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ABSTRACT 

A survey is presented of the field of computational 
rheology applied to the analysis of viscoelastic effects in 
complex flows of polymeric fluids. First, I outline the 
modelling approaches adopted currently in numerical 
simulations and discuss the role of computational rheology 
within the general study of structured liquids. 
Developments in the macroscopic and micro-macro 
simulation strategies are then reviewed. Finally, I stress 
important unsolved problems and offer suggestions for 
future work. 
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INTRODUCTION 

Computational rheology involves the design, 
implementation, and use of numerical methods for the 
computer simulation of the flow of non-Newtonian fluids 
in complex geometries. I shall focus here on the numerical 
prediction of viscoelastic effects in polymeric liquids. 
Under development over the last 25 years within a lively 
and evolving international community of research teams 
(see [1-6] for reviews), this fascinating but difficult field of 
investigation has now reached a state of relative maturity.  
It is thus fitting to take stock of its current condition. 

COMPLEMENTARY THEORETICAL APPROACHES  

Rheology and structure 
Polymer solutions and melts, like other rheologically-

complex fluids, exhibit a variety of non-Newtonian flow 
properties.  In particular, polymeric liquids are viscoelastic 
materials, which implies that the stress endured by a fluid 
element depends upon the history of the deformation 
experienced by that element. Viscoelastic properties are 
responsible for numerous flow phenomena of scientific and 
industrial relevance [7] that need to be predicted, 
understood, and possibly controlled by means of a 
combination of suitable physical models and numerical 
techniques. 

The rheological properties of non-Newtonian fluids are 
dictated by the flow-induced evolution of their internal 
microstructure [8]. In flowing polymers, the relevant 
microstructure is the conformation of the macromolecules, 
namely their orientation and degree of stretch. Each 
macroscopic fluid element contains a large number of 
polymers with a statistical distribution of conformations. 
While the flow alters the polymer conformations along the 
fluid trajectories, the macroscopic stress carried by each 
material element is itself governed by the distribution of  

 

polymer conformations within that element. Furthermore, 
the frozen-in microstructure which develops in processing 
flows governs the physical properties of the final product. 
Rheologists thus face a challenging non-linear coupling 
between rheological behaviour, flow-induced evolution of 
the microstructure, flow parameters (such as geometry and 
boundary conditions), and final product properties. 
Computational rheology has an important role to play in 
helping us to elucidate this coupling. 

Atomistic modelling  
Modern research in computational materials science 

exploits, sometimes in a coupled fashion, a hierarchy of 
theoretical models ranging from quantum mechanics to 
continuum mechanics. The difficulty with polymers is of 
course the gigantic number of microstructural degrees of 
freedom and the broad range of time and length scales 
separating the relevant atomistic and macroscopic 
processes. A modelling approach based on quantum 
mechanics and related ab initio computational techniques 
must clearly be ruled out at the outset. Indeed, atomistic 
modelling is probably the most detailed level of description 
that could realistically be applied in rheological studies [9]; 
techniques of non-equilibrium molecular dynamics 
constitute the associated numerical framework [10-12]. 

Atomistic flow simulations have been conducted 
recently [13-15] to study the behaviour of polymers near 
walls and geometrical singularities such as re-entrant 
corners. In view of the significant computer resources 
involved in such calculations, the atomistic approach is 
currently restricted to very coarse models for the polymer 
and to flow geometries of molecular dimensions. While I 
doubt that it may be feasible soon (and even necessary, for 
that matter!) to solve flow problems of macroscopic size 
using the atomistic approach, the potential of atomistic 
simulations is great, however, in helping us resolve 
difficult issues such as wall slip. 

Kinetic theory 
The next level of description of a polymeric liquid is 

that of kinetic theory. Here, one ignores atomistic processes 
altogether and focuses rather on the evolution of a more or 
less coarse-grained model of the polymer conformations 
[16]. Kinetic theory models for polymer solutions or melts 
are most naturally exploited numerically by means of 
stochastic simulation or Brownian dynamics methods [17]. 

Like atomistic modelling, kinetic theory offers several 
levels of description of a given fluid [16]. A dilute solution 
of linear polymers in a Newtonian solvent, for example, 
can be described in some detail by a freely jointed, bead-
rod Kramers chain, which is made of a number of beads 
(of order 100) connected linearly by rigid segments. A 
coarser model of the same polymer is the freely jointed  
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bead-spring chain, made of a smaller number of beads (of 
order 10) connected linearly by entropic springs. Finally, a 
coarser model still is the single dumbbell, namely two 
beads connected by a spring. Clearly, these models of 
kinetic theory are not meant to describe the chemical 
structure of the polymer. They do, however, display in a 
more or less detailed fashion the important features needed 
to describe the evolution of polymer conformations in a 
macroscopic flow. Recent Brownian dynamics studies of 
rheometrical flows of Boger fluids using Kramers chains 
[18-20], bead-spring chains [21-23], and dumbbells [24-
25], have shed new light on the validity of available kinetic 
theory models for dilute polymer solutions. In combination 
with the direct experimental observation of the flow-
induced conformations of single polymers [26-28], these 
numerical studies have significantly advanced our 
understanding of polymer dynamics. 

The most successful kinetic theory for concentrated 
solutions or melts of linear polymers is based on the 
reptation model proposed by de Gennes and further 
developed by Doi and Edwards [29]. The Doi-Edwards 
theory cannot be used as such for simulating complex 
flows as it predicts a non-monotonic dependence of the 
shear stress as a function of shear rate. Important 
modifications have been proposed recently which correct 
this and other deficiencies of the basic theory [30-34]. 
Even more detailed reptation models suited for stochastic 
simulations have become available [35], and significant 
progress has also been made in extending the theory to 
branched polymers [36]. One has thus reached the point 
where reptation-based models can be exploited in the 
numerical prediction of complex flows. 

Use of a model of kinetic theory in the numerical 
simulation of complex flows, in combination with the 
macroscopic conservation laws, constitutes the so-called 
micro-macro approach to computational rheology. This is 
an emerging methodology which I shall discuss later. 

Continuum mechanics 
Finally, besides atomistic modelling and kinetic theory 

lies the macroscopic approach of continuum mechanics 
[37]. Here, details of the fluid microstructure are not taken 
into account, at least explicitly. Rather, the stress 
experienced by the macroscopic fluid elements is related to 
the deformation history through a suitable constitutive 
equation. Combined with the conservation laws, the 
constitutive model yields a set of partial differential (or 
integro-differential) equations that can be solved by means 
of a suitable grid-based numerical method, such as the 
finite element technique [38]. A very large percentage of 
publications in computational rheology have been based on 
the macroscopic approach. Very much like atomistic 
modelling and kinetic theory, continuum mechanics offers 
a hierarchy of constitutive models of diverse predictive 
ability. 

It should be stressed that most constitutive equations 
used today in numerical work [39] have been derived from 
a molecular model of kinetic theory (a recent addition to 
the list is the "pom-pom" constitutive equation for  

 

branched polymers [40-41]). Such molecular-based 
constitutive equations yield quantitative information on the 
distribution of polymer conformations within a 
macroscopic fluid element in the form of averaged 
quantities such as the second moment of the distribution of 
conformations. Unfortunately, closure approximations of a 
purely mathematical nature are often needed in the 
derivation of a constitutive model from kinetic theory, and 
their impact can be significant indeed [42]. In view of the 
closure problem, the link with the parent molecular model 
is thus somewhat polluted, and interpretation of the 
macroscopic results in molecular terms becomes delicate. 

Finally, I wish to close this section on modelling by 
pointing to recent developments in non-equilibrium 
thermodynamics of complex fluids [43-45]. These should 
provide guidance in linking the various levels of 
description of polymeric liquids that I have briefly 
discussed. They should also help in the development of 
improved models  [46-47]. 

RHEOLOGY AND COMPUTATION 

Role of computational rheology 
The viscoelastic character of a given flow is often 

measured by the dimensionless Weissenberg number We, 
defined as the product of a characteristic relaxation time of 
the fluid and a characteristic deformation rate of the flow. 
While We vanishes for Newtonian fluids, it is of order 1 or 
10 in the polymer flows of interest here. The challenge for 
computational rheologists is to develop numerical schemes 
for obtaining accurate numerical solutions to the governing 
equations at values of We of practical interest, using a 
physically-realistic mathematical model. Let us consider 
for a while the (ideal) situation in which reliable 
computational rheology software would be readily 
available and usable by non-specialists on standard 
computer hardware, and let us imagine some of the 
numerous opportunities. 

For instance, the theoretical rheologist would have a 
tool at his or her disposal for the critical evaluation in 
complex flows of his or her new theory, whether it be a 
constitutive equation, a molecular model, or an improved 
description of boundary conditions. Complex flows are 
characterized by transient kinematics in the Lagrangian 
sense (i.e. following the fluid elements) and by a 
combination of shear and elongational deformations; they 
indeed constitute a tough testing ground for any theoretical 
model. The theoretical rheologist could also use tools of 
computational rheology to bridge the gaps between the 
several levels of description used to predict the polymer 
dynamics. One example of such a difficult exercise is the 
evaluation in complex flows of suitable closure 
approximations that are invariably needed to derive a 
macroscopic constitutive equation from a molecular model. 
Also, non-Newtonian fluid mechanics studies could be 
performed to understand better the mechanisms responsible 
for observed macroscopic flow phenomena (such as vortex 
growth [48-49] and purely-elastic instabilities [50-52]). 

The experimentalist would also benefit. For example, 

 



 

 
 

he or she could perform useful computational rheometry 
work wherein the experiment is actually simulated in order 
to better interpret the data, i.e. to translate better what is 
measured (such as forces, torques, deformations) into well-
defined rheological information. Experimental problems 
(such as flow inhomogeneities and secondary motions) 
would thus be identified, possibly eliminated through 
improved design of the rheometrical equipment, or 
explicitly taken into account in the data reduction phase. 
Also, the combination of flow experiments and numerical 
simulations could be used to characterize rheological 
behaviour in complex flows, yielding in a more or less 
automated way the optimal rheological model and material 
parameters for the fluid under investigation. 

Finally, and most importantly in industrial practice, the 
polymer engineer could perform elaborate Computer Aided 
Design studies in which the link between the molecular 
architecture of the raw material and the final properties of 
the product would be established, at least qualitatively. 
Production problems (such as extrusion instabilities [53]) 
would be predicted and partially overcome through 
improved design. One could also think of using an on-line 
computational rheology model in concert with appropriate 
control algorithms to provide for intelligent, physics-based 
process control techniques.  

These are but a few opportunities that a mature field of 
computational rheology could generate. Not surprisingly, I 
would argue that we remain far from this ideal situation. 
Nevertheless, significant collective progress has been made 
over the years to the extent that the above virtual picture 
may not be as distant as would appear. 

Numerical approaches 
Since its pioneering days (circa 1975), computational 

rheology has adopted the macroscopic approach. Recently, 
computer processing capacity has reached a level such as to 
make feasible the complementary micro-macro approach, 
which involves the coupled solution of the conservation 
laws and a microscopic model of kinetic theory. In the next 
two sections, I briefly review key developments in these 
two lines of research. For completeness, I wish to point out 
that alternative approaches to the computer modelling of 
polymeric liquids have been advanced very recently, most 
notably Dissipative particle dynamics [54] and Lattice 
Boltzmann models [55-56].  

MACROSCOPIC SIMULATIONS 

Governing equations and numerical challenges 
Let us consider for the sake of illustration the case of 

incompressible isothermal flow in a confined geometry, in 
the absence of body forces. The Cauchy stress tensor is 
thus given by  

σ = −pδ + τ + 2ηD,                                                    (1) 

where p is the pressure, τ  is the polymer contribution to the 
stress, and 2ηD is an optional purely-viscous component, 
which involves the rate of strain tensor D and a viscosity 
coefficient η.  Conservation of linear momentum and mass 
implies that 

 

∇⋅ σ  = ρ D v /Dt , ∇⋅ v = 0,                                       (2)                                         

where v is the velocity field and D v /Dt is its Lagrangian 
or material derivative. In macroscopic simulations, the set 
of governing equations is closed with a suitable 
constitutive equation for the polymer stress. 

Over the years, both differential and single-integral 
models have been used in numerical work, ranging from 
the upper-convected Maxwell (UCM) and Lodge models, 
to more realistic equations like the FENE-CR, Giesekus, 
Phan-Thien-Tanner, Doi-Edwards, K-BKZ, and "pom-
pom" models. Although they differ greatly in complexity as 
well as in predictive ability, these various models display a 
(deceptively) simple generic form. Indeed, differential 
models read 

Dτ /Dt = f (τ, ∇ v),                                                     (3) 
meaning that the Lagrangian derivative of the polymer 
stress is given as a model-dependent function f of the local 
polymer stress and velocity gradient evaluated along the 
fluid trajectories. For the particular case of steady-state 
flow (in the Eulerian sense), the left-hand side of (3) 
reduces to the convective term v⋅∇τ. In a complex flow, the 
fluid trajectories along which (3) applies are of course 
unknown a priori, and one must solve the complete set of 
equations (1-3). If direct coupling between modes is 
neglected, a spectrum of relaxation times is readily taken 
into account by defining the polymer stress as a sum of 
partial contributions and writing equation (3) for each 
partial stress. Note that constitutive equations derived 
recently from kinetic theory of solutions or melts [40-
41,57-58] give the polymer stress as an algebraic function 
of a number of microstructural tensors, which themselves 
follow an evolution equation similar to (3). In 
computational work, it has thus become natural to select 
the microstructural tensors as primary variables, instead of 
the polymer stress. The basic numerical issues remain 
identical, however. 

Separable single-integral models have the generic form 

τ = ∫ ∞−

t
m(t-t') S(t,t') dt',                                         (4) 

where m is the memory function of linear viscoelasticity, 
and S is a model-dependent non-linear strain measure 
relative to the present time t. Here also, the memory 
integral is taken along fluid trajectories that are a priori 
unknown. A spectrum of relaxation times is readily 
introduced through the memory function. 

The generic constitutive equations (3) and (4) clearly 
express the memory of polymeric liquids: the polymer 
stress carried by a fluid element at present (Lagrangian) 
time t is a function of the deformation history experienced 
at past times t' by the element flowing along its trajectory. 

Although they may look rather innocuous, the 
macroscopic governing equations, supplemented with 
suitable boundary and initial conditions, actually present 
formidable mathematical and numerical challenges which 
certainly were not anticipated 25 years ago by the pioneers 
of the field. Through a combination of numerical  

 



 

 
 

experiments and mathematical investigations, our 
collective understanding of the basic reasons for these 
difficulties progressively developed during the 1980's [1-
4]. In a nutshell, we now know the following: the 
governing equations are of mixed mathematical type 
(elliptic-hyperbolic), with possible local changes of type 
[59];  stress boundary layers develop in many flow fields 
where the corresponding Newtonian fluid mechanical 
problem is smooth [60-62]; stress singularities (e.g. at re-
entrant corners) are much stronger than in the Newtonian 
case [63-65]; the non-linear qualitative behaviour of the 
exact solutions can be very rich (e.g. multiplicity of 
solutions, bifurcations) [66-68]. These features remain 
quite difficult to handle numerically in an accurate and 
general way. Whether they reflect the actual physics of 
polymeric liquids (in which case we have to live with 
them!) or result from inadequate modelling (governing 
equations and/or boundary conditions) remains essentially 
an open issue.  

Numerical methods and applications 
Classical CFD technology offers a wide spectrum of 

numerical algorithms based on finite element, finite 
volume, finite difference, boundary integral, spectral 
methods, and combinations thereof. A similar diversity 
exists in modern computational rheology, whose fair 
discussion would require a rather thick monograph indeed. 
Here, I wish to point to methods and applications that 
define in my opinion the current state of the art. The reader 
will not find here my personal list of "best-buys". Indeed, it 
has been my experience over the years that a particular 
numerical scheme (very much like a particular constitutive 
model) enjoys a range of application where it behaves at its 
best, and perhaps better than other competing techniques, 
while it may be quite limited or even totally useless in 
other situations. Practitioners of computational rheology 
also know that the only way to really evaluate and compare 
different numerical methods is to implement and test them 
all for oneself.  

This being said, it is fair to state that most of the 
published work deals with finite element methods for 
solving 2d steady-state flows (in the Eulerian sense) using 
a differential constitutive equation [5,69-70]. Extensions of 
these methods have been proposed recently for the 
temporal stability analysis of complex flows [71-73], and 
the computation of transient problems [74-80]. Over the 
last few years, finite volume methods have also been 
actively developed, sometimes in combination with finite 
elements, to solve 2d and 3d time-dependent problems [81-
85]. 

Methods for integral models have progressed 
considerably over the last decade, most notably with the 
introduction of Lagrangian finite element schemes [86] 
(wherein the mesh deforms with the fluid) and the 
Deformation field method [87-88] (which uses a fixed 
Eulerian grid). These techniques open the way for 2d and 
3d transient simulations with integral models. 

More specific methods for high-Reynolds number 
viscoelastic flows, based on spectral and finite difference 

 
 

schemes and designed for simple geometries, have also 
been developed recently [89-91], to study in particular the 
drag-reduction phenomenon.  

Finally, efforts have been spent on the algorithmic side, 
for example with the development of specific iterative 
solvers [92] and parallel algorithms [93-96]. 

In view of the progress made in numerical technology, 
macroscopic simulations have been exploited over the last 
few years in two important tasks, namely the evaluation of 
constitutive equations for solutions and melts in benchmark 
complex flows, usually through a detailed comparison with 
experimental observations [97-109], and computational 
rheometry, or use of numerical simulation to aid the 
experimentalist in reducing his or her data [110-113]. It is 
in such studies that computational rheology has already 
proven useful, in spite of its relatively young age. 

I now turn to the emerging and complementary micro-
macro approach. 

MICRO-MACRO SIMULATIONS  

Governing equations  
In micro-macro simulations, the conservation equations 

(2) are solved  by means of a grid-based numerical method 
(e.g. finite elements), while a kinetic theory model is used 
to evaluate the polymer contribution to the stress. Clearly, 
this approach is much more demanding in computer 
resources than macroscopic methods. On the other hand, it 
allows the direct use of kinetic theory models in complex 
flows, without having to resort to closure approximations 
which often are of doubtful validity. 

In principle (but not necessarily in practice), the 
polymer stress is evaluated at each material point by 
solving the diffusion or Fokker-Planck equation for the 
probability density ψ(X,t) of the conformation X of the 
polymer chains [16-17]. Here, the symbol X denotes the set 
of variables defining the coarse-grained microstructure. For 
example, it reduces to the vector connecting the two 
Brownian beads in the simple dumbbell model of a dilute 
polymer solution. 

The diffusion equation dictates the evolution of the 
distribution function. It has the generic form 

∂ψ /∂ t = −∇′⋅{A(X,t)ψ} + ∇′∇′:{D(X,t)ψ}.            (5) 
Here, the symbol ∇′ denotes the del operator with respect 
to the configuration X and the factors A and D define the 
deterministic and stochastic components of the model, 
respectively. In particular, the macroscopic velocity 
gradient ∇v enters in the formulation of A, while diffusion 
phenomena associated with Brownian motion are described 
in D. Equation (5), supplemented with suitable initial and 
boundary conditions in conformation space, allows the 
computation of the probability density ψ(X,t). Relevant 
macroscopic observables (such as the polymer contribution 
to the stress tensor) are then defined as statistical averages 
of some known function of the polymer conformation X. In 
a complex flow, the time derivative of ψ  in (5) becomes a 
material derivative and one must, in principle again, solve  
 
 



 

 
 

(5) at each material point of the flow domain. 

An early micro-macro method [114] was based on the 
numerical solution of the Fokker-Planck equation (5). This 
approach, however, is limited to kinetic theory models with 
a conformation space of small dimension. Brownian 
dynamics or stochastic simulation techniques provide a 
powerful alternative [17]. They draw on the mathematical 
equivalence between the Fokker-Planck equation (5) and 
the following Itô stochastic differential equation  

dX = A(X,t) dt + B(X,t)⋅ dW,                                      (6) 

where 2D = B⋅BT and W is a Wiener stochastic process, 
namely an idealization of Brownian motion. Thus, instead  
of solving the deterministic diffusion equation (5) for the 
distribution function, one solves the associated stochastic 
differential equation (6) by means of suitable numerical 
techniques, which is often a considerably simpler task. 
Macroscopic fields of interest are then obtained by 
averaging over a large ensemble of realizations of the 
stochastic process X. In a complex flow, the stochastic 
differential equation (6) applies along the macroscopic 
flow trajectories, and the time derivative becomes a 
material derivative. 

Numerical methods and applications 
The basic idea of combining a stochastic simulation of 

a kinetic theory model with the numerical solution of the 
conservation equations has been pioneered in the so-called 
CONNFFESSIT method proposed in [115] and further 
developed in [116-120]. 

Second-generation micro-macro methods, with much 
improved numerical properties, have been designed 
recently for computing 2d transient flows. They are 
referred to as Brownian configuration field [121-122] and 
Lagrangian particle [78-80] methods. Being quite new, 
these techniques have only been implemented to date for 
rather elementary models of kinetic theory (such as non-
linear dumbbell models of a dilute solution), and not much 
experience has been gained with them yet. Nevertheless, 
their potential range of applications is very wide indeed. 

DISCUSSION 

From numbers to rheology 
From a user's viewpoint, any serious exercise in 

computational rheology should in my opinion follow a 
three-step path: (1) get the numbers, (2) check their 
numerical accuracy, and (3) check their physical accuracy.   

At the outset, step (1) was found to be by no means a 
trivial matter: obtaining numerical solutions of the discrete, 
non-linear algebraic equations at significant values of the 
Weissenberg number We has long been difficult or even 
impossible (this is known as the High Weissenberg 
Number Problem or HWNP, which is discussed in detail in 
[3]). Though overlooked at times, the importance of step 
(2) is simply paramount. One must indeed convince oneself 
and others that the numerical results obtained constitute 
sufficiently accurate approximations of the exact solutions 
of the governing equations. Since the mathematical 
analysis of numerical methods for viscoelastic fluids is 
quite difficult and of limited applicability to complex flows 
[123-124], step (2) is usually performed by means of 

careful (and often expensive) mesh refinement 
experiments. Finally, step (3) questions the very validity of 
the physical model that is implemented in the computer 
simulation (constitutive equation or molecular model, 
values of the material parameters, initial and boundary 
conditions). It is performed by comparing simulation 
results (such as flow kinematics, overall pressure drop, and 
birefringence) to available experimental observations.  

Since the pioneering days, overall progress along this 
three-step path has been sometimes chaotic but overall 
quite steady [1-6]. Difficulties do remain, however, some 
of which I now wish to discuss briefly. 
The infamous HWNP and issues of mesh convergence 

It is fair to state that the HWNP is now partially 
resolved, in that high-We numerical solutions have been 
reported over the years for a variety of flow problems. I 
would argue, however, that viscoelastic flow computations 
are not yet the routine and safe procedure that more 
classical sub-fields of computational mechanics (e.g. 
numerical linear elasticity) have generated, and that their 
success is not guaranteed even in the very restricted sense 
of "getting the numbers".  

Many, if not most, flow problems of interest are 
characterised by stress singularities or boundary layers of 
essentially unknown mathematical structure. In this 
context, an outside observer should not necessarily be 
impressed by the high-We solutions reported in the 
literature. Indeed, some have been generated with 
numerical schemes that either explicitly or implicitly 
smooth out the difficulties. A similar issue arises in 
classical CFD of Newtonian fluids, in the quest for 
numerical solutions at high Reynolds numbers. Getting 
high-Re or high-We (smooth) solutions using risky, "false-
diffusion" numerical schemes often essentially means that 
the numerics have computed an approximate solution to a 
different problem than the one under investigation. 

One could argue that mesh refinement experiments 
(step (2) alluded to above) would readily settle the matter 
of numerical accuracy. When feasible, as far as computer 
resources are concerned, these are unfortunately not always 
successful in that the range of Weissenberg numbers that 
can be covered in the simulations may decrease as the grid 
is further refined. This problem often occurs in the 
presence of a stress singularity, thus preventing the safe 
interpretation of the rheological results obtained in the 
vicinity of the singular point. One should also keep in mind 
that a mesh refinement experiment, while essential in 
assessing the accuracy of the numerical results, does not 
constitute a rigourous mathematical proof of convergence. 

The above discussion does not imply, of course,  that 
all results reported in the literature for high values of We 
are necessarily inaccurate. I simply wish to stress that the 
significant advances made over the last decade in 
expanding the field to more detailed levels of description 
of polymeric liquids should not hide the absolute necessity 
of careful numerical validation of present and future 
methods, whether they be macroscopic, micro-macro, or 
atomistic. The role of benchmark flow problems is crucial 
in this regard.  

 



 

 
 

A LIST OF RESEARCH OPPORTUNITIES 
Computational rheology is not Mathematics, and I am 

no Hilbert to draw the path my present and future 
colleagues should follow over the next century. And yet, on 
a modest but hopefully useful note, I wish to close this 
paper with a list of research opportunities that the field 
offers. This list is obviously incomplete and probably 
biased by my own experience and interests. It contains 
topics that have already received preliminary attention, and 
others which may appear very far indeed from current 
practice.  

On the purely numerical side, much research remains 
to be performed towards the development of accurate and 
efficient discretization schemes for 3d, time-dependent 
macro and micro-macro simulations. The role of flow 
benchmarks will remain essential for the validation of any 
new technique. Numerical analysis of the proposed 
schemes should be developed to the widest possible extent, 
not only to prove convergence (if at all possible), but also 
to provide theoretical results that would allow the 
computation of error estimates and the design of related 
adaptive discretization schemes. Numerical methods for 
studying the temporal stability of complex flows will be 
developed further. Appropriate techniques should also be 
developed that would allow the automatic identification of 
rheological models and their parameters on the basis of 
experimental observations of complex flows. Numerical 
methods should be faithful to the original mathematical 
model. I would thus find it crucial that mathematicians 
continue to explore the properties of the exact (and most 
probably forever unknown) solutions to the governing 
equations, a very difficult task indeed! 

As far as algorithmic strategies are concerned, further 
work is needed on robust iterative and temporal schemes 
for the solution of the spatially-discretized governing 
equations. Robust algorithms for tracing the non-linear 
qualitative behaviour of the solutions should be further 
developed as well. The efficient use of massively parallel 
computers should be encouraged. It will necessarily require 
the development of parallel algorithms tailored to a 
particular modelling and numerical approach. Also, the 
implementation of computational rheology models into 
control algorithms would be of great help to the process 
engineer. 

On the modelling side, computational rheology will 
continue to be exploited for the evaluation and use in 
complex flows of theoretical models for the polymer 
dynamics. It will help identify the actual mathematical 
structure of boundary layers and stress singularities 
observed in many circumstances. It will also help the 
theoretical rheologist assess the relative importance of the 
particular physical mechanisms put forward in his or her 
theories. In this context, the study of dissipative 
phenomena in viscoelastic flows is worth continuing, in 
order to finally understand why viscoelasticity increases 
the overall drag in a number of cases. Also worth pursuing 
is the study of turbulence in dilute polymer solutions, 
which could be approached with ideas akin to large eddy 
simulations in Newtonian liquids. Non-isothermal flows 
are of course essential in industrial applications. Their 
proper mathematical formulation is currently a matter of 

debate, to which computational rheology will most 
probably contribute. One could also envisage using a 
modelling approach which would couple, in an automatic 
and adaptive fashion, different levels of description of the 
same fluid in different regions of the flow. For example, 
detailed atomistic models could be used to describe the 
solid wall and its immediate fluid vicinity, while a series of 
kinetic theory and continuum mechanics models of 
decreasing levels of detail could be used at progressively 
larger distances from the wall. The proper matching 
between the different modelling domains would be done 
automatically. Most probably, very different numerical 
techniques, best suited to the local level of description, 
would be used in each domain. The corresponding 
numerical scheme would thus be adaptive both in 
numerical and modelling terms.  

Finally, it is quite obvious that the numerical 
methodology developed for polymeric liquids should and 
will be applied to other important classes of rheologically-
complex materials as well. Indeed, work in that direction 
has already begun. 

CONCLUSIONS 

This short survey of modelling and numerical 
approaches in computational rheology applied to polymeric 
liquids demonstrates that the field has expanded 
considerably in scope since its inception twenty five years 
ago.  

In the early days, researchers were struggling to 
compute the flow of memory liquids using constitutive 
equations of very limited (though not altogether vanishing) 
value for rheological studies, such as the second-order fluid 
and the upper-convected Maxwell model. Computing with 
these "simple" constitutive equations is very difficult 
indeed, as the community soon discovered with surprise 
and dismay. The problems met then by all players in the 
field launched a series of numerical and mathematical 
investigations, constantly nourished by challenging 
experimental observations such as those on Boger fluids, 
which significantly increased our understanding of the 
basic issues. In particular, that more complex and realistic 
models are actually easier to exploit in numerical studies, 
once the proper numerical methodology has been 
developed, is a welcome and healthy fact that has long 
been reported and continuously been witnessed since.  

Computational rheology has clearly gone a long way 
since the first successful attempts [125-126] to predict the 
flow of a memory fluid in a complex geometry. Today, the 
most sophisticated constitutive equations and molecular 
models developed by theoretical rheologists can in 
principle be implemented numerically. Furthermore, our 
colleagues active in experimental work make an increasing 
use of simulation software to gain further insight into their 
observations on real materials. Finally, very detailed 
molecular dynamics simulations are becoming feasible that 
should help us to elucidate difficult issues such as wall 
rheology. These facts are a clear signature of progress.  

Difficult issues do remain, however, which point to the 
ever-present need for the careful evaluation of numerical 
techniques in benchmark flow problems.  

The numerical challenges met by computational 



 

 
 

rheologists are intimately linked to mathematical and 
physical considerations. This makes computational 
rheology fascinating, difficult, and altogether fun. Further 
progress will benefit from the continuing interaction 
between people of diverse background. In that regard, 
computational rheology is very much akin to its well-
established experimental and theoretical relatives.  
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