, however, to emphasize
that this route implies a certain inconsistency: assuming a
frequency-dependent diffusion coefficient implies a non-
linear behaviour, while the entire analysis is based on a
linearity assumption. The authors followed this route in the
study of Ma et al. (2009) to avoid the introduction of many
relaxation modes.

These relaxation modes could be associated with poly-
dispersity, with thermally activated bending or flow-induced
bending in the case of non-straight CNTs as proposed by
Cruz et al. (2010) and (2012). In absence of the required
information, however, the use of multiple modes reduces to
the simple identification of the associated parameters.

In the “Fractional modelling” section, we propose an
alternative, consistent and physically supported approach
based on the concept of fractional derivatives.

Step strain modelling

After applying the step strain, the stress relaxation results
from Eq. 1, assuming the fluid at rest

τ = βDra, (21)

were again τ = τ12 and a = a12. The evolution of a can be
calculated from Eq. 4 that, in the absence of flow, reduces to

da

dt
= −6Dra. (22)

This yields an exponential decay for a and, consequently,
the same decay for the shear stress τ . As discussed in the
study of Ma et al. (2009), the predicted exponential decay
does not agree with the power-law behaviour observed
experimentally.

Fractional modelling

In complex fluids, micro-rheological experiments often
exhibit anomalous sub-diffusion or sticky diffusion, in
which the mean square displacement of Brownian tracer
particles is found to scale as 〈x2〉 ∝ tα with 0 < α < 1
(see Jaishankar and McKinley (2012) and the references
therein). In these cases, the use of non-integer derivatives
can constitute an appealing alternative as it allows one to
correctly reproduce the observed physical behaviour while
keeping the model as simple as possible. Moreover, from
a physical point of view, the use of non-integer derivatives
introduces a degree of non-locality that seems in agreement
with the intrinsic nature of the physical system.

In the case of semi-diluted and semi-concentrated sus-
pensions of functionalized CNTs, the chemical treatment
creates a weakly interconnected network of CNTs responsi-
ble for the mild elasticity observed experimentally. In such
a percolated system, the Brownian motion is expected to be
disturbed and to exhibit anomalous diffusion.

It is well known that standard diffusion mechanisms
imply a Brownian velocity

ṗ|B = −Dr

∂ψ
∂p

ψ
(23)

that leads to the equations considered in the previous
section.

A fractional counterpart consists in generalizing (23) by
assuming a non-integer time derivative

dαp
dtα

∣∣∣∣
B

= −Dr

∂ψ
∂p

ψ
(24)

where one could expect from the experimental data that α <

1. See Appendix A for additional information on fractional
derivatives.
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Now, in view (2), the time derivative of the second-order
orientation tensor a reads

da
dt

=
∫
�

(ṗ ⊗ p + p ⊗ ṗ) ψ dp. (25)

Here, the effective rotary velocity ṗ is given by

ṗ = ṗ|J + ṗ|B (26)

where ṗ|J is the flow-induced velocity expressed from
Jeffery’s equation (Jeffery 1922; Chinesta 2013)

ṗ|J = ∇v · p − (∇v : (p ⊗ p)) p, (27)

and ṗ|B is the velocity related to fractional diffusion

ṗ|B = −Dr

d1−α

dt1−α

(
dαp
dtα

∣∣∣∣
B
)

= −Dr

d1−α

dt1−α

( ∂ψ
∂p

ψ

)
. (28)

Introducing the effective rotary velocity into Eq. 25 and
proceeding as described in Appendix B, we obtain

da
dt

= ȧ|J − 6Dr
d1−α

dt1−α

(
a − I

3

)
(29)

with ȧ|J = ∇v · a + a · (∇v)T − 2(A : ∇v).

LVE fractional model

Since the extra-stress tensor of the suspension is given by

τ = 2ηD + 2ηNp (D : A) + βDr

(
a − I

3

)
(30)

and using again the linear closure and the same rationale as
in the “ Standard modelling” section, we obtain

τ12 ≈ ηγ̇ + 2

15
ηNpγ̇ + βDra12. (31)

On the other hand, the orientation evolution equation
reads

ȧ = ∇v·a+a·(∇v)T −2A : D−6Dr

d1−α

dt1−α

(
a − I

3

)
. (32)

With the notations a12 ≡ a and τ12 ≡ τ , the LVE
fractional model thus yields
{

τ ≈ ηγ̇ + 2
15ηNpγ̇ + βDra

da
dt

≈ γ̇
5 − 6Dr

d1−αa

dt1−α

. (33)

As in the “LVE modelling” section, we apply the small-
amplitude oscillation γ (t) = γ0e

iωt . From the second
equation in Eq. 33, we expect that a(t) has the same
oscillation frequency, but with a certain phase delay (ϕ),
that is

a = a0e
iωt−iϕ = ã0e

iωt . (34)

With the notations λ = 1
6Dr

and μ = 1
30Dr

, we obtain

iωλã0 + (iω)1−αã0 = iωμγ0 (35)

where i1−α = χ + iν, with χ2 + ν2 = 1. Thus, Eq. 35 can
be rewritten as

iωλã0 + (χ + iν)ω1−αã0 = iωμγ0, (36)

Fig. 3 LVE storage modulus for
different values of the derivative
order (Dr = 15 and β = 190)
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Fig. 4 LVE storage modulus
for different values of the
diffusion coefficient (Dr )
(α = 0.6 and β = 190)
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from which we have

ã0 = γ0

(
λμω2+μνω2−α

χ2ω2(1−α)+(ωλ+νω1−α)2

+ i
μχω2−α

χ2ω2(1−α)+(ωλ+νω1−α)2

)
.

(37)

Note that for the case of the integer model α = 1, we
have χ = 1 and ν = 0, and the previous expression reduces
to the one considered in the “Standard modelling” section.

From Eq. 37, we go back to the stress expression (first
equation in Eq. 33) and write the complex stress amplitude
according to

τ̃ = γ0

(
iωη

(
1 + 2

15Np

)

+ βDr

(
λμω2+μνω2−α

χ2ω2(1−α)+(ωλ+νω1−α)2

+ i
μχω2−α

χ2ω2(1−α)+(ωλ+νω1−α)2

))
,

(38)

Fig. 5 Step strain modulus for
different values of the derivative
order (Dr = 15 and β = 190)
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Fig. 6 Step strain modulus for
different values of the diffusion
coefficient (Dr) (α = 0.6 and
β = 190)
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from which we identify the storage modulus,

G′ = βDr

λμω2 + μνω2−α

χ2ω2(1−α) + (ωλ + νω1−α)2
, (39)

and the loss modulus,

G′′ = ωη
(

1 + 2
15Np

)
+ βDr

μχω2−α

χ2ω2(1−α)+(ωλ+νω1−α)2 . (40)

At small frequencies, the predicted storage modulus (G′)
scales as ωα, i.e. with the power α of the applied frequency.
Thus, it suffices to select α = 0.6 to describe the observed

experimental behaviour in the framework of a consistent
linear and single-mode theory.

Step strain fractional model

As in the “Step strain modelling” section, the stress relax-
ation after a step strain is given by

τ = βDra (41)

Fig. 7 LVE storage modulus.
Prediction of the fractional
model (α = 0.6, Dr = 15 and
β = 190) versus experimental
data
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Fig. 8 Step strain modulus.
Prediction of the fractional
model (α = 0.6, Dr = 15 and
β = 190) versus experimental
data
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where the evolution of a is now calculated from

da

dt
= −6Dr

da1−α

dt1−α
, (42)

instead of using the standard integer model (22). The
numerical solution of Eq. 42 injected into Eq. 41 yields a
prediction of stress relaxation.

As shown in the next section, the use of the fractional
model indeed leads to a power-law behaviour in agreement
with the experimental findings.

Fractional model predictions versus experimental data

In what follows, we discuss predictions of the proposed
fractional model in terms of the LVE storage modulus (G′)
and the step strain modulus (G).

The fractional model has three parameters: (i) the deriva-
tive order (α), (ii) the diffusion coefficient (Dr ) and (iii) the
parameter (β) that quantifies the stress response.

The derivative order (α) can be identified easily as
it determines the slopes of G′ and G. The coeffi-
cients Dr and β are adjusted to fit the experimental
data.

Figures 3 and 4 depict the global behaviour of the storage
modulus for different values of the derivative order (α) and
the diffusion coefficient (Dr ), respectively. Figures 5 and 6
depict similar predictions for the time evolution of G in step
strain.

Finally, the fractional model fitting of LVE and step
strain experimental data was performed by considering α =

0.6, Dr = 15 and β = 190. Figures 7 and 8 depict the
fit for the storage modulus and the step strain relaxation,
respectively. An excellent agreement is obtained, giving us
confidence as to the relevance of the proposed fractional
model.

Conclusions

We have revisited in this paper the rheological modelling of
chemically treated CNT suspensions, first addressed in the
study of Ma et al. (2009). It was noticed in LVE experiments
that such suspensions exhibit mild elasticity characterized
by storage modulus scaling with the power 0.6 of the applied
frequency.

The elasticity resulting from the standard Brownian
rotary diffusion is unable to match these experimental data
by considering a single-mode model. Obviously, one possi-
bility consists in introducing a spectrum of relaxation times
able to fit available data, but such an approach is difficult to
support physically.

Many authors noticed the existence of anomalous dif-
fusion mechanisms and proposed to model these phenom-
ena by means of models involving fractional (non-integer)
derivatives. In this work, we followed a similar route for
modelling the LVE and step strain behaviour of chemically
treated CNT suspensions. We have shown that a single-
mode fractional derivative description of rotary diffusion
with a derivative order (α = 0.6) suffices for describing the
available experimental data.
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Appendix A: On fractional derivatives

There are many books on fractional calculus and fractional
differential equations (e.g. Kilbas et al. 2006; Podlubny
1999). We summarize here the main concepts needed to
understand the developments carried out in this paper.

We start with the formula usually attributed to Cauchy
for evaluating the nth integration, n ∈ �, of a function f (t)

J nf (t) :=
∫

· · ·
∫ t

0
f (τ) dτ = 1

(n − 1)!
∫ t

0
(t − τ)n−1f (τ) dτ. (43)

This can be rewritten as

J nf (t) = 1

�(n)

∫ t

0
(t − τ)n−1f (τ) dτ (44)

where �(n) = (n − 1)! is the gamma function. In the latter
being in fact defined for any real value α ∈ �, we can define
the fractional integral from

Jαf (t) := 1

�(α)

∫ t

0
(t − τ)α−1f (τ) dτ. (45)

Now, if we consider the fractional derivative order (α),
we seect an integer m ∈ � such that m − 1 < α < m, and it
suffices to consider an integer m-order derivative combined
with a (m − α) fractional integral. Obviously, we could take
the derivative of the integral or the integral of the derivative,
resulting in the left- and right-hand definitions of the frac-
tional derivative usually denoted by Dαf (t) and Dα∗ f (t),
respectively.

Because these approaches to the fractional derivative
began with an expression for the repeated integration of
a function, one could consider a similar approach for the
derivative. This was the route considered by Grunwald and
Letnikov (GL) that defined the so-called ‘differintegral’ that
leads to the fractional counterpart of the usual finite differ-
ences. In the present work, we use the GL definition of the
fractional derivative.

It turns out that the composition of fractional derivatives
follows a rule similar to that for standard derivatives. On the
other hand, the Fourier transform of a fractional derivative
of order α reads �(g(t); ω) = (iω)α�(ω). This property is
particularly useful when addressing harmonic responses as
in the case of LVE experiments.

Appendix B: Derivation of the fractional derivative
of the orientation tensor

We discuss the contribution of fractional diffusion to the
rod rotary velocity (the flow-induced contribution remains
unchanged)

dαp
dtα

∣∣∣∣
B

= −Dr

∂ψ
∂p

ψ
. (46)

Now, we consider the second-order orientation tensor

a =
∫
�

p ⊗ p ψ dp (47)

whose time derivative can be rewritten as

ȧ|B = d1−α

d1−α

{
dα

dtα

{∫
�

(p ⊗ p + p ⊗ p) ψ dp
}}

(48)

or

ȧ|B = d1−α

d1−α

{∫
�

dα

dtα
(p ⊗ p + p ⊗ p) ψ dp

}
. (49)

Considering the first term of Leibnitz’s rule related to the
fractional derivative of a product of functions (it is easy to
prove that the second one leads to the standard diffusion
integer term, while the others can be neglected), we obtain

ȧ|B ≈ d1−α

d1−α

{∫
�

(
dαp
dtα

⊗ p + p ⊗ dαp
dtα

)
ψ dp

}
(50)

or

ȧ|B ≈ −Dr
d1−α

d1−α

{∫
�

( ∂ψ
∂p

ψ
⊗ p + p ⊗

∂ψ
∂p

ψ

)
ψ dp

}
,

(51)

which finally gives

ȧ|B ≈ −2dDr

d1−α

d1−α

(
a − I

d

)
. (52)
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