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9.1 Introduction

It is well established that the range of validity of the Newtonian constitutive equation is limited
to low molecular weight liquids. The provocative flow phenomena observed with polymeric
fluids cannot be predicted by the Navier-Stokes equations. Non-Newtonian behavior has many
facets. Among them are the shear-rate dependence of the shear viscosity, the presence of normal
stresses in viscometric flows, high resistance to elongational deformation, and memory effects
associated with the elasticity of the material (Bird et al.[1]). The theoretical challenge is to
translate the complex rheological behavior of polymeric fluids into suitable constitutive equa-
tions, and to use these models in fluid-mechanical computations.

Viscoelastic effects, i.e. flow phenomena that cannot be explained on the basis of linear or non-
linear purely-viscous behavior, can be important in polymer processing applications. Flow insta-
bilities, for example, limit the rate of production in many processing operations (Petrie and Denn
[2]). The instabilities often occur at very low Reynolds numbers, where corresponding flows of
low molecular weight liquids are stable. Viscoelastic behavior is also responsible for complex
flow patterns, such as large recirculation regions in confined geometries (Walters [3]). These
flow patterns can have a significant impact on product quality. An obvious example is that of the
processing of fiber-reinforced polymer materials, where the flow-induced distribution of fiber
orientations determines the mechanical properties of the final product.

Polymer processing applications involve rheological and geometrical nonlinearities that render
analytical investigations difficult at best. In some cases, it is possible to grasp the main features
of the flow by means of one-dimensional theories. A good example is that of the fiber spinning
process. Rather successful one-dimensional models have been developed which can be used to
study the effect of viscoelastic properties on the dynamics and stability of the spinline (Denn
[4]). Lubrication approximations are also useful in some applications. Analyses of that nature
are reviewed by Tanner [5]. In the present chapter, we shall be concerned with the prediction of
viscoclastic effects in complex geometries where simplifying assumptions regarding the flow
kinematics cannot be made.

Even though the flow of polymers often occurs at very low Reynolds numbers, the numerical
prediction of viscoelastic effects in complex geometries is a difficult task. Current formulations
of viscoclastic flows lead to highly nonlinear problems whose mathematical nature combines
ellipticity and hyperbolicity in a rather subtle way. In addition, most viscoelastic flows of practi-
cal interest involve internal and boundary layers in the stress and velocity fields, as well as
singularities. These compounded challenges have long resulted in the failure of simulation tech-
niques to provide solutions at elasticity levels of practical interest. The elastic character of a
given flow is usually quantified by means of the Weissenberg number We defined as the product
of a characteristic relaxation time of the fluid and a characteristic velocity gradient of the flow.
While We can reach values of the order of 10 in practice, available numerical simulations have
until recently been limited to much lower values, typically of the order of 1 (Crochet and
Walters [6-7]). As a result, the significant viscoelastic effects seen in laboratory experiments or
processing applications could not possibly be predicted. The limitation of numerical techniques
to low values of We has often been referred to in the technical literature as the High Weissen-
berg Number Problem (HWNP).

The early developments in the numerical analysis of viscoelastic flows are critically reviewed in
the book by Crochet, Davies, and Walters [8]. Much progress has been made since the publica-
tion of this monograph, both in the identification of the underlying causes for the HWNP, and in
the development of improved numerical techniques. While the HWNP is by no means com-
pletely solved, numerical solutions are now available in the range of Weissenberg numbers
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covered in actual flow experiments. Some of these solutions do predict observed viscoelastic
effects, at least qualitatively. Others do not agree with experimental observations, which indi-
cates that uncertainties remain in the mathematical description of the physics of polymer flows.
Despite the evident progress, computing accurate numerical solutions at high values of the
Weissenberg number remains a difficult task whose success is not guaranteed. It is generally
recognized that much research remains to be done at the experimental, theoretical, and numeri-
cal levels before the numerical simulation of viscoelastic flows will realize its full potennal and
become a routine design tool in the polymer processing industry.

The aim of the present chapter is to review the field of large-scale viscoelastic simulations as it
stands in mid 1987. We begin in Section 9.2 with a discussion of the mathematical models that
are of current use in numerical work. In Section 9.3, we introduce a classification of numerical
approaches which is used in Sections 9.4 to 9.6 to describe the entire spectrum of available
numerical techniques. In Section 9.7, we review some of the published simulations that predict
significant viscoelastic effects. Finally, we focus in Section 9.8 on the considerable numerical
and mathematical difficulties associated with the prediction of viscoelastic flows.

9.2 Mathematical Models

9.2.1 Preliminaries

The selection of a constitutive equation is obviously a critical step in the modeling of viscoelas-
tic flows. A large number of constitutive models have been developed (and indeed are still being
developed) to describe the rheological behavior of polymeric fluids. It is however essential to
realize that none of these models leads to realistic predictions in all types of deformation of any
particular polymeric fluid. This is in marked contrast to Newtonian fluid mechanics, where the
mathematical description of the flow is well established. The formulation of constitutive equa-
tions for memory fluids is discussed in several textbooks (Astarita and Marrucci [9], Bird et
al.[1], Schowalter {10], and Tanner [5)).

If the modeling procedure is to be realistic, the constitutive equation should at least give satis-
factory predictions in the standard rheometrical tests which appear most relevant to the flow
under consideration. On the other hand, the model should be simple enough to allow for a
numerical solution of the resulting governing equations with currently available computing
resources. These conflicting requirements have been discussed at length by Crochet, Davies, and
Walters [8]. Almost all constitutive models currently used in numerical simulations can be
derived from molecular theories (Bird et al.[11]). Their predictive abilities in standard
rheometrical flows range from very poor to excellent, depending of the type of motion and/or
the class of materials (Tanner {5,12]).

Another integral part of the modeling process is the selection of appropriate boundary condi-
tions. This step is a complex one with viscoelastic fluids, for at least two reasons. First, the fluid
memory requires that the pre-history of the fluid motion be specified in the analysis of flow
problems with inlet boundaries. The motion pre-history, if at all known, can be as complex as
the flow problem under investigation. A second difficulty is related to the behavior of polym-
eric liquids near solid boundaries. In the analysis of highly viscous Newtonian flows, it is gen-
erally appropriate to assume that the fluid sticks to solid boundaries. Such is not always the case
in polymer processing applications. Actually, flow phenomena associated with viscoelastic
fluids (including low Reynolds number instabilities) may well find their origin not only in the
non-Newtonian character of the bulk flow, but also in slip mechanisms at solid boundaries (see
e.g. the experimental work of Ramamurthy [13] on melt fracture). It should also be pointed out
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that molecular theories leading to the macroscopic constitutive models used to date in numerical
simulations do not take into account the interaction between polymer molecules and solid boun-
daries. In summary, current mathematical formulations of the flow of polymeric fluids, both in
the bulk and near solid surfaces, are likely to be altered as our understanding of the physics of
polymer flow increases.

To date, the vast majority of viscoelastic simulations has been for isothermal flows. We shall
thus limit our discussion to these cases, and simply direct the reader to the few papers dealing
with non-isothermal flows. From the modeling standpoint, however, it is important to recognize
that thermal effects may dominate in many polymer processing flows.

9.2.2 Conservation Equations

It is realistic in many applications to assume that viscoelastic fluids are incompressible. The
Cauchy stress tensor © is thus determined up to an arbitrary isotropic tensor. We have

oc=-Pd+1 9.2-1)

where P is the pressure, § is the unit tensor, and < is the extra-stress tensor (T is not necessarily
traceless). We shall further assume that body and surface couples are absent, in which case ¢
and T are both symmetric tensors. The conservation laws for isothermal flows yield the con-
tinuity equation

Vv=0 9.2-2)
and the momentum equation

Vo+pfl= p%‘; 9.2-3)

Here, v is the velocity vector, f is the body force per unit mass of fluid, and p is the fluid density.
The operator D/Dt is the material time derivative 0/ + v-V.

The set of governing equations (9.2-2) and (9.2-3) is closed with a constitutive model that relates
the extra-stress T to the deformation experienced by the fluid. Some constitutive models for
viscoelastic fluids contain a purely viscous component of the extra-stress which is usually inter-
preted as the solvent contribution to the stress in polymeric solutions, or as the stress response
associated with very fast relaxation modes (Bird et al.[11]). The presence of a purely viscous
component has much impact on the mathematical nature of the full set of governing equations.
Indeed, viscoelastic fluid models withowt a purely viscous component can exhibit a variety of
hyperbolic phenomena, including change of type of the governing equations and propagation of
waves (Section 9.2.5). When present, the purely viscous component is usually taken as
Newtonian. We thus have -

T=Ty +Ty (9.24)
where 1y denotes the viscoelastic extra-stress, while Ty is the optional Newtonian component
defined by

=My Y (9.2-5)

In the last equation, ¥ denotes the rate of strain tensor (Vv + Vv') and py is the so-called
Newtonian viscosity.

Let us now describe the two classes of viscoelastic constitutive equations used in flow simula-
tions, i.e. the differential and single-integral constitutive models.

! The viscosity coefficient in (9.2-5) can be made a function of the magnitude of the rate of strain tensor, if necessary.
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9.2.3 Differential Constitutive Models
Differential models used currently in numerical simulations can be written in the general form

Sty .
A(ty)ty + o WY (9.2-6)

Here, A is a relaxation time and py is a viscosity coefficient. Both can be made functions of the
magnitude of the rate of strain tensor, if necessary. The symbol A denotes a model-dependent
tensor function (examples are given below); for a vanishing relaxation time, A is equal to the
unit tensor and (9.2-6) reduces to the constitutive law of a purely viscous fluid of viscosity y.
Finally, the operator /8¢ is an objective time derivative defined as a linear combination of lower
and upper-convected derivatives. We have

ot
—8—:’— =aty® +(1-a) 0<ax<1 27

where Ty and ty (1, are respectively the lower and upper-convected derivatives of the extra-
stress defined by

D= Dz
o® = —D—tv- + 1y Vvl 4 Vv Ty = Ttv_ -ty Vv-Wgy (9.2-8)

The generic constitutive equation (9.2-6) is readily extended to the case of a spectrum of relaxa-
tion times by writing
Ty =3, Tvs 9.2-9)
k=1
where each partial extra-stress Ty, obeys (9.2-6) with material coefficients A, and py;.

Differential models of the type (9.2-6) are implicit in the extra-stress Ty. This is true of all dif-
ferential constitutive equation capable of describing memory effects. As a result, it is impossible
to eliminate the extra-stress from the momentum equation (9.2-3), as one does in the Newtonian
case to obtain the classical Navier-Stokes equations. We must also emphasize that any fluid
mechanical problem involving a constitutive equation of the type (9.2-6) is inherently nonlinear,
even in the absence of inertia terms in the momentum equation. This is due in part to the non-
linear coupling between extra-stress and velocity components embedded in the definition of the
convected derivatives.

The simplest differential constitutive equations capable of predicting memory effects are the
Maxwell models (A = 8 ). They include the upper-convected (a = 0), corotational (a = 0.5), and
lower-convected (a = 1) Maxwell models. Viscometric data indicate that suitable values for a
lie between 0 and 0.1. More realistic constitutive equations include the models of Phan Thien
and Tanner [14-15] and Giesekus [16], given respectively by

A=exp[uitr(ty)]8 0<a<l
14

A=5+2 o, a=0 (9.2-10)
v

Here, € and o are dimensionless material parameters. When o = 0.5, Giesekus’ equation dupli-
cates the model of Leonov [17] in viscometric flows.

The addition of a Newtonian component Ty is equivalent to introducing a retardation time. For
example, the upper-convected Maxwell fluid plus a Newtonian component yields the Oldroyd-B
model [18]. The latter can be written in terms of the total extra-stress T :

t+l‘t(1) =]J.["Y+)\.."Y(1)] 9.2-11)
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where p is the total shear viscosity py + {ly, and A" is the retardation time Ay/pL

The simple Maxwell and Oldroyd-B models are not expected to be realistic descriptions of
polymeric fluids, except for small deformation rates. We should note, however, that the
Oldroyd-B model has shown good predictive ability in some flows of dilute polymeric solutions
(Boger and co-workers [19-21], Bousfield et al. {22]). The constitutive equations of Giesekus,
Leonov, and Phan-Thien and Tanner are capable of a variety of responses in theometrical flows,
depending on the values of the parameters. Realistic predictions can be obtained with a spec-
trum of relaxation times (see e.g. Larson [23], Khan and Larson [24]).

9.2.4 Single-Integral Constitutive Models

Let us consider a fluid particle whose position at present time ¢ is given by x(¢). The fluid motion
is described by the vector relation

x(t") = x(x(0),0,t") (9.2-12)

which gives the particle position x(¢ *) at historical time ¢ * ranging between —o and 1. We define
the relative deformation gradient F, and the right Cauchy-Green strain tensor C, by

Fa)=Z  Cu)=FlEFRE) (92-13)

In these definitions, the deformations are measured relative to the fluid configuration at present
time ¢, Single-integral constitutive equations give the viscoelastic extra-stress Ty at a fluid parti-
cle through a time integral of the deformation history. In numerical studies, researchers have
used integral models of the form

4
W)= ma-1)Sa) (9.2-14)
Here, the operator I dt’ is a time integral taken along the particle path parameterized by the
historical time ¢ ", The kernel S, is a deformation-dependent tensor of the form

Si(t) =011 J2) [CTH) =81 + 0211 2) [C(t) - 8] (9:2-15)
where C;!, the inverse of C,, is known as the Finger strain tensor. The scalar ¢, and ¢, are
given dimensionless functions of the invariants 7, = &7 (C;) and /, = tr(C,). Finally, the factor
m(t—t ") appearing in (9.2-14) denotes the time-dependent memory function of linear viscoelas-
ticity. It is usually expressed as a sum of exponential functions involving the relaxation times A,
and the viscosity coefficients py, :

—(t —t)
9.2-1

m(—t") = El li N ] (9.2-16)
This definition illustrates the notion of fading memory, i.e. the deformations experienced by a
fluid element in the recent past contribute more to the current stress in that element than those
deformations which took place in the distant past. Note that by interchanging the order of
integration in (9.2-14) with the summation in (9.2-16), the extra-stress Ty becomes a sum of par-
tial extra-stresses ty, as in (9.2-9), each associated with a pair of material coefficients
A » vp).

The generic integral model (9.2-14) presents interesting numerical challenges. First, the particle
paths needed to compute the memory integral are not known a priori. This feature leads to flow
problems which are inherently nonlinear, and in a sense akin to free surface flows. The second
challenge is quite new in computational fluid dynamics: integral models are formulated in a
Lagrangian form which does not involve the Eulerian velocity field explicitly. For this reason
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only, one would expect that numerical schemes using integral models would differ significantly
from those developed for Newtonian fluids.

One of the simplest integral constitutive equations is the so-called rubberlike liquid model
developed by Lodge [25). It is obtained by setting ¢; =1 and ¢, =0 in (9.2-15). When used
with a memory function of the form (9.2-16), Lodge’s equation is equivalent to the upper-
convected Maxwell model, in the sense that any differentiable extra-stress field computed with
Lodge’s model on the basis of given kinematics is also a solution to the equations for the upper-
convected Maxwell fluid; the converse is not necessarily true (Larson [26]). Similarly, the
integral model of Johnson and Segalman [27] is equivalent, when used with an exponential
memory function, to the differential Maxwell models. It should be noted, however, that the
equivalence between differential and integral models, as defined above, is not universal. There
indeed exist differential models which do not have integral equivalents, and vice versa (e.g. the
differential model of Phan Thien and Tanner [14-15] and the integral model of Doi and Edwards
{28)).

A rather successful particular case of (9.2-14) is the so-called factorized BKZ model proposed
by Bemnstein, Kearsley, and Zappas [29). In this model, the kernel functions ¢, and ¢, derive
from a potential function W (/,,/5):

% W oV

= Y7 o = __3—72_ 9.2-17)

Note that Lodge’s model corresponds to W = I,. Specific definitions for the potential W can be
obtained from molecular theories or empiricisms. Particularly worth noting is the molecular
model developed by Doi and Edwards [28] and further extended by Curtiss and Bird [30]. Using
Currie’s approximations (31}, the Doi-Edwards model is given by

& =5, +2(, +325)2 - 177 &2 = -1 + 32517
m—t") = - 5 o [~k 41y LD (9.2-18)
vA? o A

It contains only two adjustable parameters, namely the zero shear-rate viscosity [y and the time
constant A. Integral models of the type (9.2-14) are capable of impressively good fits of various
rheometrical data for melts and concentrated solutions (see e.g. Papanastasiou et al.[32], Bach
and Hassager [33]).

9.2.5 Mathematical Analysis

The constitutive equation (9.2-6) or (9.2-14) must be solved in conjunction with the continuity
equation (9.2-2) and the momentum equation (9.2-3). For flows in confined geometries, the
unknown fields are the extra-stress Ty, the velocity v, and the pressure P?. The compact ten-
sorial form used above will be useful for describing various numerical methods. It is somewhat
misleading, however, in that it hides the actual nature of the mathematical problem to be solved,
as well as its complexity. For illustrative purposes, let us consider the simple case of the upper-
convected Maxwell model in differential form. The equations governing steady two-

2 Altemative formulations of the goveming equations have been used, as we shall see hereafter.
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dimensional flows then read
v v v v v
Tox + A [VaTox + VyTary = Ve x T — 25, T ] = 2y vy,
v v v v Vi
Ty + A [VeTpy s + VT = 20,010 — 20, T ] = 21y vy,
|4 14 \4 1’4 v v v
Toy + A [VeTays + VyToyy = VaaTry = VayTyy = VyaTax = VyyTrl
= uV[vz,y + vy,x]
N
11; = 2|y Vx r!;ly =2uy Viy Ty = uN[Vx,y + Vy,x] (9.2-19)
N N v v
Py 4 Tax + Tayy + Tax + Toy + Pfs =0 Vavax +Vyv5,]
N v v =
—Py + T + Ty + Tox + Tyyy + Pfy = plvavys + vy,
Vex+Vy, =0
Here, ‘t,‘.', denotes the xy-component of Ty, for example, and a comma stands for a partial deriva-
tive, e.g. vy, =dv,/dy. Since the components of the Newtonian extra-stress Ty can be elim-
inated from the momentum equations, we are left with a system of six nonlinear partial differen-
tial equations whose unknowns are t%, Ty, T%, V;,V,, and P. Note that the number of unknowns

in two-dimensional flow is 3n +3 for the general case of a spectrum of n relaxation times. The
complexity of viscoelastic governing equations is now more apparent.

In a recent paper, Joseph, Renardy and Saut [34] have reported important results on the
mathematical nature of viscoelastic problems. First, the authors show that the equations govern-
ing steady two-dimensional flows of viscoelastic fluids without Newtonian component consti-
tute a first-order, quasilinear system of the form

Mq,+Nq,=s (9.2-20)
Here, q is the vector of unknowns (i.e. T%, Ty, Try, Vx.Vy, and P, in the case of a single relaxa-
tion time), while the matrices M and N and the vector s depend on the components of q, but not
on their derivatives. Joseph and co-workers [34] then show that the system (9.2-20) is of mixed
type. This means that (9.2-20) is never strictly elliptic nor strictly hyperbolic. For a single relax-
ation time, the authors demonstrate that

1) there are always two imaginary (i.e. elliptic) characteristic directions associated with
incompressibility,

2) the streamlines constitute a family of real (i.e. hyperbolic) characteristics associated with
the convected derivative,

3) the remaining two families of characteristics are imaginary for sufficiently slow flows, but
can change type (i.e. become real) in flow regions where a model-dependent criterion is
satisfied. For most constitutive models, these characteristics are associated with the vorti-
city.

Viscoelastic models without Newtonian component thus lead to mathematical problems whose

degree of hyperbolicity can increase locally at sufficiently high levels of stresses and velocities.

In order to illustrate these findings, let us consider the simple case of flows perturbing a uniform

motion with speed U. It is shown in [34] that the vorticity in general viscoelastic fluids without

Newtonian component becomes hyperbolic when the viscoelastic Mach number

U

M=—

(uv/pA)'?
exceeds 1. The denominator in (9.2-21) is a shear wave speed (Joseph et al.[35]).3 For more
complex flows, the criterion for change of type is model-dependent. Joseph and co-workers

9.2-21)

* This particular result was first established by Ultman and Denn [36] for the upper-convected Maxwell model.
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{37-39] have recently identified a number of flow problems where change of type can occur.

Another hyperbolic phenomenon that can arise with viscoelastic models devoid of Newtonian
component is the loss of evolution of the governing equations, i.e. the ill-posedness of the Cau-
chy initial value problem governing the evolution of perturbations of arbitrary motions. The
loss of evolution is an instability of the Hadamard type in which short-wave disturbances shar-
ply increase in amplitude. This important phenomenon has been studied by Rutkevitch [40],
Joseph and co-workers [34,41-42), and Dupret and Marchal [43-44]. Among the Maxwell
models (i.e. A = 8 in (9.2-6)), only the upper and lower-convected models are always evolution-
ary; other choices for the convected derivative can yield loss of evolution in certain flows
(Joseph and Saut [42], Dupret and Marchal [44]). Joseph and co-workers [34,41-42,45] argue
that the implications of changes of type and loss of evolution are far reaching. In particular, they
suggest that many interesting flow phenomena observed with viscoelastic fluids may be caused
by changes of type. They also hypothesize that loss of evolution could explain flow instabilities
such as melt fracture. It should be pointed out, however, that loss of evolution is believed by
some authors to signal the breakdown of the mathematical model (Dupret and Marchal [44]).
The numerical implications of these important hyperbolic phenomena are discussed in Section
9.8.

Change of type and loss of evolution cannot occur in viscoelastic fluids with Newtonian com-
ponent, since the latter brings second-order spatial derivatives of the velocity field into the
momentum equations. The governing equations obtained with differential models do show,
however, some degree of hyperbolicity through the constitutive equations. Indeed, for a given
steady-state velocity field, the generic differential model (9.2-6) can be cast in the form

AvVty = B(ty,Vv) 9.2-22)

where B is a model-dependent tensor function. It is easily shown that (9.2-22) constitutes a set
of first-order hyperbolic equations for the components of Ty whose characteristic curves are the
streamlines {34].

The hyperbolic character of viscoelastic governing equations presents significant numerical
challenges that are not addressed by classical techniques for highly viscous Newtonian flows.
Though it is only one factor that renders viscoelastic simulations difficult, hyperbolicity alone is
expected to have an important impact on the design of numerical techniques for memory fluids.
Before closing this section, we wish to point out that there is no complete mathematical theory
on the existence and uniqueness of viscoelastic flows. Available analyses (e.g. Renardy [46])
have only limited applicability in flows of practical interest.

9.2.6 Boundary Conditions

In order to complete the mathematical description of viscoelastic flows, we must specify
appropriate boundary conditions. The nature of those boundary conditions is intimately con-
nected to the mathematical nature of the governing equations. To date, there is no complete
~ mathematical theory that would guide the selection of boundary conditions for viscoelastic
flows. Some theoretical results have been obtained recently by Renardy (47]; we shall discuss
them at the end of this section. Let us first describe the approach adopted in numerical simula-
tions.

In the Newtonian case, the extra-stress can be eliminated from the momentum equation to yield
the classical Navier-Stokes equations. This procedure reduces the set of unknowns to the velo-
city and pressure fields. As far as boundary conditions are concemed, one must specify the
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velocity components or the surface force components along the boundary of the flow domain
(the pressure must be imposed at one point of the flow domain if no normal surface forces have
been specified anywhere along the boundary). The concept of memory fluids clearly suggests
that the above boundary conditions are not sufficient in a viscoelastic flow problem which con-
tains an inlet boundary (Fig. 9.1). Indeed, the flow inside such a domain is affected by what
happened to the fluid upstream of the inlet boundary. There is thus a need for additional boun-
dary conditions which somehow will specify the flow pre-history, i.e. the deformation history
experienced by the fluid elements prior to their entrance in the flow domain. As a result, the
Newtonian limit is generally singular in the sense of perturbation theory (Brennan et al.[48]).

_____ CANANN AN SR\ N\ N\
t
e t
ENNNNNNNNN
inlet
----- t - -

L L i L

Fig. 9.1 Fluid particle trajectory in a flow domain with an inlet boundary

The specification of the flow pre-history is built naturally in single-integral constitutive models.
Referring to Fig. 9.1, we can indeed write the integral (9.2-14) as a sum of two integrals
3 t
W)= I m@—t)S,(tHdt” + J m{—-t)S,)dt’ (9.2-23)
—- 4

where ¢, is the time at which the fluid particle entered the flow domain. In view of the definition
(9.2-15) of §,, the second integral only involves the part of the deformation history that occurred
within the flow domain of interest. The flow pre-history, on the other hand, is taken into account
in the first integral. In practice, one often specifies a flow pre-history corresponding to condi-
tions of fully-developed flow upstream of the inlet boundary; this regularizes the Newtonian
limit in the absence of stress singularities (Section 9.8.9). When fully-developed conditions do
not apply, the proper selection of a flow pre-history is a delicate procedure whose success is not
guaranteed.
Inflow boundary conditions are also necessary with differential models of the form (9.2-6). The
conventional approach is to specify the viscoelastic extra-stress Ty along the inflow boundary.
This is consistent with the fact that, for a known steady-state two-dimensional velocity field, the
differential model (9.2-6) is a set of first-order hyperbolic equations with the streamlines as
characteristic curves of multiplicity -three. Computing the extra-stress on the basis of given
kinematics is thus a well-posed mathematical problem if we specify values for all three com-
ponents of the extra-stress Ty along the inlet boundary. As in the case of integral models, one
often applies extra-stress values corresponding to fully-developed flow at the inlet.

It would seem from the above discussion that integral and differential constitutive models are
very different mathematical formulations of the notion of memory fluids. Indeed, we have seen
that, for a given velocity field, the whole flow pre-history is required to compute the integral
(9.2-14). With the differential model (9.2-6), however, the flow downstream of the inflow boun-
dary is.totally indifferent to the choice of any particular flow pre-history which may have pro-
duced the specified inlet extra-stress. This is not true in general with an integral model of the
form (9.2-14), except when the integral model admits a differential equivalent. To demonstrate
this, let us consider the illustrative case of the upper-convected Maxwell fluid, which can be
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written in both integral and differential forms. As shown by Petrie [49], (9.2-23) becomes

T (1) = expl *’; 1 FA ()t () - FRC)

[ 4
. i—; J e =2y (c7 ) - 81 a1 (9.2-24)
4

We thus see that the extra-stress Ty (¢) for the Maxwell fluid written in integral form is com-
pletely determined by the inflow extra-stress Ty (f,) and the motion within the flow domain,
namely for times ¢ * between ¢, and . As with the differential version, no information on the flow
pre-history is required, except what is implicit in the knowledge of tv (t,).

The above discussion of extra-stress boundary conditions is based on physical intuition and
mathematical properties of the constitutive models alone. Mathematical rigor requires that we
take into account the nature of the full set of momentum, continuity, and constitutive equations.
As mentioned above, the full set of equations for fluids without Newtonian component consti-
tutes a first-order system of mixed type whose degree of hyperbolicity can increase at suffi-
ciently high levels of stresses and velocities. In a recent paper, Renardy [47] examined the case
of the upper-convected Maxwell fluid. The analysis is valid for subcritical conditions, i.e. it is
assumed that the vorticity remains elliptic over the whole flow domain. The author shows that
the specification of all components of the extra-stress at an inflow boundary over-determines the
mathematical problem. Renardy notes, however, that the difficulty can be avoided if one
imposes fully-developed conditions at an inflow boundary which is located sufficiently far
upstream.

In summary, the issue of appropriate boundary conditions for viscoelastic computations is not
completely settled. The approach adopted in most simulations makes physical sense but is only
partially supported by available mathematical results. The impact of changes of type on the
nature of boundary conditions remains to be established, and a rigorous theory of boundary con-
ditions for fluid models with a Newtonian component is not yet available.

9.3 A Method Classification

The solution of viscoelastic flow problems presents different numerical challenges with dif-
ferential and integral constitutive models. We shall see, however, that similarities exist between
the two cases. A common feature is of course the nonlinear character of the governing equations
brought about by the fluid memory. Two basic approaches have been adopted to handle this
nonlinearity. Herafter, we shall refer to them as the coupled and decoupled approaches. In the
coupled approach, the discretized governing equations are solved simultaneously for the whole
set of primary variables, usually by means of Newton’s iterative scheme. In the decoupled
approach, the computation of the viscoelastic extra-stress is performed separately from that of
the flow kinematics. From known kinematics, one calculates the viscoelastic extra-stress by
integrating the constitutive equation. The kinematics are then updated by solving the conserva-
tion equations, and the procedure is iterated upon. The update scheme is usually akin to Picard’s
iterative algorithm.

Most coupled techniques have been developed for differential models. We shall see that it is dif-
ficult to implement a coupled approach with integral models. An advantage of coupled tech-
niques lies in the iterative procedure itself. Indeed, Newton’s method converges quadratically if
the initial estimates are chosen sufficiently close to a solution, and if the Jacobian matrix is
non-singular there. When these conditions are satisfied, 4 or S iterations are usually sufficient to
achieve full convergence. Furthermore, the Jacobian matrix needed in the Newton iterations
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contains important information on the qualitative behavior of the numerical solutions, such as
temporal stability, existence, and multiplicity. It should be noted, however, that extracting this
information remains for the most part computationally unfeasible in view of the size of the Jaco-
bian matrix in complex viscoelastic simulations.

Decoupled techniques have been developed for both differential and integral models. An attrac-
tive feature of decoupled methods is the breakup of the problem into the solution of an elliptic
Newtonian-like flow (i.e. the conservation equations with the viscoelastic extra-stresses treated
as a known body-force term), and the integration of a constitutive model using fixed kinematics.
One can thus use classical methods to discretize the conservation equations, and develop
specific techniques for the extra-stress computation which take the mathematical nature of the
constitutive model into account. The main disadvantage of decoupled techniques lies in the
iterative procedure. Picard-type schemes are often slow to converge, and their convergence is
not guaranteed even if the initial estimates are chosen arbitrarily close to a solution. Further-
more, steady-state Picard’s schemes do not provide information on the qualitative behavior of
the numerical solutions.

Both coupled and decoupled techniques are generally very demanding as far as computer
resources are concerned. Several CPU hours on a mainframe or high-end minicomputers are
typical simulation times for steady-state, two-dimensional simulations. Grid refinement ana-
lyses or complex time-dependent simulations must be conducted on supercomputers to be practi-
cally feasible. Decoupled techniques generally need less core memory than coupled methods.
A comparison based on simulation times is difficult. Indeed, a single nonlinear iteration with a
decoupled method generally consumes less CPU cycles than with a coupled method, but the sig-
nificant differences in convergence properties between Picard and Newton schemes can be suffi-
cient to give the advantage to the coupled method.

In conjunction with the coupled and decoupled approaches, researchers have used a broad spec-
trum of discretization techniques based on finite element, boundary element, finite difference,
and spectral methods. It should be mentioned, however, that the majority of published simula-
tions has been carried out with finite element techniques. The choice of coupled versus decou-
pled approaches can in some cases impact on the selection of discretization methods. For exam-
ple, some decoupled techniques for differential models use the method of characteristics to
integrate the constitutive equation. It is not feasible to implement the same technique in the con-
text of a coupled method.

In view of the multiplicity of constitutive models, discretization procedures, and approaches for
treating nonlinearities, there are various ways of presenting a global picture of numerical
methods for viscoelastic computations. In the present chapter, we shall organize our survey of
available techniques on the basis of the two categories of coupled and decoupled schemes. This
classification will be specially useful in our discussion of the High Weissenberg Number Prob-
lem (Section 9.8). We shall comment on the numerical performance of existing techniques (i.e.
accuracy, stability, and convergence with grid refinement) to the extent that such information is
available in the literature.
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9.4 Coupled Techniques for Differential Models

9.4.1 Preliminaries

Almost all simulations with differential models have been carried out with the mixed
Galerkin/finite element techniques described in Sections 9.4.2 to 9.4.5. The reader should be
aware, however, that conventional mixed methods have serious limitations as far as numerical
accuracy and stability are concerned. It is thus unlikely that they will remain the techniques of
choice in future developments. New methods which show great promises are presented in Sec-
tions 9.4.6 10 9.4.8.

9.4.2 Conventional Mixed Galerkin/Finite Element Formulatigns

Let us consider steady-state, two-dimensional flows in a domain Q with a known boundary dQ.
We assume that the flow domain has been discretized by means of a fixed mesh of finite ele-
ments. Conventional mixed techniques are based on three distinct Galerkin formulations of the
governing equations. In a first formulation, which we call MFE1, one uses the governing equa-
tions as written in Section 9.2, and approximates the viscoelastic extra-stress, the velocity, and
the pressure by means of the finite expansions

Nr Ny Ny
w=Yte;, v=Yvy, P=YPn 94-1)
iml j=l k=1

Here, the symbols ¢, ;, and 7, represent given finite element basis functions, while T}, v/, and
P* are unknown nodal values. The Galerkin principle is then invoked to discretize the govern-
ing equations. Residuals obtained after substitution of the approximations (9.4-1) in the govern-
ing equations (9.2-6), (9.2-3), and (9.2-2) are made orthogonal to the set of basis functions, i.e.

b 47 .a
Joitaans +2 5 -uw i 1d2=0 (94-2)
[o ¢
.a Dv*

J w195+ e { + 19 +p (1 ) 1dR2 =0 (94-3)
Q

[m(vviaQ=0 (9.4-4)
Q

for 1<i<Np, 1SjSNy, and 1Sk <SNp; every term with the superscript a denotes the
corresponding finite element approximation obtained from (9.4-1). An integration by parts is
used in (9.4-3) to yield

J. \VjP[‘%Yti—f]+Vw,t -[—P“S+u~?“+'t‘{,] daQ
o]

= | vjo*nds (9.4-5)
Efe!

where n is the outward unit normal and s is the arc length measured along the boundary. This
procedure reduces the continuity requirements imposed on the basis functions ;. Furthermore,
it allows the specification of natural boundary conditions in terms of the contact force o-n at the
boundary. Equations (9.4-2), (9.4-4), and (9.4-5) define the mixed formulation MFE1. The first
mixed finite element technique ever proposed for viscoelastic computations was based on MFE1
(Kawahara and Takeuchi [50]). Further developments centered around MFEL, e.g. the imple-
mentation of various differential models and finite element interpolations, are due to Crochet
and co-workers [51-55] and Keunings and co-workers [56-58]. A penalty technique has also
been implemented which eliminates the pressure variables from MFE] (Baird et al.[S9]).
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In the limit of Newtonian flow (A = 0), the mixed formulation MFE1 reduces to
.f 0 [Th-pv¥ 1dQ=0 (9.4-6)
o]
] [‘I’ip[%‘i ~f)+ Yy [P+ T + TP ]] aQ
a t
= | vjonds ©47)
Ele}
[ metvve1dQ =0 (9.4-8)
a
It is instructive to compare this limit with the classical Galerkin UVP formulation of the

Navier-Stokes equations. For a Newtonian fluid of viscosity py + Hy, the UVP formulation
reads

J [\v,- p l% —1]+ V! PG + (y + 1) T ]] aQ (9.4-9)
Q
= [ yyo*nds
am
| m(vv1dQ=0 (9.4-10)
Q

The Newtonian limit of MFE1 is equivalent to the UVP formulation if the equality

Wy (9.4-11)
holds not only in the Galerkin sense as in (9.4-6), but everywhere in the flow domain Q. Clearly,
the equivalence condition (9.4-11) is not satisfied by all choices of basis functions. For example,
if the interpolants ¢; and y; in (9.4-1) are continuous over Q but have discontinuous derivatives
across element boundaries, then t¥ is continuous over  while y is only piece-wise continuous.
As aresult, (9.4-11) is not satisfied. The fact that MFE1 does not always reduce to the UVP for-
mulation in the limit of Newtonian flows has detrimental numerical implications which we shall
discuss in Section 9.4.4.

Alternative mixed formulations of viscoelastic flows exist which do reduce to the UVP formula-
tion as A goes to zero, whatever the choice of basis functions. One such formulation, which we
call MFE2, has been developed for particular cases of the differential model (9.2-6) where the
tensor A is equal to the unit tensor. We can thus write

=W Y-A—F— (9.4-12)

and substitute (9.4-12) into (9.4-5) to derive a new discrete version of the momentum equation:
bv” . . ot
I W’p[DD: =11+ VY] P8 + G+ ) § -1 5711 dQ
a
= I y;o’nds (9.4-13)
an

(Eqns. (9.4-2) and (9.44) are left unchanged). Since the viscous term My "y“ appears in the
discrete momentum equations, MFE2 always reduces to the UVP formulation when A vanishes.
The substitution (9.4-12) is due to Chang, Patten, and Finlayson {60]. Mixed finite element
methods based on MFE2 have been developed by Crochet and co-workers [52,56,61-62), Finlay-
son and co-workers [63-65], and Mendelson et al.[66]. Finlayson and co-workers [67-69] have
extended MFE2 to the case of non-isothermal flows.
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A drawback of MFE2 is the introduction of a convected-differentiated term in the discrete
momentum equations. This not only increases the complexity of the Galerkin equations, but also
is the source of numerical difficulties. In a third mixed formulation, which we call MFE3, the
above problem is circumvented with the following change of variables:

S=ty-wy (9.4-14)
The modified extra-stress S is then approximated by

Nr .
=35 (9.4-15)
and the Gz;;rldn equations for MFE3 read
L 0 [A(S™+ v 7 1(5"+ v 1) + A (
-py ¥ 1dQ2=0 (94-16)

.’; \v;p['DD—‘;‘—-f]+V\y} [-P°5 +(uy + W) ¥ +5°11dQ

L &
5 TH 8t)

= | yjo*nds (9.4-17)
o0
[ 7 Vv 1dQ=0 (9.4-18)
o}

The convected derivative of "y‘ in (9.4-16) involves second-order spatial derivatives of the basis
functions y; which can be eliminated by means of an integration by parts [8]. As with MFE2,
the discrete momentum equations of MFE3 contain the viscous term necessary to recover the
UVP notation when A vanishes. They do not, however, carry the complex convected-
differentiated term present in (9.4-13). MFE3 has been introduced by Armstrong, Brown, and
co-workers [66] for computing the flow of a second-order fluid. Mixed techniques based on
MFE3 have been developed by Brown, Armstrong, and co-workers [70-72], as well as by Van
Schaftingen and Crochet [62].

The tensor notation used in this section is so compact that it hides the actual algebraic complex-
ity of mixed methods. In order to make this point clear, let us consider the Galerkin equations in
component form as obtained with MFE1 and the upper-convected Maxwell fluid. We shall keep
the notation as simple as possible by using the summation convention for repeated indices, and
defining the symbols R = 1%, S = 1%, T = 1%, 4 = v, and v = v, (cf. Eq. (9.2-19)); the respec-
tive nodal values are denoted by R;, S;, Tj, U;, V;, and P;. With the following definitions,

a; = .L ¢:i0,dxdy, b = .L biyj dxdy, bj; = ,L oy, dxdy

cij = -L T dxdy, cfj = .L .y, dxdy, di = J(; ;W 0x 1 dxdy

dh = .L 0V Orydxdy, e = .L bV dudxdy, el = J; i,y Ordxdy (9.4-19)
fi= ,L R2WixVjx+ViyV)yldedy, g = ,L (Wi W) +2Vi y W)y Jdxdy

hi; = I ViyVjadxdy, ixj = I ViV Vi dxdy, iy = I ViV ydxdy

Q Q Q
the Galerkin equations for steady two-dimensional flow read
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a;; Rj +A (d,,g Uj_2el¥jk Uj+d|’jk Vj)Rk—2e,’jk Uj Tg ] = 2uv b,‘l U,‘

3
4

a;; SI' +A (d,‘lk Uj—2e1’jk Vj+dl’jk V,)Sg—Zef,,, Vj Tk ] = 2uv b{, VJ

\
¢

3 Ti +2 [(dl;k e:/k)Uj‘*'(d?jk C,lg)V 1T~ e‘lk Uj S‘—e.?jk V; Rk]

= Wy (b.’, Uj+b5 V) (9.4-20)
by Rj+b% T+ Wy fij Ui+ Ww hij Vi~c5i Pj+ p (ixije Uj+iyin Vi)Uy = F,
bk Tj+b% Sj+ v by Uj+ Wy g Vi~ck Pi+ p (ixy Uj+iyip V)Vi = F
~j UrcjV; =0
The right-hand sides F7 and F7 in (9.4-20) are nodal force components which include the contri-
bution of the body forces and the contact forces imposed at the boundary:

Fi= I Vipfudxdy + Jw.(o,.n,w,,n,)ds
f w.pf,dxdy + f w.(o,,n,w,,n,)ds (9.4-21)

Clearly, mlxed finite elemem formulations of viscoelastic flows are algebraically much more
intricate than the classical UVP formulation of the Navier-Stokes equations. Newton’s iterative
scheme is the method of choice for solving the set of nonlinear algebraic equations resulting
from mixed formulations (Section 9.8.3). We refer the reader to Crochet [8] for implementation
details.

There now remains to discuss the selection of finite element interpolations used in conjunction
with the conventional mixed formulations MFE1, MFE2, and MFE3. This critical issue is the
focus of Section 9.4.4. We first briefly describe how to handle time-dependent flows with the
above methodology.

9.4.3 Extension to Transient Flows

It is relatively straightforward to extend the mxxed formulations of the previous section to the
case of transient flows in confined geometries. 4 The above developments are still valid, the only
differences being that the nodal values of the approximated fields are time-dependent, and the
partial time derivatives appearing in the material and convected derivatives do not vanish. The
Galerkin equations thus constitute a set of first-order ordinary differential equations for the
nodal values, which can be discretized in time by means of standard techniques (Finlayson and
co-workers [73-74], Van Schaftingen [75]). The presence of a free surface brings additional
complications, since the governing equations must be supplemented with an evolution equation
for the flow domain. Keunings [76] has extended the formulation MFE1 to handle this case. We
briefly describe the underlying methodology, which shows some similarities with the Lagran-
gian technique used with integral models (Section 9.5.4).

* By this, we do not mean that predicting accwrate transient viscoelastic flows with conventional mixed formulations is
an easy task (Section 9.8.5).
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4

y free surface

h(x,t)

7/ 7777 Ll x

Fig. 92 Flow with a free surface described by the height function A

We shall assume here that the free surface can be represented by the height function A(x,t)
(Fig. 9.2) The evolution of the flow domain is thus determined through the kinematic condi-
tion

oh ok

a T
which involves the velocity components v, and v, at the free surface. Initial conditions are
required for the flow domain, the velocity field, and the viscoelastic component of the extra-
stress.

The technique developed by Keunings [76] is based on a Galerkin principle invoked on deform-
ing finite elements (Lynch and Gray (78]). The finite element mesh that covers the initial flow
domain deforms during the simulation in response to the motion of the free surface. As a result,
the shape functions ¢;, y;, and m, in (9.4-1) are implicit functions of time through the location of
the finite element nodes. The Galerkin equations are formally identical to (9.4-2), (9.4-4), and
(9.4-5), with the integrals being computed over the time-dependent domain Q(¢) and its moving
boundary 0Q(¢). The motion of the mesh must be taken into account in the approximations of
time derivatives, however. We have [76]

D¢ Mrodi()

= v, (94-22)

D= ‘§ i & + (v —v")-Vrf
Ny
Dv‘ =3 dv;(t) ; + (v — V)V (9.4-23)

j=1
where v™ denotes the finite element representation of the mesh velocity. (The latter is simply the
time derivative of the isoparametric mapping used in the discretization of the flow domain.) The
present methodology includes as special cases the Eulerian formulation on a fixed mesh (ie.
v™ =0) and the Lagrangian formulation where the nodes are moving at the fluid velocity (i.e.
v™ = v?). The Lagrangian method has been implemented by Bach and Hassager {79-80] for
computing Newtonian free surface flows. It often results in over-distorted meshes as the simula-
tion proceeds, and thus requires somewhat intricate remeshing procedures. In their viscoelastic
simulations, Keunings and co-workers [22,76,81-82] anchor the motion of intemal nodes to the
displacement of the free surface. The mesh velocity thus differs from the fluid velocity and must
be accounted for as shown in (9.4-23).

The numerical method is completed with a suitable discretization of the kinematic condition
(9.4-22). This is achieved in [76] by means of a Galerkin principle invoked on one-dimensional
finite elements. The full set of Galerkin equations then constitutes a system of first-order dif-

5 More complex representations of the free surface are discussed by Kistler and Scriven [77] in the context of
Newtonian flows.
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ferential equations of the form
dx dh
~= = x,h) = 94.24
F( i@ )=0 ( )
where x is the vector of nodal values of 1y, v, and P, while h is the corresponding vector for A.
Keunings {76] integrates (9.4-24) in time by means of the Euler backward method. Let x* and
h* denote the nodal vectors at time ¢,. The corresponding set of vectors at time f,,, =, + Al,
is obtained as the solution of the nonlinear algebraic equations
xn#l_xn hn+l_hu " .
X b)) = 94-2
A, T At X )=0 ( 2
Newton's method can be used to solve (9.4-25). It requires, in particular, the tedious computa-
tion of the Jacobian terms dF;/dh; (see Kistler and Scriven [77] for the case of Newtonian
flows). Aliernatively, it is possible to decouple the computation of the free surface variables
from that of the other unknowns, using a predictor-corrector scheme (Keunings and co-workers
[76,83)).

F(

9.4.4 Mixed Finite Element Interpolations

There is no mathematical theory that would guide the choice of finite element interpolations to
be used with MFE1, MFE2, and MFE3. In the Newtonian limit (A = 0), the mixed approxima-
tions (9.4-1) must satisfy a compatibility condition derived by Ladyzhenskaya, Babuska, and
Brezzi in order to provide stable results (see e.g. Reddy [84]). Whether the LBB condition esta-
blished in the Newtonian limit applies without alteration for non-zero values of the Weissenberg
number is an open question. Inspection of the Galerkin equations described in Section 9.4.2
reveals that the basis functions for the extra-stress and the velocity must be continuous over the
flow domain for the integrals to be regular. The basis functions for the pressure, on the other
hand, can be piece-wise continuous. Obeying these simple rules does not, however, guarantee
the suitability of the ensuing mixed interpolations.

Fig. 9.3 shows the most widely used mixed interpolations, in the case of quadrilateral elements
(For a review of other mixed interpolations, see Crochet {8]). The basis functions for the pres-
sure and velocity fields are bilinear and biquadratic polynomials, respectively. The viscoelastic
extra-stress is approximated by means of bilinear polynomials in Fig. 9.3a and biquadratic poly-
nomials in Fig. 9.3b. All approximated fields are continuous over the flow domain. Their spa-

][]

O extra-stress ® extra-stress
® velocity ® velocity
0O pressure O pressure

Fig. 93 Conventional mixed finite element interpolations for computing viscoelastic flow with
differential models
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tial derivatives, however, can be discontinuous across element boundaries. It should be pointed
out that the bilinear extra-stress interpolation (Fig. 9.3a) cannot. be used with MFEL1 for fluids
without Newtonian component, since it leads to a singular stiffness matrix (Crochet [8]). In gen-
eral, mixed finite interpolations are very expensive to use in view of the large number of nodal
unknowns in all but the simplest simulations. As a result, they have not been implemented for
differential fluids with a spectrum of relaxation times.

In the Newtonian limit of MFE2 and MFE3, the elements of Fig. 9.3 lead to a popular UVP
method and satisfy the LBB condition (see e.g. Reddy [84]). The Newtonian limit of MFE] is
not a UVP formulation with these elements, however, and the LBB condition is apparently not
satisfied (Fortin [85]). The direct implication is that Newtonian results obtained with MFE1 and
the elements of Fig. 9.3 are oscillatory in flows with high solution gradients (Marchal and Cro-
chet [86]). As noted previously, MFE1 and UVP results are identical in the Newtonian limit if
the finite element interpolations for the extra-stress and velocity fields satisfy the equivalence
condition (9.4-11). Satisfying the equivalence condition requires a velocity approximation that
has continuous spatial derivatives across element boundaries. Interpolations of that sort have
been developed by Marchal and Crochet [55] in the special case of rectangular elements, but
extension to arbitrarily-shaped quadrilateral elements is very tedious. In a recent paper, the same
authors propose new mixed interpolations that satisfy the equivalence condition (9.4-11)
approximately (Marchal and Crochet [86]). The velocity and pressure interpolations are the
same as in Fig. 9.3. For the extra-stress interpolation, however, each quadrilateral is divided
uniformly into a2 bilinear sub-elements (Fig. 9.4). The expectation is that the resulting finite
element approximations will closely satisfy the equivalence condition if the value of n is suffi-
ciently high. Marchal and Crochet [86] report that use of 16 extra-stress sub-elements in each
quadrilateral (i.e. n = 4) leads to Newtonian results with MFEL1 that are very similar to those of
the UVP technique in flows endowed with stress singularities.

4 by 4 subdivision
i
[ pressure @ velocity W extra-stress

Fig. 9.4 The mixed finite element interpolation proposed by Marchal and Crochet [86] in the
case of a 4 by 4 subdivision of the velocity-pressure clement

9.4.5 Numerical Problems with Conventional Mixed Techniques

Accurately solving the Newtonian limit of viscoelastic flows is of course not a sufficient condi-
tion for success in simulations at non-zero Weissenberg numbers. Conventional mixed tech-
niques have proven capable of accurate predictions in some flows endowed with smooth exact
solutions (see e.g. Keunings and co-workers [22,76,81]). Unfortunately, smooth viscoelastic
problems of practical interest do not abound. There is ample evidence that the accuracy and sta-
bility of conventional mixed techniques deteriorate as the Weissenberg number increases in
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flows with boundary layers or singularities (Armstrong, Brown and co-workers [70-72], Crochet
and co-workers [62,86], Keunings [58]). Typically, one observes that poor numerical resolution
of sharp gradients induce artificial bifurcation and turning points, as well as spurious changes of
type and losses of evolution in the discrete solutions. The underlying causes for the numerical
difficulties include the hyperbolic nature of viscoelastic flows, the presence of sharp solution
layers or stress singularities, and the peculiar nonlinear coupling between the primary
unknowns. These issues will be the focus of Section 9.8. We now review important new
developments towards improved mixed techniques.

9.4.6 Stable Schemes for Viscoelastic Stress Computation

Numerical solutions of the differential models (9.2-6) with Galerkin/finite element methods and
a fixed steady-state velocity field can show spurious spatial oscillations if the exact extra-stress
field is not sufficiently regular (Keunings [87], King et al. [88]). Differential models constitute
a set of first-order hyperbolic equations (cf. Eq. (9.2-22)). As is well known, it is a challenge to
construct finite element techniques capable of high-order accuracy and good stability properties
in hyperbolic problems. The mathematical analysis of Johnson et al. [89] for linear first-order
hyperbolic systems demonstrates that Galerkin/finite element methods are formally accurate but
unstable, i.e. they produce oscillatory results unless the exact solution happens to be globally
smooth.

One way of stabilizing the numerical solution of differential models alone is to use upwind
schemes. Instead of (9.2-22), upwind schemes solve the modified problem

Av'V1y = B(ty,Vv) + V(K- V1y) (9.4-26)
by means of the Galerkin principle. The symbol K in the right-hand side of (9.4-26) denotes an
artificial diffusivity tensor whose magnitude is of the order of the characteristic mesh size h.
Modifying the original problem in this manner has the important consequence of limiting the
convergence rate to first order, whatever the degree of the polynomial basis functions used to
approximate ty. Upwind methods based on isotropic artificial diffusivity tensors produce
smooth but inaccurate solutions; typically, the numerical results suffer from excessive artificial
diffusion in the direction perpendicular to the streamlines (Hughes and Brooks [90]). The prob-
lem of crosswind diffusion is absent in the so-called streamline upwind method (SU) which
introduces anisotropic artificial diffusivity acting in the streamwise direction only. The SU artif-
icial diffusivity tensor is given by

AL

K=k~ (9.4-27)
where k denotes a scalar of order 2 [90]. SU methods have good stability properties, but they
cannot be more than first-order accurate.

Finite element methods exhibiting the stability properties of SU schemes while being of higher-
order accuracy have been developed by Hughes and co-workers (see e.g. [90-91]). These tech-
niques, known as streamline-upwind Petrov-Galerkin methods (SUPG), are not based on a
modification of the original problem. For steady flow, the SUPG discretization of the constitu-
tive equation (9.2-22) reads

| wi [Av-V1§ -B(tg,Vv) 1dQ = 0 (9.4-28)
Q

where ¥ is defined as in (9.4-1), and w; are weight functions given by
w; = ¢" +k V'V¢,‘ . ’ (94-29)


keunings
Rectangle 


9.4 Coupled Techniques for Differential Models 423

The scalar k is of order A [90-91]. As with SU methods, the special choice (9.4-29) of weighting
functions results in anisotropic artificial diffusivity being added in the streamwise direction
only. In contrast to SU methods, however, the ensuing stability improvement relative to Galer-
kin techniques is not accompanied by a severe restriction to first-order accuracy. Actually, the
analysis of Johnson et al. [89] establishes that the L, norm of the SUPG error is of order A"*172,
where n is the polynomial degree of the finite element approximation. This is close to optimal-
ity, namely an error of order A**!. The Galerkin method is formally less accurate, with an error
of order 1" SUPG has the further advantage of increased control over gradients computed
along the streamlines. Johnson et al.[89] show indeed that the L, norm of the streamline deriva-
tive v-V of the SUPG error is of optimal order h*. The above error estimates hold everywhere in
the flow domain when the exact solution is sufficiently smooth. If sharp internal or boundary
layers are present, the SUPG error estimates apply locally, i.e. outside a small neighborhood of
the layer. The Galerkin method does not enjoy such local error estimates, however, which
explains why the presence of sharp layers globally deteriorates the quality of the numerical solu-
tions.

Numerical experiments by Keunings [87] and King et al. [88] on the solution of the upper-
convected Maxwell equation with a fixed velocity field confirm the above mathematical results.
It is observed that the Galerkin method often produces globally-oscillating solutions in problems
with sharp layers; the oscillations can be removed in some cases by means of extensive mesh
refinement. SUPG usually gives smooth solutions which are more accurate than the Galerkin
results. Interestingly, both Galerkin and SUPG methods exhibit optimal convergence rates if the
exact solution is sufficiently regular [87]. It should be noted that SUPG can give oscillatory
results in regions where the solution gradient is not aligned with the streamlines. Modified
SUPG formulations that solve this difficulty have been developed by Hughes and co-workers
[92-93], but they remain to be tested in the context of viscoelastic flows. Finally, Keunings [87]
and King et al. [88] observe that SU results are generally quite smooth, but they can in some
cases be inaccurate relative to their Galerkin and SUPG counterparts.

In a recent paper, Marchal and Crochet [86] have incorporated the above methodologies in the
solution of the full set of viscoelastic governing equations. Their mixed technique is based on
MFE1 and the elements of Fig. 9.4, but with the constitutive equation being discretized by either
SU or SUPG. With SU, the authors have obtained numerical solutions at very high Weissenberg
numbers using Maxwell and Oldroyd-B fluids in flows with and without stress singularities. The
numerical results are non-oscillatory and do not change appreciably as the mesh is refined. The
authors attribute their success to the mixed interpolations of Fig. 9.4 and the stabilization of the
extra-stress computation afforded by the SU method. As discussed in Section 9.8.9, it is also
very likely that the problem modification (9.4-26) changes the nature of the stress singularity for
the case of the Maxwell fluid. Interestingly, use of SUPG for discretizing the constitutive model
led to oscillatory velocity and extra-stress results at relatively small values of the Weissenberg
number. This unexpected result indicates that taking into account the hyperbolic nature of the
constitutive equation alone does not guarantee success in the solution of the full set of governing
equations.

We note finally that preliminary results have been obtained by Fortin and co-workers [94] on the
basis of a Lesaint-Raviart integration of the constitutive model. This technique also enjoys good
properties in the solution of first-order hyperbolic systems (Johnson et al.[89]).

s Optimal error estimates are obtained with the Galerkin method in the solution of linear elliptic problems (scc ¢.g.
Reddy [84]).
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9.4.7 A Mixed Technique Based on Renardy’s Formulation

Armstrong, Brown, and co-workers [88] have recently developed a new mixed finite element
technique that shows considerable improvement over conventional mixed methods. The tech-
nique is based on a formulation of the momentum equation valid for the upper-convected
Maxwell fluid (Renardy [46]). With the following definitions,

Y=y d+Aty ¢g=P+AvVP (9.4-30)
Renardy’s formulation of the momentum equation reads
V-(g-Vv) + A Vv (V1) = Vg (9.4-31)

Note that (9.4-31) has the form of generalized Navier-Stokes equations, with ¢ being viewed as
a modified pressure. As discussed in Section 9.8.10, the tensor % is symmetric and positive
definite in al! flows of physical interest. Eq. (9.4-31) is thus a second-order elliptic equation for
the velocity field, at all levels of fluid elasticity. The authors solve (9.4-31) and the continuity
equation (9.2-2) using the Galerkin technique. The constitutive equation is discretized by means
of either Galerkin, SU, or SUPG methods. In all cases, one recovers the UVP formulation in the
limit of Newtonian flow. The conventional mixed interpolations of Fig. 9.3 are used to approxi-
mate the unknowns Ty, v, and q.

With their new method, the authors have computed solutions at moderately high Weissenberg
numbers which converge with mesh refinement in some flows with and without stress singulari-
ties. This success is attributed in part to the elliptic character of the momentum equation being
made explicit in Renardy’s formulation. Depending on the flow problem, the SUPG integration
of the constitutive equation gave results for the full problem that either are almost identical or
more accurate than their Galerkin counterparts. Gross inaccuracies were obtained in some cases
with the SU solution of the constitutive model. These observations apparently contradict those
of Marchal and Crochet [86] (cf. Section 9.4.6). One should keep in mind, however, that the
latter authors use a different formulation of the governing equations, as well as a stress interpo-
lation that is more refined relative to the velocity interpolation. The first point may be responsi-
ble for the very different impact of the SUPG discretization of the constitutive equation on the
solution of the full problem, while the second may just be what is necessary to guarantee the
accuracy of Marchal and Crochet’s results with the SU stress integration. Further work is needed
to settle this issue fully.

9.4.8 Hybrid Techniques Based on Spectral Methods

Beris, Armstrong, and Brown [95] have recently developed a hybrid spectral/finite element tech-
nique which is capable of very high accuracy in flow problems endowed with smooth solutions.
Spectral methiods have been applied successfully in Newtonian fluid mechanics. For flow prob-
lems with spatially periodic boundary conditions, the unknown fields are approximated by trun-
cated Fourier series. Non-periodic problems are tackled with Chebyshev polynomials. In linear
problems endowed with infinitely differentiable solutions, the spectral results converge
exponentially with increasing number of Fourier or Chebyshev modes (Gottlieb and Orszag
[96]). If the exact solutions are less regular, which appears to be the case of most viscoelastic
problems of practical interest, the convergence rate of spectral methods is polynomial rather
than exponential.

In contrast to finite element or finite difference approximations, Fourier or Chebyshev expan-
sions lead to discrete systems with fully-populated matrices. This makes direct solution methods
totally unfeasible even with current supercomputers. To get around this difficulty, Beris et
al.[95] have adopted a hybrid approach whereby a spectral approximation in one spatial variable
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is mixed with a finite element approximation in the other. The authors have computed the steady
flow of an upper-convected Maxwell fluid between two eccentric rotating cylinders, using a
stream function/extra-stress formulation of the governing equations. High polynomial eonver-
gence rates with increasing number of spectral modes is demonstrated in the case of low eccen-
tricities. Along similar lines, Pilitsis and Beris [97] have recently developed a spectral/finite
difference technique which uses a spectral approximation in the streamwise direction, and cen-
tral finite differences in the direction normal to the streamlines. Highly accurate results have
been obtained for the flow of Oldroyd-B fluids through undulated pipes. It should be noted that
hybrid spectral methods for viscoelastic fluids are currently limited to simple flow geometries.

9.5 Coupled Techniques for Integral Models

9.5.1 Preliminaries

It is not a simple task to devise coupled algorithms for integral constitutive models. The particle
paths needed to compute the extra-stress are not known a priori, and the Lagrangian formulation
of integral models does not explicitly involve the Eulerian velocity field. The first problem is
akin to free surface flows, and can thus be tackled with similar techniques. The second diffi-
culty has been dealt with either by using the Lagrangian formulation of the conservation equa-
tions, or by deriving Eulerian formulations of integral models valid for certain classes of flows.
We describe the two approaches below. The reader should be aware that very little is known
about the numerical performance of available coupled techniques for integral models.

9.5.2 Eulerian Formulation

The first step in obtaining an Eulerian formulation of integral models is to relate deformation
gradients and velocities explicitly. This is achieved in principle by integrating the basic
kinematical equation

L gy =wierre) ©9.5-1)

Dt
backward in time along the fluid particle trajectories, with the initial condition F(f) = 8.
Closed-form solutions of (9.5-1) have been obtained by Adachi [98] for certain classes of
steady-state, two-dimensional flows, using the concept of Protean coordinate systems. One such
class is that of flows whose streamlines can be represented by single-valued functions of one
spatial coordinate (Fig. 9.5). We briefly discuss this case hereafter.

streamline y=const.
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Fig. 9.5 Fluid particle trajectory

Let us consider a fluid particle with positions x and x” at present and past times ¢ and ¢ *, respec-
tively. In the present class of flows, streamlines are parameterized by the single spatial coordi-
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nate x (Fig. 9.5). We also know that streamlines are contour lines of the stream function
defined by

o __, 9w _, (9.5-2)
ox ay
Following Adachi [98], we define a Protean coordinate system by the transformation
xp=x  x;=yxy) (9.5-3)

In this system, the tracking of an individual fluid particle is vastly simplified since the coordi-
nate x, is constant along a streamline. Actally, the kinematical equation (9.5-1) admits a closed
form solution in Protean coordinates [98]. The results can be expressed in the Cartesian coordi-
nate system by means of (9.5-3) and standard tensor transformation rules. For example, the xx-
component of the Finger strain tensor C;! is given by

2
Co ) = [u(Pult PrulPv P12 - |2 202 )] r+ 20 (9.54)
u(t) u(t’)?
where I is an integral evaluated along the streamline:
‘ ~
_ [ du(z) _dr )
1= 3y 2@ 9.5-5)

¢
The Eulerian description C3! (x,x") follows immediately since we have a one-to-one correspon-
dence between the coordinate x and the particle travel time along the streamline:
dr=EQ (9.5-6)
u(t)
We thus have

CAx,x) = [ (x)2u (xP+u 32 (x)2) 1 2 = [2 u(x)’v (x) ] PR i ©.5-7)
u(x?) u(x)?

with I given by

" du € _d&
I= 9.5-8
!- y u®) ©.5-8)

It is understood here that the integrand is evaluated along the streamline passing through x. We
are now in a position of writing the generic integral model
t
@)= ] me—t)S,e)dt’ 9.5-9)
in Eulerian form. Using (9.5-6), (9.5-7), and the definition (9.2-15) of the kernel S, we obtain
formally

4 X -

ww=m|] 1 Sex oy - (9.5-10)
- x° u@) }/3

This expression gives the viscoelastic extra-stress at position x as an integral involving veloci-

ties and velocity gradients evaluated upstream along the streamline passing through x. It is the

key to the coupled technique developed by Papanastasiou et al. [99], which we describe briefly
in the next section.
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9.53 Streamline Finite Elements

Let us substitute the Eulerian description (9.5-10) of the generic integral model into the Galerkin
equation (9.4-5) particularized to steady flows. We obtain

[ {y;jptv-vve =11+ Yyl (=P8 + uy 1 1} a2
Q

x X

V! - | goex) —E— |l aq 9.5-11
+'[x Vi .'.[.m ! u®@E) () u(x?) ( )
= [ yjo*nds
lo}

The Galerkin equations (9.4-4) and (9.5-11) thus constitute a discretization scheme for integral
models which involves velocity and pressure unknowns only. It remains, however, to compute
the integral (9.5-10) at the integration points of each element. This is not trivial since the stream-
lines are unknown. The approach of Papanastasiou et al. [99] is to discretize the flow domain Q
into so-called streamline elements. These are quadrilateral elements which have a pair of
opposed sides that remain aligned with a pair of streamlines during the nonlinear iterations (Fig.
9.6). The streamline segment passing through an integration point can thus be approximated
using the isoparametric transformation, and the element contribution to the integral (9.5-10) is
readily obtained in terms of nodal velocities. Of course, the elements’ locations are unknown in
this method, and must be computed as part of the solution. The methodology used by Papanas-
tasiou et al. [99] is similar to that developed for solving free surface flows (Section 9.4.3). Each
discrete streamline-to-be is approximated by one-dimensional finite elements, with the nodal
coefficients being the y-coordinates of the nodes defining the streamline. Along each discrete
streamline, the authors use the Galerkin method to solve the kinematic equation v*-n = 0, where
n is the normal to the streamline. These Galerkin equations together with (9.4-4) and (9.5-11)
constitute a set of nonlinear algebraic equations for the nodal velocities, pressures, and stream-
line coordinates. These equations are solved in [99] by means of Newton's method. It should be
noted that the resulting Jacobian matrix has a lower-triangular form, in view of the local nature
of the basis functions and the integral term (9.5-10) present in the discrete momentum equations
(9.5-11). This feature implies storage requirements and execution times which call for a super-
computer. The numerical accuracy of the present technique has not yet been established. Though
the Eulerian expression for the extra-stress is exact, the extra-stress integral (9.5-10) is com-
puted numerically on the basis of an approximated finite element velocity field. Finally, we note
that the use of a spectrum of relaxation times does not require additional storage; it simply
amounts to changing the form of the memory function m. This is typical of either coupled or
decoupled techniques for integral models.

y -

streamiine
slement

e

/

streamline

X
Fig. 96 Flow discretization by means of streamline elements
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9.5.4 Lagrangian Formulation

The coupled technique of the previous section is limited to a particular class of flows. There is a
more general route leading to coupled methods with integral models: the use of the Lagrangian
formulation of the governing equations. This approach has been developed by Hassager and co-
workers {100-101]. In the Lagrangian formulation, the primary kinematical variables are the
time-dependent fluid particle positions. Any flow computation amounts to solving a transient
problem from given initial particle positions and a given deformation pre-history. The domain of
integration is now a time-dependent material volume (t). Hassager and co-workers [100-101]
use a finite element method to approximate the material volume. The discretization principle is
based on a variational theorem derived by Hassager [102]. It is possible, however, to derive the
discrete equations without making reference to the variational theory, as done below.

A Lagrangian finite element discretization of the material volume Q(¢) directly gives the
approximated position x*(¢) of the fluid particles through the isoparametric transformation. We
have

Ny
()= Y X.(1) 0, i 9.5-12)

m=]
where Ny is the number of nodes, X,, are time-dependent nodal positions, and 6,, are basis func-
tions that define the isoparametric mapping. We can now make use of the results of Section 9.4.3
(cf. Eq. (9.4-23)). Since the nodes are moving at the fluid velocity, the mesh velocity v™ is equal
to the fluid velocity v2, and the Galerkin discretization (9.4-5) of the momentum equation

becomes

2] a ¢
[ {0np 1 11+ VOL (=P8 + pn 7 + | m—) 8,40 dt" 1} dQ2
) dt -
= | 6.0%nds ©95-13)
)

Instead of (9.4-4), Hassager and co-workers [100-101] use the discrete incompressibility con-
straint
| mdeF,©0)-11d2=0 (9.5-14)

Q)
which directly involves the material discretization x®. The deformation gradient F, needed in
the last two equations is readily computed by differentiation of (9.5-12) [100]. Equations (9.5-
13) and (9.5-14) lead to a discrete problem of the form

d*X dx
L2 P)=0 5.1

NP 9.5-15)
where X and P are vectors of nodal particle coordinates and nodal pressures, respectively. Has-
sager and co-workers [100-101] use a first-order implicit scheme to integrate (9.5-15) in time.
Bilinear and constant polynomials on quadrilateral elements are used to discretize the material
volume and the pressure, respectively. At each time step, the computed history of the deforma-
tion gradient F, is updated by means of the chain rule F,(t") = F,_,,(t )F.(t-Af), and the
memory integral in (9.5-13) is evaluated with the trapezoidal rule.

We have noted in Section 9.4.3 that a Lagrangian method requires periodical remeshing of the
material volume in order to avoid excessively deformed elements. This procedure is not trivial
with general integral models, for it involves the computation of a new finite element representa-
tion of the stored history of the deformation gradient. The present technique is the only existing
method capable of solving transient flow problems with integral models. It is also readily appli-
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cable to free surface flows. Further investigation is needed, however, to determine its numerical
accuracy. ’

This completes our survey of available coupled schemes for simulating viscoelastic flows. Let us
now consider the class of decoupled techniques.

9.6 Decoupled Techniques

9.6.1 Preliminaries

Each iteration of a decoupled method consists of solving a Newtonian-like flow problem and
integrating the constitutive equation with given kinematics. Existing decoupled techniques often
carry out these two steps accurately. In view of the intricate nonlinear coupling between extra-
stresses and velocities, however, the accuracy of the solution to the full set of governing equa-
tions is not necessarily guaranteed. It should be pointed out that the literature on decoupled
techniques does not address the issue of numerical accuracy and convergence with mesh refine-
ment to the extent seen in some publications using coupled methods. As a result, we shall be
unable to comment on the actual accuracy and convergence properties of decoupled techniques.

9.6.2 Basic Procedure
Most decoupled methods are based on the following iterative scheme:

1) solve the constitutive equation for the viscoelastic extra-stress using the kinematics calcu-
lated at the previous iteration,

2) update the kinematics by solving the conservation laws using the viscoelastic extra-stress
computed in step 1,

3) check for convergence; if needed, return to step 1.

The process can be started with the Newtonian flow field, for example. Let us consider the casc
of steady-state creeping flows. If T% denotes the viscoelastic extra-stress computed at the n®
iteration, step 2 amounts to solving the conservation laws

VP &+ (uy + 10T ) ==Vl - ¥ -pf 9.6-1)
V- vn+1 =0 (9 6- 2) -

for the updated velocity and pressure fields v**! and P**!, respcctwely Following Tanner and
co-workers [103}, we have introduced in both sides of (9.6-1) an arbitrary Newtonian com-
ponent i, . Its purpose is to ensure that the left-hand side of (9.6-1) contains velocity terms
even when Wy vanishes. Specific values of . do not affect the final solution, but may have an
impact on the rate of convergence of the iterative procedure7 The bottom line is that (9. 6-1)
and (9.6-2) define a Newtonian flow problem with a known pseudo-body force V-(t§ — s ¥ ™).
We shall thus refer to step 2 as the perturbed Newtonian problem.

A major difficulty with decoupled techniques lies in the iterative procedure itself. The simple
substitution (or Picard) iterative procedure described above converges at best linearly (Dahlquist
and Bjorck [105]). As a result, it is often observed in actual simulations that the number of
Picard iterations is at least one order of magnitude larger than with Newton’s method, for identi-
cal initial guesses and convergence criteria. One should refrain, however, from rejecting
Picard’s method on that basis. Indeed, one Newton iteration can prove much more time-

7 With the choice Ji4 = iy, this approach is equivalent to the approximation 4 -t =y ¢t = 77) used by Vini-
yayuthakom and Caswell [104].
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consuming that one Picard iteration. The real drawback of Picard’s scheme is that convergence
is never guaranteed. Divergence can indeed occur even when the initial guesses are chosen arbi-
trarily close to a solution [105]. Alternative procedures have been devised in the context of
decoupled techniques. Malkus and Bemstein {106] have implemented Broyden’s algorithm,
which is closer to a Newton method but does not require the exact evaluation of the Jacobian
matrix. Another approach, suggested by Shen [107], consists in computing steady-state solutions
of a pseudo-transient problem. Briefly put, the time derivative of the velocity field is kept in the
momentum equation (9.6-1); at each time step, viscoelastic extra-stresses are computed from the
current velocity as if it had been in a steady state for all time; the extra-stresses are then substi-
tuted in (9.6-1) for the calculation of the velocity at the next time step. Further work is needed to
determine the extent to which these more sophisticated schemes improve on the simple Picard
method in terms of convergence properties and overall efficiency.

9.6.3 Solution of the Perturbed Newtonian Problem

In the present section, we describe the various methods used to date for solving the perturbed
Newtonian problem, i.e. step 2 of a decoupled method. We shall be very brief, for these tech-
niques have been well documented in the literature of Newtonian computational fluid mechan-
ics.

Most authors use finite element methods based on the Galerkin UVP formulation of the Navier-
Stokes equations (Viriyayuthakom and Caswell {104,108}, Crochet and co-workers [109-110],
Shen [107], Isayev and Upadhyay [111-112], Luo and Tanner {113-114]). The penalty formula-
tion is used by Malkus, Bernstein, and co-workers [106,115-117]. In both cases, one needs the
values of the extra-stress tJ at the integration points in order to form the Galerkin equations.

Alternatively, Tanner and co-workers [103,118-119] and Phan Thien and Khan [120] solve the
perturbed Newtonian problem by means of the boundary element technique. The problem is for-
mulated as an integral equation involving unknown velocity and traction forces along the boun-
dary 0Q only. It should be noted, however, that the viscoelastic pseudo-body force enters the
formulation through a domain integral. The authors use simple linear elements to discretize the
boundary, and divide the flow domain into an array of triangular cells to compute the domain
integral. As with finite element methods, we need the values of the extra-stress €} at the integra-
tion points.

Finite difference methods have also been used in the context of decoupled techniques (Davies et
al.[121], Court et al.[122], Cochrane et al.[123], Tiefenbruck and Leal [124], Townsend [125-
127), Walters and Webster [128]). Following the pioneering work of Perera and Walters [129-
130}, most authors formulate the governing equations in terms of the stream function, the vorti-
city, and the modified extra-stress S given by (9.4-14). For steady two-dimensional flows, the
perturbed Newtonian problem then reads

Viy = -0 (9.6-3)
dyde _dvdw, oS . sy sy 95y ©64)
ax dy dy ox dxdy  oy? ox?  dxdy )
where v is the stream function defined by (9.5-2), and  is the vorticity (dv/0x—du/dy). In good
finite difference tradition, the computation of v is also decoupled from that of w. Note that
(9.6-4) involves the highly delicate computation of second-order derivatives of the modified
extra-stress S. Also, it is not an easy task to specify accurate boundary conditions for the vorti-
city. The governing equations (9.6-3) and (9.6-4) are discretized by means of a combination of
first and second-order differencing formulae, and the resulting linear matrix equations arc
solved iteratively, usually by means of a successive over-relaxation scheme (see the review by

V2o +p [


keunings
Rectangle 


9.6 Decoupled Techniques 431

Davies [8]). In the present case, values of the extra-stress S are needed at the grid points in
order to solve the vorticity equations (9.6-4).

We must now discuss step 1, i.e. the computation of viscoelastic extra-stresses at the integration
or grid points, assuming that the velocity field is known. As we shall see, similarities exist
between the cases of differential and integral constitutive equations.

9.6.4 Streamline Integration of Differential Models

In steady flow, the differential model (9.2-6) is a set of first-order hyperbolic equations with the
streamlines as characteristic curves. First-order hyperbolic equations are most naturally solved
by the method of characteristics, whereby the original set of partial differential equations is
transformed into a set of ordinary differential equations to be solved along the characteristic
curves. In view of (9.2-22), we can write the differential model (9.2-6) as

dty

di

where [ is the arc length along a streamline and v is the velocity field computed at the previous
iteration. Equation (9.6-5) defines an initial-value problem for t§ which can be integrated accu-
rately along the streamlines by means of standard procedures (e.g. fourth-order Runge-Kutta’s
method). In the case of non-closed streamlines, the initial values correspond to the inlet extra-
stress boundary conditions discussed in Section 9.2.6. Closed streamlines are typically not
treated by this method, but in principle could be dealt with by means of a shooting technique.
Note that the use of a spectrum of relaxation times involves the integration of (9.6-5) for each
partial extra-stress Ty,; this task can be fulfilled without a significant increase of storage. The
streamline integration approach has been suggested by Shen [107], and further developed by
Tanner and co-workers [103,113-114,118], in relation with both finite element and boundary
element methods.

For each integration point of the perturbed Newtonian problem, we must locate the upstream
part of the streamline passing through that point, and integrate (9.6-5) from the inlet boundary to
the integration point. It is an easy task to compute the stream function y from a known velocity
field, e.g. by solving the Poisson equation (9.6-3). With this information at hand, one can iden-
tify the streamline segments in each element (or cell) upstream of the integration point. This
procedure can be time-consuming since integration points generally lie on different streamlines.
In order to avoid this difficulty, Luo and Tanner {113-114] use the streamline elements described
in Section 9.5.3. From the knowledge of the stream function, the mesh is updated at each itera-
tion so that the nodes always lie along given streamlines. Equation (9.6-5) is integrated along
these streamlines to give nodal extra-stresses, which are then interpolated at the integration
points. This technique is very cheap since only a few streamlines must be identified. In addition,
only one integration along a given streamline will yield extra-stresses at all nodes on that
streamline. The drawback, of course, is that recirculation regions cannot be handled with stream-
line elements. Bush et al.[103,118] and Phan Thien and Khan [120] also use the above procedure
in the context of boundary element techniques. In this case, it is the mesh of triangular cells used
to compute the viscoelastic domain integral which is forced at each iteration to conform with
streamlines. Extension to non-isothermal flows is discussed by Sugeng et al.[131].

The methodology used in finite difference-based algorithms is less accurate than the streamline
integration procedure. First-order differencing schemes have been used to discretize the dif-
ferential model (9.2-6). So far, attempts at developing second-order accurate methods have been
unsuccessful. We refer the reader to the comprehensive review by Davies [8] for more details.
Let us now discuss the computation of the extra-stress with integral models.

Alvl

= B(t}.Vv) (9.6-5)
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9.6.5 Integral Models

Integral models have been used in conjunction with both finite difference and finite element

solutions of the perturbed Newtonian problem. Available techniques are based on the Lagran-

gian description (9.2-14). Schematically, the computation of viscoelastic extra-stresses at

integration or grid points is performed in three steps:

1) tracking: on the basis of a known steady-state velocity field, compute the upstream trajec-
tory and the travel time of each integration or grid point,

2) strain evaluation: at selected past times, compute the deformation gradient F, and from it
the integrand of (9.2-14),

3) stress evaluation: compute the integral (9.2-14) numerically, using the results of step 2.

The last step is the simplest one. For a single relaxation time A in the definition of the memory
function (9.2-16), the extra-stress integral can be written as

% (1) = % [ exp (=512 S(s) ds (9.6-6)
0

where s is the time lapse -t *, and S(s) is a short notation for §,(t—s). Following the pioneering
work of Viriyayuthakorn and Caswell {104], most authors use a Gauss-Laguerre integration
technique to compute the integral (9.6-6). The extra-stress integral is thus approximated by the
weighted sum

w ¥

w®)=5" Zl wl S(zl ) 9.6-7)
where z¥ are the roots of the N* Laguerre polynomial, and wY are the weights of the quadrature
rule (Carnahan et al. [132]). In practice, N is chosen between 2 and 10. Eq. (9.6-7) implies that
the deformation-dependent kemel S needs only be computed at the discrete time lapses s; = AzY.
Since the latter increase linearly with the relaxation time A, we must evaluate ever larger strains
when the memory of the fluid increases. Extension of the above approach to finite and infinite
relaxation spectra is discussed by Malkus and Bemnstein [106]. Different integration procedures
have been developed recently by Dupont et al. [110] and Luo and Tanner [114] in the context of
finite element techniques. Briefly, the time integral (9.6-6) is transformed into a line integral
along the particle trajectory; the latter is subdivided into segments through which the particle
travels in a time shorter than the relaxation time of the fluid; standard Gaussian integration rules
are used to compute the integral (9.6-6) on each segment. The computation is stopped once the
marginal contribution of a segment is less than some preassigned value. Note that smaller relax-
ation times require a finer segmentation in order not to miss the deformation history of the
recent past. This approach is also feasible with finite relaxation spectra [114].

The main difficulty associated with the use of integral models lies in the tracking of past particle
positions and the computation of the strain history. In the early work of Viriyayuthakomn and
Caswell [104], the deformation history is computed on the basis of the Lagrangian deformation
of each element of the mesh. Using the current velocity field, the authors determine first the past
trajectory of the finite element nodes. The deformation gradient at a given time lapse s; is then
obtained using the finite element mapping between past and present configurations of each ele-
ment. The problem with that approach is that badly distorted elements are often obtained when
the time lapse increases, leading to inaccurate strains even when the tracking of the nodes is car-
ried out exactly (Dupont et al.[110]). The finite difference technique developed by Court et al.
[122] suffers from a similar problem.
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n+1

Fig. 9.7 Velocity macro-element proposed by Bemstein and Malkus [106], and fluid particle
trajectory

More accurate procedures have been proposed recently, in the context of the finite element solu-
tion of the perturbed Newtonian problem. Bemstein and Malkus [106,115-117] use a special
low-order finite element to compute the velocity field (Fig. 9.7). It consists of four linear trian-
gles whose interior sides define the diagonal of a quadrilateral macro-element. The velocity
field is approximated by first-order polynomials on each triangle, and the pressure field is
treated by the penalty method. This element has spurious pressure modes whose effects can be
minimized a posteriori by means of a smoothing technique (Bernstein et al. [116]). The impor-
tant point about the present velocity approximation is that the computed velocity gradient is uni-
form over each triangle. As a result, it is possible to perform the tracking procedure as well as
the strain computation analytically within each triangle. Indeed, let us consider a fluid particle
which has left a given triangle at time ¢, (Fig. 9.7). We assume that F(t,) is known from compu-
tations in the elements located downstream. The streamline of the particle within that triangle is
a conic section whose coefficients are related to the approximated velocity gradient [116). It is
thus easy to determine the intersection x(t, ,1) of the particle path with the riangle’s boundaries.
We now need to compute the travel time along the streamline. To do so, Bernstein and Malkus
introduce the concept of a drift function w defined by

wx(t)-wx(t)) =t —ta 9.6-8)
The drift function can also be found explicitly as a function of the computed velocity gradient
[116]. We can thus compute ¢,,; and determine whether an integration point for the stress com-
putation lies in the triangle. The final step is to determine the deformation gradient. In view of

(9.5-1) and the fact that the approximated velocity gradient is equal to some constant tensor G
over the triangle, we obtain

Fu)=e"""CF)  tas$t'<t, (9.6-9)

The deformation gradient can thus be evaluated anywhere on the particle path by means of 9.6-
9) and the drift function. It should be noted that the actual construction of the particle path is
never needed in this method. In contrast to the developments of Section 9.5.2, the present
analytical results can be used for simulating general steady-state flows. The price to pay is the
relatively low accuracy of the velocity field computed with the element of Fig. 9.7. Bemstein
[133] has recently extended the drift function tracking technique to the case of compressible and
non-isothermal flows. The above ideas are also at the core of the preliminary work by Le Tallec
[134] with a least-squares finite element technique.

The method developed by Dupont, Marchal, and Crochet [110] is independent of the type of ele-
ment. Tracking is carried out by constructing the upstream streamline passing through the parti-
cle. As in Section 9.6.4, this is achieved on the basis of a finite element representation of the
stream function. Travel times are then calculated using the velocity field along the streamline.
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Fig. 9.8 Evolution of a material vector 3§ along the fluid particle trajectory

The computation of the deformation gradient goes as follows. Referring to Fig. 9.8, we consider
a material vector 8&(¢ *) in a small neighborhood of x(¢ *); this vector becomes 3E(r) at time t. We
have

8E(1") = F, (1) 8&(r) (9.6-10)
In two-dimensional flows, this relation fully determines the components of F,(t *) once we know

how two vectors deform between times ¢ and ¢ . Assuming steady-state conditions, we have the
relation

v(t") =F,(¢")v() 9.6-11)

This gives us two equations for computing the components of F,(¢ ). Dupont et al. [110] have
derived another important relation. To this end, they define a curvilinear coordinate system as
shown in Fig. 9.8. Let 8%, and 8&, denote the components of a material vector along the tangent
and normal vectors to the streamline, respectively. If we define the scalar quantity B by

&,
B= v 9.6-12)
it is proven in [110] that
(¢ ) Iv(t )1 =8 (1) Iv(r) | (9.6-13)
dp _ Y
P ERTE 9.6-14)

where [ is the arc-length along the streamline and ¥, is the off-diagonal component of the rate of
strain tensor with respect to the curvilinear coordinate system; ¥, is also evaluated along the
streamline. Let us now select a material vector such that 8&,(¢) = 0 and 8&,(¢) = 8¢3. Equations
(9.6-12) and (9.6-13) give

| l .
8a() = I—“-(i‘l)l— 89 8&() =B IVE) ! Iv()I8ES ©.615)
v(t
where B(¢°) is obtained from a streamline integration of (9.6-14) with the initial condition
B(¢) = 0. Equations (9.6-11) and (9.6-15) completely determine the tensor F,(t *). This procedure
is very accurate.

In a recent paper, Luo and Tanner [114)] have developed a new technique based on the concept
of streamline elements (Fig. 9.6). The methodology is actually quite similar to that described in
the previous section for differential models. Indeed, the viscoelastic extra-stress is evaluated at
nodes which lie on given streamlines. Since the streamlines coincide with element boundaries, a
parametric representation of the node trajectories is readily available and travel times are easily
calculated. The authors compute the deformation gradicnt by numerically solving the deforma-
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tion equations (9.5-1) along streamlines. The Cauchy-Green tensor C relative to a node in its
near past is computed directly from the integrated deformation gradient, while values in the rela-
tively far past are obtained from the chain rule. This prevents the accumulation of errors in the
long-time integration of the deformation equations. Along a no-slip wall, the above procedure
does not apply. The authors use exact expressions for the Cauchy-Green tensor obtained by
Caswell [135] for smooth boundaries. With an elaborate and careful implementation, the
present technique has been made both accurate and economical. It shares however the drawback
of all streamline finite element techniques, i.e. it cannot handle recirculation regions.

This completes our survey of available decoupled methods for predicting viscoelastic flows.

9.7 Selected Numerical Simulations

9.7.1 Review of Published Simulations

The numerical techniques described in this chapter have been applied to a number of non-trivial
flow problems, which we classify as

1) steady-state entry flows [54-55, 57-58, 62, 66, 72, 86, 94, 104, 107, 109, 111-112, 130,
136-140, 156, 167, 174],

2) steady-state extrusion flows [51-53, 56, 60, 65, 67-68, 99, 103, 108, 113-114, 118, 131,
156],

3) steady-state flows over a transverse slot (i.e. the hole-pressure problem) [59, 63-65, €9,
106, 110, 115-117, 125, 134, 141],

4) steady-state flows past submerged objects such as spheres and cylinders [61, 100, 113, 119,
124, 126, 139, 142],

5) steady-state flows between eccentric rotating cylinders (i.e. the journal bearing problem)
[70-72, 88, 951,

6) steady-state flows in undulated channels [97, 120, 143],

7) transient flows in confined geometries [73-75, 127, 144-145],
8) transient flows with free surfaces [76, 81-82], and

9) non-isothermal flows [67-69, 131, 156}

In view of the significant computer resources involved in viscoelastic computations, available
simulations are for two-dimensional or three-dimensional axisymmetric geometries. No fully
three-dimensional results have been reported yet.

Viscoelastic simulations have long been limited to low values of the Weissenberg number We.
As a result, the provocative flow patterns observed with polymeric fluids could not possibly be
predicted (Crochet and Walters [6-7]). This frustrating state of affairs has improved recently, in
the sense that several numerical solutions are now available over a range of Weissenberg
numbers that covers the experiments. We wish to emphasize, however, that the actual numerical
accuracy of available high-We results is essentially an open question. Except in isolated cases
(Beris and co-workers [95,97], King et al. [88]), the considerable cost associated with viscoelas-
tic computations has prevented researchers from increasing the resolution of their grids to the
point where convergence to the exact solution could be demonstrated unambiguously™.

% Of course, this does not mean that the other high-We results published in the literature are necessarily inaccurate.
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Also, as discussed in Section 9.8.9, refining the grid can lead, at least with particular techniques,
models, and flow problems, to insurmountable difficulties which overwhelm the numerical solu-
tions. Caution should thus be exercised in the interpretation of available viscoelastic simula-
tions untl the issue of numerical accuracy is satisfactorily settled.

We describe below some of the high-We simulations which have predicted significant viscoelas-
tic effects in both velocity and stress fields. Other numerical simulations that predict interesting
viscoelastic effects include those by Beris and co-workers [95,97], Dupont and Crochet [156],
Finlayson and McClelland {67], Keunings and co-workers {56,81-82], King et al. [88], Malkus
and Bemstein [106], Phan Thien and co-workers [120,145], Sugeng et al.[131], and Upadhyay
and Isayev [112].

9.7.2 Flow Through an Abrupt Contraction

Entry flows, i.e. accelerative flows from a large cross-section via an abrupt or angular entry into
a smaller cross-section, arise in rheometrical devices as well as in many polymer processing
applications, such as extrusion and injection molding. In recent years, much experimental and
theoretical work has focused on entry flows through abrupt contractions (see the reviews by
Boger [146] and White et al. [147]). Fig. 9.9 shows a schematic of the flow through a sudden
contraction. In most numerical studies, fully-developed Poiseuille flow is assumed at some dis-
tance upstream and downstream of the contraction plane, and no-slip boundary conditions are
imposed at the wall. It is further assumed that the flow is steady and two-dimensional planar or
axisymmetric. The flow through a sudden contraction is very demanding numerically, one rea-
son being the singularity of the stress at the re-entrant corner (Section 9.8.9).

LV
t—q\
N
u — 2R .
Vo
Lu Ld

Fig. 9.9 Schematic of the flow through a sudden contraction

Of particular interest is the presence or absence of a secondary vortex in the upstream tube
comer (Fig. 9.9). A Newtonian fluid shows a small corner vortex whose size can be predicted
accurately by means of standard numerical techniques (Boger [146]). The kinematics observed
with polymer solutions and polymer melts in contraction flows are extremely diverse. Some
polymeric fluids show a dramatic increase in vortex size and intensity as the Weissenberg
number increases, while others do not The so-called Boger fluids (i.e. highly-elastic, constant-
viscosity polymeric solutions [19]) show voriex enhancement in axisymmetric contractions, but
not in planar contractions. The center of rotation of the vortex can in some cases shift from the
upstream tube comner to the tube entrance. Finally, low-We transitions from steady Newtonian-
like behavior to time-dependent regimes have been observed in creeping contraction flow of
polymeric solutions. Details on these provocative flow phenomena are given in the recent papers
by Evans and Walters [148], Boger et al. [149], and Lawler et al. [150].
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Fig. 9.10 Dimensionless vortex size as a function of Weissenberg number; experimental data for

polymeric solutions (Boger and Nguyen [151]) and finite element predictions using the

upper-convected Maxwell model (O : Crochet and Bezy [136], 4 : Viriyayuthakom

and Caswell [104])
The experimental work of Boger and Nguyen [151] has revealed a significant vortex growth as
the Weissenberg number increases in creeping flow of highly-elastic, non-shear thinning polym-
eric solutions. Fig. 9.10 shows observed values of the vortex size, measured in terms of a re-
attachment length X = L,/2R, (Fig. 9.9), for different solutions of polyacrylamide in corn syrup
flowing through a 4 to 1 circular contraction. All experimental curves, except curve G, are for
constant shear viscosity fluids. The vortex size is given as a function of the Weissenberg
number We defined by

We = 2¥ 9.7-1)
d

where A is the Maxwell (i.e. zero-shear rate) relaxation time, and V is the average velocity in the
downstream tube of radius R;. We see that the non-shear thinning solutions can experience up
to a six-fold increase in vortex size relative to the Newtonian case (We = 0). Inspection of Fig.
9.10 also indicates that a single dimensionless elastic parameter is not sufficient to describe the
vortex growth; this in itself rules out the use of simple one-mode Maxwell models for a quanti-
wative prediction of the experimental curves, since We is the only parameter left with such
models in the limit of creeping flow.

Until the recent work of Marchal and Crochet [86], all numerical simulations based on non-
shear thinning elastic models have been unable to predict significant vortex growth9. Fig. 9.10
shows the finite element results of Viriyayuthakorn and Caswell [104] and Crochet and Bezy
[136] obtained with the upper-convected Maxwell model in integral and differential form,
respectively. Virtally no vortex growth is predicted with this model in the range of Weissen-
berg numbers where the iterative schemes would converge.

9 Shear thinning inelastic models predict a decrease in vortex size (Kim-E et al{152]).
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We =0. We = 15,

Fig. 9.11 Vortex size predicted by Marchal and Crochet [86] with a mixed finite element tech-
nique and the Oldroyd-B model; the computed re-attachment length X is equal 10 0.2 at
We =0,and 10 0.7 st We = 15

It has recently been realized that Boger fluids are well described at moderate deformation rates
by the Oldroyd-B constitutive equation (Gupta et al. [153]). This is consistent with the fact that
the Oldroyd-B model can be derived from the elastic dumbbell kinetic theory of dilute polym-
eric solutions (Bird et al. [11]). Finite element solutions obtained with the mixed formulation
MFE1 and the Oldroyd-B model up to We = 1.5 did not, however, predict significant vortex
growth (Crochet and Keunings [137], Marchal and Crochet [55]). Fig. 9.11 shows the high-We
results obtained by Marchal and Crochet [86] with their new mixed technique (Section 9.4.6).
These simulations do predict dramatic vortex growth, but at much higher values of We than in
the experiments of Boger and co-workers. It is thus tempting to conclude that the Oldroyd-B
constitutive equation is not an adequate theory for modeling entry flows. This is quite plausible,
in view of the large deformation rates experienced by the fluid in the vicinity of the re-entrant
corner.

Significant vortex growth has also been predicted in finite element studies with the mixed for-
mulation MFE1 and the Phan Thien-Tanner model (Keunings and Crochet {57], Debbaut and
Crochet [54]); this fluid model is shear thinning, and has a finite steady elongational viscosity.
The computed vortex size X reaches a maximum value of about 0.50 at We =4, and then
decreases for larger values of We. Dramatic kinematical changes are predicted for increasing
values of We, as can be seen from Fig. 9.12 where we show the development of the axial velo-
city profile along the axis of symmetry. It would be interesting to compare these numerical
results with experimental data for fluids which behave like the Phan Thien-Tanner model in sim-
ple rheometrical tests; such data are not available, however.

An important quantity in experimental rheology is the pressure correction 8P,, due to the entry
flow. Referring to Fig. 9.9, we define &P,, by

8P, = [8P — L AP, - L,AP;)/(21,) 9.7-2)

Here, AP, and AP, are the pressure gradients in the fully-developed upstream and downstream
flows, respectively, &P is the total pressure loss in the contraction, and <, is the wall shear stress
in the downstream fully-developed flow. We plot in Fig. 9.13 the values of 8P,, computed with
the Phan Thien-Tanner fluid [57]. Also shown are the finite element results obtained by Crochet
and co-workers [109] with the Doi-Edwards integral model; the material parameters are such
that the two fluids give qualitatively similar responses in viscometric flows. We see that both
models predict an eventual increase of the Couette correction for increasing values of We. This
behavior has been observed in laboratory experiments [5]. The Doi-Edwards model does not,
however, predict a significant vortex growth. This result contradicts the general belief among
rheologists that increases in pressure correction and vortex size are always related. It also shows
that knowledge of the viscometric behavior is not enough to predict the flow of a viscoelastic
fluid in a complex geometry like the abrupt contraction.
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Fig. 9.12 Axial velocity profile along the axis of symmetry of the contraction (the origin is
located at the contraction plane); mixed finite element results obtained by Keunings
and Crochet {57} with the Phan Thien-Tanner model
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Fig. 9.13 Finite element prediction of the pressure correction as a function of Weissenberg
number, using a particular case of the Phan Thien-Tanner model (Keunings and Cro-
chet {57]) and the Doi-Edwards model (Crochet et al. [109])

9.7.3 Extrudate Swell

Another popular test problem in numerical simulation is the extrusion flow from long dies.
Experimental and theoretical studies have shown that the shape of the free surface depends on
many factors, including rheological properties, thermal conditions, gravity, surface tension, die
geometry, and inertial forces (see the reviews by Tanner [5] and Vlachopoulos [154]). In the
present section, we consider infinitely long (planar or axisymmetric circular) dies and focus on
viscoelastic effects only. Referring to Fig. 9.14, we impose the following boundary conditions:
fully-developed flow at some distance upstream of the exit section, no-slip at the die wall, van-
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Fig. 9.14 Schematic of the die swell problem

ishing contact forces at the free surface and at some section downstream, and symmetry condi-
tions along the axis or plane of symmetry. This problem also has a stress singularity, located at
the die lip (Section 9.8.9). We shall consider steady (creeping) flow, in which case the unknown
free surface is a streamline. One of the goals of die swell computations is to predict the swelling
ratio % defined by
H
x = 711 (9.7-3)
where Hp is the final radius (or half-thickness) of the extrudate, and H is the radius (or half-
thickness) of the die. The swelling ratio for Newtonian fluids is about 1.13 with circular dies,
and 1.19 with planar dies. Much higher values have been observed with polymeric fluids (up to
2 with long dies, and 4 with short dies [154])).

As in the case of entry flows, it is not clear what dimensionless groups govern the above extru-
sion problem for real polymeric liquids; this difficulty is typical of viscoelastic flows in complex
geometries. Predicted values for the swelling ratio are usually reported as functions of a
Weissenberg number We defined by

We = At (9.7-4)

Here, A is the zero-shear rate relaxation time, and ¥, is the shear rate at the wall in the upstream
fully-developed flow. Following Nickell, Tanner, and Caswell [155], most researchers have
used a Picard iterative scheme which decouples the computation of the free surface shape from
that of velocity and stress fields; this simple method is very efficient when surface tension
effects are negligible. Papanastasiou et al. [99] compute the free surface shape simultaneously
with velocity and stress values using a Newton scheme.

With the exception of the recent results of Bush and co-workers [103], all existing numerical
predictions based on the upper-convected Maxwell (integral or differential) model are limited to
rather low values of the Weissenberg number (see the review by Tanner [S]). High-We calcula-
tions that predict significant swelling ratios are depicted in Fig. 9.15. The curve corresponding
to the Oldroyd-B equation has been computed by Crochet and Keunings [53] with the mixed fin-
ite element formulation MFE1. The other results are due to Bush and co-workers [103] who
used a decoupled boundary element method and a modified version of the Phan Thien-Tanner
model. When the parameter ¢ is greater than zero, the modified Phan Thien-Tanner model
predicts a shear-thinning viscosity and a steady elongational viscosity which increases with
stretch rate up to a finite asymptotic value; note that the particular case € = 0 corresponds to the
upper-convected Maxwell fluid. We see that the results for the Maxwell and Oldroyd-B models
are not in agreement for We higher than 3.5; it is not clear whether the discrepancy must be attri-
buted to the rheological models themselves or the numerical techniques (or both). The results for
non-vanishing values of € indicate that both viscometric and elongational characteristics are
important in the die swell problem (Bush et al. [103]). These interesting predictions have not
been compared with experimental data for fluids which behave like the Oldroyd-B or modified
Phan Thien-Tanner models in rheometrical flows.
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Fig. 9.15 Swelling ratio as a function of Weissenberg number (slit dic). ‘Mixed finite element
predictions using the Oldroyd-B model (Crochet and Keunings [53]), and boundary
element results obtained with a2 modified Phan Thien-Tanner model (Bush et al. {103]);
the curve € = 0 corresponds to the upper-convected Maxwell model
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Fig. 9.16 Swelling ratio as a function of apparent flow rate D =320 /rH?, where Q is the
volume output rate (circular die); experimental data for 8 LDPE melt (continuous line)
and predictions by Luo and Tanner [114] using a BKZ model and a streamline finite
element technique

In a recent paper, Luo and Tanner {114] used a (decoupled) streamline finite element method to
predict the extrudate swell of a particular low-density polyethylene. The constitutive model is
of the BKZ type, and has a spectrum of relaxation times; it provides good fits of both shear and
elongational viscosity data. Figure 9.16 shows a comparison between predicted and observed
swelling ratios; the agreement is quite satisfactory. Very similar results have been obtained by

Dupont and Crochet [156] by means of a decoupled finite element algorithm.
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9.7.4 Breakup of Viscoelastic Jets

A liquid jet emanating from a vibrating nozzle may break up into droplets if the frequency of the
vibration is sufficiently low Fig. 9.17). This instability is driven by surface tension. The breakup
of liquid jets’ is important in many applications, including ink-jet printing, atomization
processes, and elongational rheometry (Bousfield et al. [22]). Polymer solutions generally take
longer to break up than Newtonian jets of comparable shear viscosity; sometimes, viscoelastic
jets do not form droplets at all (Gordon et al. {157]). The Newtonian case was first analysed by
Rayleigh [158] using linear stability theory. Rayleigh formulated the actual spatial stability
problem as a transient process in a frame of reference moving with the jet. The author then cal-
culated the growth of infinitesimal periodic disturbances applied to the radius of a stationary
liquid cylinder, assuming that the disturbance wavelength remains constant. Linear stability
theory predicts breakup lengths of Newtonian jets rather well (Goedde and Yuen [159]), but fails
to describe the stabilizing effect of elastic forces (Middleman [160]). Two successful nonlinear
studies of viscoelastic jet breakup have been reported recently. Bousfield and co-workers [22]
used a one-dimensional model of the jet dynamics, while Keunings [22,76] solved the two-
dimensional case by means of the mixed finite element method for transient free surface flows
described in Section 9.4.3. These complementary studies retain the framework of Rayleigh’s
analysis, but are not limited to infinitesimal perturbations of the jet radius. Let us briefly review
the finite element results.

Water Jet
= CO—0-
—| }—1mm
Polymer Jet

— ===
Fig. 9.17 Schematic of the growth of surface disturbances in Newtonian and viscoelastic jets

In the present application, the flow domain Q(¢) is axisymmetric and extends over half the
wavelength of the disturbance (Fig. 9.18); the jet radius plays the role of the height function A.
Symmetry conditions are imposed at z = 0 and L, as well as on the axis of symmetry. At the free
surface, the following stress balance applies:

Gn=-P,n+Y { o*h [ 1+( 5 )2 ™2 -h 1+( )2 ]-m] (9.7-5)
Here, P, is the ambient gas pressure and 7y is a constant coefficient of surface tension. The stress
condition (9.7-5) is specified numerically as a natural boundary condition (Keunings [76]). The
present flow is driven by surface tension only.

Fig. 9.19 shows free surface shapes predicted for inertialess jets of Newtonian and Oldroyd-B
fluids. The disturbance initially grows much more rapidly on the viscoelastic filament, in accor-
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Fig. 9.18 Computational domain for the jet breakup problem
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Fig. 9.19 Finite element predictions of free surface shape for inenialess jets of Newtonian and
Oldroyd-B fluids (Keunings and co-workers [22,76]); 7, 8, and { are dimensionless jet
radii, times, and axial distances, respectively.

dance with linear theory (Middleman [160]). The shape of the viscoelastic jet then stabilizes
rather abruptly into the droplet-connecting ligament configuration seen in the experiments
[157]; the disturbance continues to grow on the Newtonian jet, which eventually breaks up. The
finite element simulations are in quantitative agreement with the one-dimensional theory of
Bousfield and co-workers {22]. The latter can thus be used in confidence for inexpensive
parametric studies (the viscoelastic simulation of Fig. 9.19 consumes about an hour of CPU time
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Fig. 920 Evolution of the jet radius disturbance as a function of time; experimental daja points
for a dilute solution of Polyox in water and prediction using the Oldroyd-B model
(Bousfield et al. [22]). The dashed line is the prediction of linear stability theory (Mid-
dleman [160]).

on a CRAY X-MP). Figure 9.20 shows a comparison between the one-dimensional nonlinear
analysis and the experimental data for a dilute solution of Polyox in water; the agreement is
excellent. Figure 9.20 clearly demonstrates that the stabilizing effect of elasticity is a nonlinear
phenomenon. Inspection of the computed stress field reveals that the flow in the nascent liga-
ment is nearly extensional; the retardation effect of elasticity results from the high values of the
elongational viscosity predicted with the Oldroyd-B model.

The above results demonstrate that the Oldroyd-B model can have excellent predictive ability in
flows of dilute polymeric solutions involving moderate deformation rates. A similar conclusion
has been drawn recently by Boger and co-workers in a semi-analytical study of squeeze film
flow [20] and a one-dimensional analysis of fiber spinning [21].

9.8 The High Weissenberg Number Problem

9.8.1 Preliminaries

Despite the evident progress over the last few years, obtaining accurate numerical solutions (or
worse, any solution at all) at high values of the Weissenberg number remains a challenge. The
goal of the present section is to delineate the underlying causes for numerical difficulties in
computations at high We.

The High Weissenberg Number Problem (HWNP), i.e. the divergence of conventional iterative
schemes beyond some critical value of the Weissenberg number, has been reported in virtually
all published work. In order to understand the causes for the HWNP, one must first focus on the
discrete problem, namely the set of algebraic equations obtained after discretization.
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9.8.2 Possible Causes for the Divergence of Conventional Iterative Schemes

Let us consider a particular steady-state flow problem, which we discretize by means of a
specific numerical technique and a given grid. Furthermore, let x(We) denote the family of
numerical solutions parameterized by We and emanating from the Newtonian solution x(0). We
shall assume that the Newtonian solution is steady two-dimensional, and stable to small distur-
bances. The qualitative behavior of the solution family can be quite rich in view of the non-
linear character of the algebraic equations. The possible cases are illustrated in Fig. 9.21. With
the exception of case A, they all involve irregular points in the solution family. Of course, the
properties shown in Fig. 9.21 may also carrespond to the solution family of the continuous prob-
lem, i.c. the set of partial differential or integro-partial differential equations governing the flow.
There is no guarantee, however, that the qualitative behavior of the solutions is transferred
without alteration from the continuous problem to the discrete problem. We shall come back to
this important issue. Let us first discuss the impact of the different cases shown in Fig. 9.21 on
conventional nonlinear iterations and review available evidence as to their occurrence in con-
tinuous problems and flow experiments.

A

')

solution

S

st-
(D
=
0

Flg. 921 Qualitative behavior of the numerical solution family x(We)

A) The solution family consists of stable, steady-state two-dimensional flows for all values of
We, and it evolves smoothly as We increases.

In this case, the Jacobian matrix of the discrete system is regular at all points of the solution
family (Section 9.8.3). Thus, we do not expect insurmountable convergence difficulties
with the steady-state coupled techniques of Section 9.4 and 9.5, as long as the disk of con-
vergence of Newton's technique does not shrink too drastically as We increases. The con-
vergence of decoupled iterations (Section 9.6) is another matter. Indeed, Picard-type
schemes can diverge in the absence of irregular points in the solution family, even when the
initial guess is chosen arbitrarily close to a solution. We believe that case A is unlikely on
account of the nonlinearity of the govemning equations. There are known examples, how-
ever, such as the analytical solution for low-Reynolds number Poiseuille flow between
infinite plates (see e.g. Lee and Finlayson [161]).

B) The solution family is like that for case A in some range of values of We, but varies infin-
itely rapidly at We,,;,.
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O

D)

E)

Clearly, conventional Picard and Newton iterative schemes may experience convergence
difficulties at We_,;,. Note that the Jacobian matrix is singular there. Case B has been iden-
tified recently in the analytical study of Poiseuille flow of the Johnson-Segalman fluid (Van
Schaftingen and Crochet [162]).

The solution family is like that for case A until it terminates abrupdy at We,;,.

The termination point implies at least local loss of solutions for We 2 We,,;,. Indeed,
disconnected solution families could exist. A global loss of solution is of course hopeless
for any iterative scheme. Local loss can also cause the iterations to diverge, since the initial
guess may be too distant from a disconnected solution family. Beris and co-workers [70]
have reported analytical evidence of both termination points and disconnected solution
families in steady-state shearing flows with particular cases of the model (9.2-6).

The solution family is like that for case A until a turning point is reached at We,;,.

The turning point implies multiplicity of solutions for some values of We below the critical
value'®. Here again, we have at least local loss of solutions for We above We;,. The return
branch consists of unstable solutions (Section 9.8.3). It may itself have a turning point after
which the solution family would regain stability. The impact of a turning point on the itera-
tive process can be as detrimental as that of the termination point. The Jacobian matrix is
singular at a turning point. Recent semi-analytical analyses of the flow of a Maxwell fluid
through a porous-walled pipe have established the existence of turning points in the con-
tinnous viscoelastic problem (Menon et al. [163], Larson [26]).

The solution family is like that for case A until a bifurcation occurs at We,,;;. Beyond that
point, the solution family is unstable, although it continues to exist.

The bifurcating branches may consist of stable, steady-state, two-dimensional solutions. A
steady-state numerical method designed for computing flows of this type is capable of com-
puting the bifurcating branches, either accidentally or by means of algorithms based on
bifurcation theory (Keller [164], Iooss and Joseph [165]). Of course, the same numerical
method will be unable to compute bifurcating solutions that are time-periodic two-
dimensional, or three-dimensional. We ought to stress that a steady-state algorithm based
on Newton’s method can easily compute the unstable solution family beyond We,,;. In
other words, a bifurcation point is not expected to create convergence problems for the
steady-state coupled methods of Sections 9.4 and 9.5'!. This may not be true of the decou-
pled methods of Section 9.6, since Picard-type iterative schemes sometimes mimic the tran-
sient behavior of the system,

Analytical and experimental evidence exists for the occurrence of low-Reynolds number
stability changes and the associated flow transitions (Petrie and Denn [2], Tanner [5]). In
particular, recent experiments on the flow of polymeric solutions through sudden contrac-
tions have revealed remarkable flow transitions at low Reynolds numbers and low Weissen-
berg numbers (Lawler et al. [150]). As We reaches a first critical value, the observed flow
loses its steady, two-dimensional character and becomes time-periodic, three-dimensional.
Multiple time-periodic motions are then observed until a second critical value of We is
reached. At this point, the flow reverts to a steady-state, two-dimensional motion! The

19 Tuming points are also referred to in the literature as limit points.

11 A transient algorithm (see e.g. Section 9.4.3) may reach an unstable sieady-state solution, but it cannot stay there
forever. Any disturbance, e.g. round-off errors, will tend to grow as ime evolves.
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prediction of the stable time-periodic motions seen in these experiments would of course
require time-dependent, three-dimensional simulations. These computations are not feasi-
ble with currently available computers.

In summary, we have seen that irregular points in numerical solution families may be responsi-
ble for the loss of convergence of conventional iterative schemes at some critical value of We.
As indicated earlier, the irregular points could be intrinsic to the analytical solution families or
induced by excessive approximation errors. Armstrong, Brown, and co-workers [66] were the
first to suspect the presence of irregular points in viscoelastic simulations. Their hypothesis has
lead to important findings which we describe hereafter. Since the methodology for tracking
irregular points is largely based on Newton’s method, the discussion which follows only con-
cerns the coupled techniques of Sections 9.4 and 9.5.3. The case of decoupled methods will be

treated separately.

9.8.3 Tracking Irregular Points and Stability Changes

The set of algebraic equations generated by steady-state coupled methods can be written in the
compact form

F(x;We) =0 ©.8-1)
where x is the set of nodal values defining the approximated fields. Newton’s method is based on
the linearization of (9.8-1). Starting with an initial estimate x®, one computes successive
iterates x**1 = x™ 4+ §x by solving the linear problem

oF

_a_x.(x(u)).sx = —F(x™) 9.8-2)

The matrix on the left-hand side of (9.8-2) is the Jacobian matrix. Suitable initial estimates can
be found by means of a continuation technique (see e.g. Beris et al. [70]).

Newton’s method is guaranteed to converge provided that the initial estimate x© is sufficiently
close to a solution and the Jacobian matrix is regular. At an irregular point where the discrete
solution family either varies infinitely rapidly, terminates abruptly, bifurcates, or turns on itself,
the linearization (9.8-2) fails and the Jacobian matrix is singular. This gives us 2 means of
detecting irregular points unambiguously by monitoring changes of sign of the determinant of
the Jacobian matrix as we compute the solution family. (The determinant is simply the product
of the pivots computed during the Gaussian elimination.) When convergence of the conven-
tional Newton method becomes difficult or impossible, one can switch to an arc length continua-
tion technique to proceed beyond or around an irregular point {70]. This amounts to introducing
a new variable s defined by

(x = X0)(X = Xg) + (We — Weo)? = (s — 50)? (9.8-3)
where the subscript 0 refers to a known reference solution, usually the closest known member of
the solution family. Equation (9.8-3) is then added to (9.8-1) to yield an augmented problem of
the form

G(x,We.s)=0 9.84)

The unknowns are now x and the Weissenberg number We, while s is the new parameter; the
equation set (9.8-4) is solved by means of Newton’s method. This procedure is specially useful
for computing solutions around a turning point.

There is an important connection between the temporal stability of the steady-state solutions and
the occurrence of bifurcation and turning points in solution families (Iooss and Joseph [165]).
This is easily seen at the level of the discrete equations. Coupled methods for solving transient
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viscoelastic flows lead to a set of ordinary differential equations of the form

F(x,x;We) = 0 (9.8-5)
The steady-state problem (9.8-1) is recovered by formally setting the time derivative to zero, i.e.
F(0,x;We) = F(x;We). Let us consider a particular steady-state solution x,, which we perturb by

a small amount 8x. The equation governing the perturbation is obtained by linearizing (9.8-5)
about the steady state, i.e.

8 oF
Ox + —6x=0 9.8-6

o i (9.8-6)
Note that the partial derivatives of F are computed at the steady-state solution x,. The matrix
oF/3x is often referred to as the mass matrix. The second matrix 9F/dx is nothing else but the
Jacobian matrix of the steady-state problem (9.8-1) evaluated at x,. The general solution of
(9.8-6) is a linear combination of normal modes of the form {exp (ot), where { and & are,
respectively, an eigenvector and an eigenvalue of the generalized eigenvalue problem

JF  OJF

(cai+ax)C-0 (9.8-7)
Any small perturbation 8x will decay as time evolves if all eigenvalues of (9.8-7) have a nega-
tive real part. The steady-state solution x, is then said to be linearly stable. It is clear that the
stability of x, changes for values of We where a real eigenvalue ¢ changes sign. This case leads
to the singularity of the Jacobian matrix, and corresponds to either a turning point or a bifurca-
tion to a family of solutions of the steady-state problem (9.8-1). Stability can also change when
the real part of a pair of complex conjugate eigenvalues changes sign. This indicates that we
have a bifurcation to a family of time-periodic solutions that branches from the steady-state
solution family. Such bifurcation points do not imply the singularity of the Jacobian matrix. The
only way to track them in steady-state simulations is to solve the eigenvalue problem (9.8-7).
This by itself is a difficult and expensive numerical task which has been carried out for simple
flows only (Van Schaftingen [75], Liu and Beris [166]). We should emphasize again that we are
talking here about stability properties of the discrete solutions, not of the exact solutions.

9.8.4 A First Fact about the HWNP with Coupled Methods

Using the above methodology, Beris, Armstrong, and Brown {70] discovered the existence of
turning and bifurcation points in their finite element simulations of the journal bearing problem
with the formulation MFE3 and various differential models of the type (9.2-6). Irregular points
have since been identified in several other simulations of the flow of differential and integral
fluids with coupled techniques (Brown and co-workers [71-72], Crochet and co-workers
[54,162}, Finlayson and co-workers [73,74], Keunings and co-workers [58,138,167], Papanas-
tasiou et al. [99], and Van Schaftingen [75]). It was found repeatedly that bifurcation points
could be passed through without difficulty, as expected with steady-state Newton algorithms.
Turning points, however, were clearly identified as the cause for the divergence of the iterations.
More precisely, it was found that the location of the first tuming point in the solution family ori-
ginating from the Newtonian solution coincided with the critical Weissenberg number We,,;
beyond which conventional Newton iterations ceased to converge. This gives our first definite
fact about the HWNP:

Fact 1 A turning point in the numerical solution family emanating from the Newtonian
solution is responsible for the high Weissenberg number problem in various simulations
with coupled techniques.
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Again, we stress that a turning point does not necessarily imply the loss of numerical solutions
for We = We,,;, on the solution family emanating from the Newtonian solution. This is made
clear in Fig. 9.22. where we show mixed finite element results obtained by Debbaut and Crochet
[54]. These authors have re-examined the flow of a Phan Thien-Tanner fluid through an abrupt
contraction studied by Keunings and Crochet [57] (Section 9.7.2). With a particular finite ele-
ment discretization, Newton's scheme ceased to converge at We,,; = 1.5. Debbaut and Crochet
[54] found that this critical value corresponds indeed to a turning point (Fig. 9.22). A second
turning point occurred at We = 0.8, where the solution family turned back again towards increas-
ing We; a third turning point was later found at We = 7.4, where the simulation was stopped.
(Debbaut and Crochet also computed (by accident) solution families that are disconnected from
the Newtonian solution.) These results show that numerical solutions can sometimes be com-
puted at high values of We by means of special algorithms for tracking tuming points and com-
puting return branches, without altering the discrete equations.

4
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Fig. 922 Tuming points computed by Debbaut and Crochet [54] in mixed finite element simula-
tions of the flow of a Phan Thien-Tanner fluid through a sudden contraction
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9.8.5 Spurious Irregular Points

A fundamental question arises at this stage: are the turning and bifurcation points seen in various
simulations with coupled methods only numerical artifacts induced by discretization errors, or
are they intrinsic properties of the exact solution families? This question is relevant not only to
the HWNP (cf. Fact 1), but also to the ability of the numerical method to predict stability
changes and flow transitions accurately.

In order to gain insight into this complex issue, it is appropriate to study non-trivial test prob-
lems whose analytical behavior is known. Beris and co-workers [70] carried out finite element
simulations of the journal bearing problem with the second-order fluid model. In dimensionless
form, this model reads

Ty = '.Y + We?(l) - (98'8)

The second-order fluid approximates the differential model (9.2-6), in general, all Simple Fluids
[S], in the limit of low-We flows endowed with smooth deformation histories. It predicts normal
stresses in viscometric flow, but is not capable of memory effects such as stress relaxation. The
second-order fluid is generally not recommended for use in practical simulations (Tanner [5],
Brennan et al. [48}), but it is very useful for assessing the capabilities of numerical techniques.
Indeed, theorems due to Giesekus {168] and Tanner [169] establish that the Newtonian velocity
field is also a solution for the second-order fluid in two-dimensional creeping planar flow, as
long as the two fluids are subject to identical boundary conditions in terms of velocity and velo-
city gradients. Since the second-order model is explicit in the velocity gradient, the extra-stress
tensor for these flows is obtained by direct substitution of the Newtonian velocity field in (9.8-
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8). In addition, a theorem due to Huilgol [170] can be used to establish whether the Newtonian
velocity field is the unique solution to the second-order fluid equations.

The journal bearing problem satisfies the conditions of all the aforementioned theorems when
inertia is neglected. The exact solution with the second-order fluid is thus devoid of turning or
bifurcation points in this problem. The numerical solutions reported by Beris and co-workers
[71] for the case of moderate eccentricity predicted a turning point, however. The tuming point
is clearly a numerical artifact. It should be noted that computed velocity and stress fields had
only slight oscillations for We near the critical value We,,;, where the turning point occurred.
The actual value of We,,;, was very sensitive to the finite element mesh; it increased with mesh
refinement, as expected from artificial turning points generated by excessive numerical errors.

Further evidence of spurious irregular points can be found in the work of Finlayson and co-
workers [74]. These authors computed an apparently simple problem, namely fully-developed
plane Poiseuille flow of an upper-convected Maxwell fluid. The exact steady-state solution can
be computed easily, and it is linearly stable at low Reynolds numbers for all values of We (Ho
and Denn [171], Lee and Finlayson [161], Renardy and Renardy [172]). In addition, the finite
clement basis functions used in the simulations can represent the steady-state analytical solution
exactly. The important result is that the authors found bifurcations points in their numerical
solutions. Spurious changes of stability were thus predicted at some (low) values of We (see also
Van Schaftingen [75]). These findings demonstrate that some numerical methods can provide
excellent approximations of steady-state solutions while being very inaccurate in the prediction
of bifurcation points and the associated flow transitions. For a coupled technique, this means
that the Jacobian matrix has not converged with mesh refinement to the linearization of the con-
tinuous problem.

The above results also imply that the transient techniques of Section 9.4.3 can have serious diffi-
culties in computing stable steady-state solutions for large values of We in the case of Poiseuille
flow of a Maxwell fluid. How, then, can one explain the success of the transient simulation of
the jet breakup problem (Section 9.7.4), which in some respect is a more complex application?
The answer lies in the fact that the real part of the most dangerous analytical eigenvalue in
Poiseuille flow goes to zero with increasing We, even though it is always negative [172]. As a
result, approximation errors can easily generate a numerical eigenvalue with the wrong sign, and
thus induce spurious stability changes. In that regard, the numerical task is much simpler in the
jet breakup problem, since the analytical transient is dominated by large, positive eigenvalues.
We wish to note, finally, that progress towards improved techniques for solving transient viscoe-
lastic flows has been made recently by Liu and Beris [166] in the context of one-dimensional
flow problems.

In summary, the evidence described above warns us that approximation errors in viscoelastic
simulations can cause the numerical method to introduce spurious irregular points. Let us now
consider flow problems which are not amenable to analytical study.

9.8.6 A Second Fact about the HWNP with Coupled Methods

The only way to establish whether one computes true or spurious irregular points in complex
flow problems is to examine their sensitivity to mesh refinement. Mesh refinement is very costly
with coupled techniques and requires access to supercomputers.

Beris and co-workers [70-71] computed both bifurcation and turning points in finite element
simulations of the journal bearing problem with the mixed formulation MFE3 and the upper-
convected Maxwell fluid. The location of the bifurcation points in We —space was found to be
very sensitive to the mesh. Furthermore, the bifurcating solutions were oscillatory with spatial
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frequencies associated with the mesh spacing. This suggests that the bifurcations are spurious,
as in the Poiseuille flow problem discussed in the previous section.

The situation is less obvious with the turning points. In the case of low eccentricity, changing
the number of nodal values from 2320 to 8870 increased the critical value of We at the turning
point by 10% only. This led Beris and co-workers to speculate that the turning point is an intrin-
sic property of the continuous problem, even though they acknowledged a drastic degradation of
the quality of the numerical results as the Weissenberg number increases towards We,;,. Recent
computations by the same authors with their spectral/finite element method (Section 9.4.8) have
demonstrated that the turning point is actually a numerical artifact (Beris et al. [95]). The
authors computed a very accurate solution family that is free of turning points up to a critical
Weissenberg number 30 times larger than with the mixed finite element method. These solu-
tions are in excellent agreement with the perturbation results obtained by Beris et al. [173). For
larger eccentricities, however, a turning point is predicted at much lower We, and the Fourier
series approximations are not convergent with refined meshes. The loss of convergence may
indicate the development of a stress singularity which cannot be approximated by the numerical
method.

Spurious turning points computed with mixed finite element methods have also been reported by
Crochet and co-workers [54,162), and Keunings [58]. Fact 1 and the above findings lead to our
second (and last) definite conclusion about the HWNP in complex flow problems:

Fact 2 Excessive approximation errors have clearly been identified as the cause for the
turning points predicted in some simulations with coupled methods. In other words, the
high Weissenberg number problem has a numerical origin for these cases.

We hasten to stress that Fact 2 does not exclude the existence of turning points in exact solution
families. As we said earlier, there is semi-analytical evidence that true turning points exist with
the upper-convected Maxwell model (Menon et al. [163], Larson [26]). A complex viscoelastic
flow problem which may well have a true tuming point is discussed in the next section.

9.8.7 A Plausibly True Turning Point with the Maxwell fluid

We now discuss numerical results obtained for the flow through an abrupt contraction. The
reader will soon realize that the presence of a stress singularity at the re-entrant comer obscures
the interpretation of numerical experiments aimed at explaining the HWNP.

Yeh and co-workers {174] were the first to find a turning point in mixed finite element solutions
of the flow of an upper-convected Maxwell fluid through an abrupt circular contraction. The
location of the turning point was relatively insensitive to mesh refinement (up to 8015 nodal
values were used), but spurious oscillations would develop in the vicinity of the re-entrant
comer when We reached the critical value. It is thus not clear whether the turning point is a
numerical artifact or an intrinsic property of the Maxwell fluid.

In a more recent paper, Keunings [58) carried out an extensive mesh refinement experiment for
the flow of Maxwell and Giesekus fluids through an abrupt planar contraction. The author used
the mixed formulation MFE1 and a sequence of meshes which are increasingly refined near the
re-entrant corner. Again, turning points were found with both fluid models. The location of the
turning point in We-space is given in Table 9.1 as a function of mesh refinement. In this prob-
lem, it is natural to characterize the degree of mesh refinement by the size of the finite elements
which share the comner node. Note that the most refined mesh contains 40974 degrees of free-
dom. With the Giesekus model, the turning point is very sensitive to mesh refinement, and thus
appears to be spurious. Intermediate mesh refinement largely delays the occurrence of the turn-
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Table 9.1 Location of the turning point as a function of mesh refinement
near the re-entrant corner (Keunings [{58]); corner element sizes are made
dimensionless with the half-thickness of the downstream slit.

Degrees of freedom  Size of comer element  Location We,,; of the tuming point
Giesekus model  Maxwell model

3139 0.25 0.805 0.873
5059 0.20 1.05 0.565
3046 0.05 4.545 0.556
11172 0.02 0408 0.588
40974 0.005 0.610 0.112

ing point, but further refinement is not very helpful in that regard. It is worth noting that the
solutions computed with the Giesekus model were well-behaved even in the neighborhood of
the tumming point.

Inspection of Table 9.1 shows that the picture is very different with the Maxwell fluid. The turn-
ing point seems to settle in a mesh-independent location, as seen by Yeh et al. [174] in their
simulations for the circular contraction. It would thus appear that a true turning point (i.e. a turn-
ing point of the exact solution family) has been identified in the present flow problem. With the
most refined mesh, however, the turning point occurs at a much reduced value of We. This dis-
turbing fact has also been observed by Brown et al. [72] with a mixed method based on the for-
mulation MFE3. It clearly calls for an investigation of the analytical nature of the stress singu-
larity (Section 9.8.9). In contrast to the results obtained with the Giesekus model, the solutions
computed with the Maxwell fluid near the turning point are polluted by spurious oscillations
which emanate from the re-entrant comer. Here again, it is difficult to conclude whether the
turning point is real or spurious.

One way of eliminating the damaging effect of the singularity is to round the re-entrant corner
(Brown et al. [72], Rosenberg and Keunings [138]). Brown and co-workers also specified
Navier’s slip boundary condition at the wall of the smoothed contraction, i.e.

v, =Bt (9.8-9)
Here, v, is the velocity component tangent to the wall, B is a small slip coefficient, and t,, is the
shear stress at the wall. Turning points were again found with the upper-convected Maxwell
fluid in both circular and planar smooth contractions, and the quality of the finite element results
(obtained with the conventional mixed techniques of Section 9.4.2) would deteriorate drastically
for values of We close to We,,;;. The location of the turning point was not nearly as sensitive to
intensive mesh refinement as in the simulations with the singular corner, however. It is thus
plausible that the turning point is an intrinsic property of the upper-convected Maxwell fluid in
this flow problem. We shall return to this speculation in Section 9.8.9.

9.8.8 Causes for Excessive Approximation Errors

We have seen that turning points are responsible for the HWNP in various simulations with cou-
pled methods. In many cases studied to date (but not all), these turning points are induced by
excessive discretization errors. Spurious bifurcation points also arise in simulations with cou-
pled techniques, but they do not create convergence difficulties; they could, however, cause the
failure of decoupled iterations. Clearly, the next step towards the resolution of the HWNP is to
identify the underlying causes for the numerical crrors.
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At the time of this writing, researchers have identified three basic causes for excessive approxi-
mation errors in viscoelastic computations;

A) The presence of boundary layers or singularities in the velocity and stress fields,
B) the hyperbolic character of the governing equations, and
C) the nonlinear coupling between stress and velocity unknowns.

We have already discussed the impact of (C) on mixed finite element techniques for differential
models (Sections 9.4.4 and 9.4.5). We focus hereafter on (A) and (B).

9.8.9 Boundary Layers and Singularities

It has become clear in recent years that current mathematical formulations of viscoelastic flows
often lead to very complex velocity and stress fields as the Weissenberg number increases. Even
in the simple geometry of the journal bearing with small gaps and small eccentricities, the velo-
city and stress fields for Maxwell-type models can develop boundary layers at relatively modest
Weissenberg numbers (Beris et al. [173]). More difficult still is the case of moderate eccentri-
city. Here, numerical computations with the upper-convected Maxwell fluid predict a recircula-
tion region, and the computed stress gradients appear to be singular (i.e. infinite) near the points
of flow separation (Beris et al. [95]). Singular-like stress gradients have also been computed
numerically with Maxwell and Oldroyd-B fluids at stagnation points of flows past spheres and
drops (Marchal et al. [142], Bousfield et al. [82]), and in the flow through a wedge (Dupont et al.
{110]). Recent analytical work by Menon and co-workers [163] on the flow of a Maxwell fluid
in a porous-walled tube has revealed the existence of a singularity of the stress gradient at the
stagnation point of the flow. Stress boundary layers can also occur at an inlet section when the
specified viscoelastic stresses do not tend to the Newtonian values as We goes to zero. Finally,
stress singularities are known to occur in several flows, e.g. at the re-entrant comner of the flow
through an abrupt contraction, and at the die exit in extrusion flows.

The simulations reported in Section 9.8.6 clearly show that intensive mesh refinement with con-
ventional mixed methods does not eliminate the numerical difficulties in the presence of a stress
singularity (see also the work of Marchal et al. [142], and Brown et al. [72] with adaptively-
refined meshes). The nature of stress singularities for common viscoelastic models remains
largely unknown. As a result, it has not been possible to employ specialized techniques that
incorporate the form of the singularity in numerical solution procedures. In a recent paper,
Lipscomb, Keunings, and Denn [167] have shown that the stress singularity can be computed
explicitly for the second-order fluid in flows satisfying the conditions of the Giesekus-Tanner-
Huilgol theorems. Creeping flow through a planar contraction and the planar stick-slip problem
are two examples (Fig. 9.23). In these cases, the Newtonian extra-stress has a singularity of the
type r ™, where r is the distance from the singular point and n > 0. We have n = 0.455S5 for flow
in a contraction, and n = 0.5 for the stick-slip problem (Moffatt [175], Richardson [176]). In
view of (9.8-8), the corresponding stress singularity for the second-order fluid goes like
r™ + We r~2*, This result establishes the singular character of the Newtonian limit: there always
exists some region r « We " of the boundary singularity where the viscoelastic and Newtonian
stress fields differ by an arbitrarily large amount. We also see that the dominant term of the
second-order fluid singularity is the square of the Newtonian singularity. The numerical diffi-
culties are thus expected to be much more significant than with a Newtonian fluid.

The second-order fluid is not a valid asymptotic theory of real viscoelastic fluids as one
approaches the re-entrant comer, since the deformation history is not smooth there (Bird et al.
{1]). Numerical simulations discussed by Lispcomb et al. [167] indicate, however, that the above
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Fig. 924 Normalized stress difference in the vicinity of the re-entrant comner (planar contrac-
tion); mixed finite element results obtained with the upper-convected Maxwell fluid at
We = 0.03 (a) and 0.06 (b) (Lipscomb et al. {167])

results have some validity with more complex constitutive equations, Figure 9.24 shows stress
values computed with the upper-convected Maxwell fluid in the vicinity of the re-entrant corner,
using the most refined mesh of Keunings (58] (Section 9.8.7). The Weissenberg number is
within a range where one would expect the second-order fluid to provide a reasonable approxi-
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mation to the Maxwell fluid sufficiently far away from the corner. We see indeed that the stress
for the Maxwell fluid follows the asymptotic behavior predicted with the second-order fluid,
except in the small element containing the comner. It thus appears that the r~%%!!! dependence of
the extra-stress holds for the upper-convected Maxwell fluid, at least at very low We and in a
region close to but excluding the re-entrant corner (see also King et al. [88]). This observation
can be used to interpret the results of Table 9.1. Meshes that are sufficiendy refined in the vicin-
ity of the singularity will render computations with the Maxwell fluid extremely difficult, much
more difficult indeed than with a Newtonian fluid. Above some degree of mesh refinement,
approximations errors will grow to the extent that an artificial turning point is produced, whose
location in We-space goes to zero with increased resolution. (Drastic numerical problems are -
also expected with Newtonian fluids, but at a much higher level of refinement, since the strength
of the singularity is much lower.)

Actually, we can go one step further and assume that a true turning point exists at We = 0.6 for
the flow of an upper-convected Maxwell fluid in a planar contraction (Table 9.1). In view of the
above discussion, it is indeed plausible that the stress singularity overwhelms the numerical
results computed with the most refined mesh 1o the extent that it induces an artificial tuming
point before the true turning point could ever be reached. A numerical experiment reported by
Lipscomb et al. [167] gives some ground to this hypothesis. The computations of Keunings [58]
were repeated using his most refined mesh with a single change: the relaxation time was set to
zero in the minute elements containing the re-entrant corner, thus maintaining the strength of the
singularity at its Newtonian value. Interestingly enough, the tuming point moved from 0.1
(Table 9.1) 1o about 0.6, i.e. close to the hypothesized tumning point of the exact solution family.
Unfortunately, the numerical solutions for We near 0.6 still showed spurious oscillations gen-
erated at the re-entrant corner. We must thus re-iterate that conventional mixed techniques are
unable to prove conclusively the existence of true turning points in viscoelastic flow problems
with singularities (see also Brown et al. [72]).

The results obtained by Lipscomb et al. [167] raise significant physical questions which are
independent of numerical issues. In the case of the abrupt contraction, the dominant term of the
second-order fluid stress singularity goes like 7~%%!! and thus is integrable (i.c. it leads to finite
forces). The stress singularity is non-integrable in the stick-slip problem, however, since the
dominant term goes like r~!. Non-integrable stresses are physically inadmissible. Indeed,
stresses greater than some value corresponding to the strength of the continuum (typically of
order 10° Pa) are inadmissible. Lipscomb and co-workers [167] show. that unphysically large
stresses can be reached in a second-order fluid over a length scale where the continuum
hypothesis applies. In view of the numerical results depicted in Fig. 9.24, the unphysical stresses
computed for the second-order fluid are plausible for the Maxwell fluid as well. It thus appears
likely that some of the current mathematical descriptions of viscoelastic flows near boundary
singularities not only create significant numerical problems, but also do not make physical
sense. The authors suggest two ways within the context of a continuum theory to correct this
deficiency: the use of a constitutive model in which structure breakdown at high stresses is so
severe that the viscoelastic contribution vanishes in the vicinity of the singularity, and the relax-
ation of the conventional no-slip boundary condition. These ideas are under active investigation
(see e.g. Apelian et al. [177]).

Finally, numerical experiments have revealed that the presence of a Newtonian component in
the constitutive equation (i.e. uy > 0) can dramatically improve the quality of the numerical
solutions. This is particularly true with the mixed Galerkin formulation MFE]1, as discovered by
Crochet and Keunings [53]. There may be several reasons for this fact. One is again related to
stress singularities. Theoretical work by Holstein [178] with Oldroyd models indicates that the



456 9 Simulation of Viscoelastic Fluid Flow

effect of the Newtonian viscosity is to maintain the strength of the singularity at its Newtonian
value. This can be seen from an order-of-magnitude analysis of the Oldroyd-B equation (9.2-11).
Near a singularity, convected-differentiated terms wiil dominate so that

T= 2 Y (9.8-10)

The Oldroyd-B fluid thus appears to behave like a Newtonian fluid near the singularity, which
would decrease the level of numerical difficulties. It should be emphasized, however, that a
rigorous analysis has not yet been carried out. Along similar lines, there is also numerical evi-
dence that the use of a streamline upwind scheme in the integration of the constitutive equation
(Section 9.4.6) can change the nature of the stress singularity with the upper-convected Maxwell
fluid (King et al. [88]). Indeed, scaling analysis of the modified constitutive model (9.4-26)
indicates that the strength of the stress singularity reduces to the Newtonian value for any non-
zero characteristic element size A.

The beneficial effects of a Newtonian viscosity are also related to the second basic source of
numerical difficulties in viscoelastic computations, i.e. the hyperbolic nature of viscoelastic
flow problems. This important topic we examine next.

9.8.10 Hyperbolicity, Change of Type, and Loss of Evolution

We have already discussed the numerical difficulties associated with the hyperbolic nature of
differential models alone (Section 9.4.6). The hyperbolic character of the full set of conserva-
tion and constitutive equations can give rise to even more challenging numerical problems in the
case of fluids without Newtonian viscosity. As mentioned in Section 9.2.5, the equations
governing steady flow of general viscoelastic fluids without Newtonian component constitute a
first-order quasilinear system having both imaginary and real characteristic directions. In two-
dimensional flow, there are always two imaginary characteristics plus a family of double real
characteristics (the streamlines). The remaining two families can be real or imaginary depend-
ing on material parameters and levels of velocities and stresses. For many constitutive models,
including (9.2-6), these characteristics are associated with the vorticity. The vorticity can thus
be elliptic in one flow region, and hyperbolic in another. Shocks of vorticity could arise in the
hyperbolic region. Numerical techniques designed for elliptic problems are likely to be inap-
propriate for problems with local changes of type.

Another difficulty that can be met with viscoelastic models devoid of Newtonian viscosity is the
loss of evolution of the governing equations. Loss of evolution is an instability of the Hadamard
type in which short-wave disturbances sharply increase in amplitude. Hadamard instabilities are
much stronger than those encountered beyond a bifurcation point (Case E of Section 9.8.2),
since one cannot expect the emergence of a stable bifurcating flow (Joseph and Saut [42]). It is
clear that time-dependent simulations will blow up when attempting to compute a solution
which is unstable in the sense of Hadamard; the disaster will get worse as the mesh is refined,
since disturbances with shorter wave length can be resolved. Similar problems are expected with
some Picard-type iterations used in steady-state simulations. Steady-state methods based on
Newton’s scheme should not have difficulties in computing solutions that are unstable in the
sense of Hadamard (of course, these solutions are useless since they could not possibly be main-
tained with the time-derivatives included in the calculations).

For future reference, let us examine in more detail the case of the upper-convected Maxwell
fluid. Dupret and Marchal [43] have obtained the following results pertaining to the exact solu-
tions:
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i) The upper-convected Maxwell fluid is evolutionary if the tensor T= Ty + (Uy/A) & is
positive-definite, i.e. if

detf v + £ 8150 (9.8-11)
ii) The upper-convected Maxwell model changes type when the tensor T—p vv is not
positive-definite,

iii) Steady-state solutions with the upper-convected Maxwell fluid always satisfy (9.8-11)
when proper stress values are specified at inlet boundaries, i.e. values such that T is
positive-definite. The upper-convected Maxwell fluid is thus always evolutionary in these
cases, and can never change type when inertia is neglected (p = 0).

iv) Steady-state solutions with the Oldroyd-B fluid also satisfy (9.8-11). In this case, however,
the criterion (9.8-11) is in no way related to hyperbolicity. The Oldroyd-B fluid can neither
lose evolution nor change type since it has a Newtonian component.

Let us now examine the connections between these analytical concepts and numerical difficul-
ties in viscoelastic computations. Dupret, Marchal, and Crochet [139] have examined two flow
problems with the upper-convected Maxwell and Oldroyd-B fluids, namely planar flow through
an abrupt contraction and flow around a sphere. The numerical method is a conventional mixed
method based on MFEL. In both cases, the Newton iterations did not converge beyond some
critical value of the Weissenberg number We,;,. The authors found that the numerical solutions
for the Maxwell fluid satisfied the criterion (9.8-11) at low We only. At some larger value of We,
but still below We,,;, the numerical approximation of the tensor T loses its positive-definite
character in regions of high stress gradients, i.e. near the re-entrant corner of the contraction and
the forward stagnation point of the flow around the sphere. When this happens, strong oscilla-
tions appear in the velocity field in regions of high gradients. With the Oldroyd-B fluid, the
computed tensor T similarly loses its positive-definite character at some We below We,,;,, again
because of approximation errors. The consequences, however, were not as dramatic as with the
Maxwell fluid, in that the computed velocity fields were free of strong oscillations. These
observations suggest that numerical errors in the stress evaluation can lead to artificial but
numerically damaging changes of type and losses of evolution with the upper-convected
Maxwell fluid.

Brown and co-workers [72] have carried-out a similar study, this time on a flow problem which
has a real change of type. The authors considered the high Reynolds number flow of an upper-
convected Maxwell fluid in a journal bearing. Flow regions of hyperbolic vorticity can occur
between two critical values of We which depend on the Reynolds number. The authors tested
the behavior of the Galerkin formulation MFE3 in the presence of the additional real charac-
teristics. They found that spurious oscillations in the velocity and stress fields started to occur at
We greater than the value necessary for the existence of a hyperbolic region. The oscillations,
however, were very similar to those obtained when Galerkin's method is applied to linear prob-
lems which change type. Increasing the refinement of the mesh amplified the amplitude of the
oscillations, which suggests that the Galerkin method used by the authors is unstable in this flow
problem.

The above results clearly motivate the development of alternative discretization techniques that
can handle changes of type accurately. A first step in that direction has been taken recently by
Song and Yoo [140). These authors have developed a new decoupled technique based on the fin-
ite difference method. Instead of the modified vorticity equation (9.6-4), which is always ellip-
tic, they use the vorticity equation involving the extra-stress ty directly. This equation has been
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derived by Joseph and co-workers [34]; it can change type in some flow regions depending on
values of material parameters and levels of local stresses and velocities. Song and Yoo [140]
discretize the vorticity equation by means of central differences in &lliptic regions, and first-
order differences in hyperbolic regions. This type-dependent technique has been applied to the
flow of an upper-convecied Maxwell fluid through a planar contraction. The numerical results
improve on those obtained with type-independent finite difference schemes, in the sense that
larger values of We can be reached with a given grid. The HWNP is still there, however, and
We,,;, decreases with increasing grid refinement. The authors attribute these difficulties to artifi-
cial changes of type near the re-entrant corner. Another explanation may be the existence of a
true tuming point postulated in Section 9.8.7.

9.8.11 The HWNP with Decoupled Methods

The numerical results discussed above are for coupled techniques only. It is very difficult to
identify the actual cause for the divergence of decoupled iterations. True or spurious irregular
points may be present in the discrete solution families, but they cannot be tracked unambigu-
ously with Picard-type schemes. To date, there is no evidence of turning or bifurcation points in
simulations with decoupled techniques.

In contrast to Newton's method, a decoupled iterative technique designed for steady-state simu-
lations can diverge when used to compute an unstable solution. Picard-type schemes can also
diverge in the absence of irregular points, even if the initial guess is chosen arbitrarily close to a
solution. As a result, we do not know whether convergence difficulties with decoupled tech-
niques must be attributed to the iterative scheme itself or to possible imegular points of the
discrete solution families (or both). ’

Davies [179] has proposed an approximate analysis based on the second-order fluid which sug-
gests that the divergence of particular Picard schemes used with finite difference methods is due
to an interaction between discretization errors and nonlinear iterations. The analysis predicts a
critical value of We which decreases linearly with grid spacing (see also Tanner [180]).

In a recent paper, Malkus and Webster [141] have addressed convergence issues by means of
systematic mesh refinement experiments. They compared the finite difference method of Web-
ster [128] with the finite element technique of Malkus and Bernstein [106] in the hole-pressure
problem. Even on relatively fine grids, the two methods produce different results with the
upper-convected Maxwell fluid. Extrapolation of the results to zero mesh spacing indicates good
agreement, however. The authors found no evidence of excessive difficulty of convergence of
the iterations with increasing mesh refinement, but the iterative schemes would only converge at
small values of We. The critical Weissenberg number was about the same with both methods. It
may be that there is a true turning or bifurcation point in this flow problem.

9.9 Conclusions

The field of large-scale viscoelastic simulations has progressed significantly since the writing of
the monograph by Crochet, Davies, and Walters [8). It is no longer true that all numerical tech-
niques fail to provide solutions at high Weissenberg numbers. Actually, a few simulations have
been reported which predict observed viscoelastic effects either quantitatively or qualitatively.
The spectrum of discretization methods applied to viscoelastic problems has also been consider-
ably enlarged in recent years. Further progress is likely to occur with the development of
improved discretization methods and the use of more realistic, and thus more complex, constitu-
tive equations.
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Despite the evident progress, the numerical simulation of viscoelastic flows remains a difficult
task whose success is not guaranteed. Recent mathematical and numerical results have identi-
fied a number of difficult challenges for the numericist. Boundary layers, stress singularities,
bifurcations, turning points, changes of type, and losses of evolution are potential features of
current formulations of viscoelastic flows. Some of these features may reflect the actual physics
of polymeric liquids, while others may only signal the inadequacy of the mathematical model.
Uncertainties regarding the mathematical description of polymer flows constitute a major diffi-
culty for those involved in the prediction of viscoelastic effects. Much research is needed at the
experimental, theoretical, and numerical levels before the numerical simulation of viscoelastic
flows will realize its full potential and become a routine design tool in the polymer processing
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