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ABSTRACT

We survey the field of micro-macro numerical techniques for predicting com-
plex flows of viscoelastic fluids. The micro-macro approach couples the meso-
scopic scale of kinetic theory to the macroscopic scale of continuum mechanics.
A numerical solution is sought to the coupled non-linear problem involving the
conservation laws and a microstructural model of kinetic theory. Although
micro-macro techniques are much more demanding in terms of computer re-
sources than conventional continuum computations, they allow the direct use of
kinetic theory models in flow simulations, thus avoiding potentially inaccurate
closure approximations. The focus of our survey is mainly put on mathematical
formulations and numerical approaches. Applications to polymer solutions and
melts, liquid crystalline polymers, and fibre suspensions, are briefly reviewed.
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1. INTRODUCTION

Many natural and synthetic fluids are viscoelastic materials, in the sense that
the stress endured by a macroscopic fluid element depends upon the history of
the deformation experienced by that element. Notable examples include poly-
mer solutions and melts, liquid crystalline polymers, and fibre suspensions. The
remarkable rheological properties of viscoelastic liquids are governed by the flow-
induced evolution of molecular configurations. Furthermore, the frozen-in mi-
crostructure which develops in processing flows dictates the physical properties
of the final product (Larson [1], Tanner [2], Rubinstein and Colby [3]). Rheolo-
gists thus face a challenging non-linear coupling between flow-induced evolution
of molecular configurations, macroscopic rheological response, flow parameters
(such as geometry and boundary conditions), and final product properties. The-
oretical modelling and methods of computational rheology have an important
role to play in elucidating this coupling.

Atomistic modelling is the most detailed level of description that can be ap-
plied today in rheological studies, using techniques of non-equilibrium molecular
dynamics. Atomistic flow simulations have been conducted recently to study
the behaviour of polymers in the vicinity of solid walls and geometrical singu-
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larities such as a re-entrant corner. Wall slip and rupture phenomena can be
studied in this fashion (e.g. Koplik and Banavar [4], Cieplak et al [5], Busic et
al [6]). Such calculations require enormous computer resources, however, and
the atomistic approach is currently limited to flow geometries of molecular di-
mensions. Consideration of macroscopic flows found in processing applications
calls for less detailed mesoscopic models, such as those of kinetic theory.

Models of kinetic theory provide a coarse-grained description of molecular
configurations wherein atomistic processes are ignored altogether (Doi and Ed-
wards [7], Bird et al [8]). They are meant to display in a more or less accurate
fashion the important features that govern the flow-induced evolution of con-
figurations. For example, a linear polymer chain in a viscous solvent can be
described by several models of decreasing complexity: the freely jointed, bead-
rod Kramers chain made of a number of beads (of order 100) connected linearly
by rigid segments, the bead-spring chain made of a smaller number of beads
(of order 10) connected by entropic springs, or the single dumbbell, namely
two beads connected by a spring. Over the last few years, these models of di-
lute polymer solutions have been evaluated in simple flows (shear, extension)
by means of stochastic simulation or Brownian dynamics methods (e.g. Liu
[9], Rallison [10], Doyle et al [11], Sizaire et al [12], Larson et al [13], Li et al
[14], Somasi et al [15], Jendrejack et al [16], Hsieh et al [17]). In combination
with the direct experimental observation of flow-induced configurations of single
polymers (e.g. Perkins et al [18], Schroeder et al [19]), these studies have sig-
nificantly increased our understanding of polymer dynamics in dilute solutions.
In particular, the contribution of individual polymers on the overall dynamics
has been shown to yield remarkable hysteresis effects in flows involving stress
growth followed by relaxation.

In recent years, kinetic theory of entangled systems, such as concentrated
polymer solutions and polymer melts, has known major developments that
go well beyond the classical reptation tube model developed by Edwards, de
Gennes, and Doi. The basic Doi-Edwards theory of linear entangled polymers
cannot be used as such for simulating complex flows, as it predicts a material
instability due to excessive shear-thinning beyond some critical deformation rate
(Doi and Edwards [7]). In addition to reptation, other physical mechanisms such
as convective constraint release, contour length fluctuations, and tube stretch,
have been shown to play an important role. The most recent tube models take
account of these effects and correct many of the deficiencies of the basic the-
ory (Mead et al [20], Öttinger [21], Graham et al [22]). Finally, full-chain and
temporary network models suited for Brownian dynamics simulations have also
been put forward recently (Ianniruberto et al [23], Hua and Schieber [24], Neer-
gaard and Schieber [25], Schieber et al [26], Masubuchi et al [27]). Reviews of
modern tube theory are given by McLeish [28, 29] and Marrucci [30].

Kinetic theory models can be very complicated mathematical objects. It
is usually not easy to compute their rheological response in rheometrical flows
(although these flows have simple, specified kinematics), and their use in nu-
merical simulations of complex flows has long been thought impossible. The
traditional approach has been to derive from a particular kinetic theory model
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a macroscopic constitutive equation that relates the viscoelastic stress to the
deformation history. One then solves the constitutive model together with the
conservation laws using a suitable numerical method, to predict velocity and
stress fields in complex flows. The majority of constitutive equations used in
continuum numerical simulations are indeed derived (or at least very much
inspired) from kinetic theory (Bird et al [8]). Promising molecular-based con-
stitutive equations have been proposed recently for dilute polymer solutions
(Lielens et al [31], Ghosh et al [32], Zhou and Akhavan [33]), as well as for
linear and branched entangled polymers (McLeish and Larson [34], Wagner et
al [35], Marrucci and Ianniruberto [36], Likhtman and Graham [37]). Their use
in numerical simulations of complex flows is reviewed by Owens and Phillips
[38] and Keunings [39]. Clearly, the continuum approach remains an essential
component of theoretical and computational rheology. There is however a basic
issue in the above scheme which motivates the development of the complemen-
tary micro-macro approach.

Indeed, derivation of a constitutive equation from a model of kinetic the-
ory usually involves closure approximations of a purely mathematical nature,
such as decoupling or pre-averaging. It is now widely accepted that closure ap-
proximations can have a significant impact on rheological predictions for dilute
polymer solutions (van den Brule [40], Keunings [41], Lielens et al [42], van
Heel et al [43], Zhou and Akhavan [44]). For entangled systems, the impact
of pre-averaging assumptions is expected to be less significant, but a careful
investigation is lacking (McLeish [29]). The closure problem also arises in other
applications of kinetic theory, such as liquid crystalline polymers (Grosso et al
[45], Suen et al [46]), reversible networks of associating polymers (Vaccaro and
Marrucci [47], Cifre et al [48]), and fibre suspensions (VerWeyst and Tucker [49],
Chung and Kwon [50]). Use of closure approximations also raises the important
issue of thermodynamic consistency (Edwards [51], Beris [52]).

In this context, micro-macro methods of computational rheology that couple
the coarse-grained molecular scale of kinetic theory to the macroscopic scale of
continuum mechanics have an important role to play. In a micro-macro simu-
lation, the conservation equations are solved together with a model of kinetic
theory. This approach is much more demanding in computer resources than
more conventional continuum simulations that integrate a constitutive equa-
tion to evaluate the viscoelastic contribution to the stress tensor. On the other
hand, micro-macro techniques allow the direct use of kinetic theory models and
thus avoid potentially harmful closure approximations. Micro-macro methods
have been introduced in the pioneering works by Biller and Petruccione [53, 54]
and Fan [55]. Since the early 1990’s, the field has developed considerably fol-
lowing the introduction of the CONNFFESSIT method by Öttinger and Laso
[56, 57]. Being relatively new, micro-macro techniques have to date been im-
plemented only for models of kinetic theory with few configurational degrees of
freedom, such as non-linear dumbbell models of dilute polymer solutions and
single-segment tube models of linear entangled polymers. Nevertheless, their
potential range of applications is very wide indeed. Successive reviews of the
subject matter have been written by Keunings [58], Owens and Phillips [38],
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and Suen et al [46]. The goal of the present work is to survey the current state
of the art.

2. MULTISCALE FORMULATION OF VISCOELASTIC FLOW

For the sake of illustration, consider a dilute solution of linear flexible poly-
mers in a Newtonian solvent. The configuration of an individual polymer chain
is influenced by a number of mechanisms, including Brownian, elastic, and drag
forces1. Indeed, the solvent molecules undergo thermal agitation and contin-
uously impact the polymer chain; this results in a diffusion process driven by
a stochastic, Brownian force. Moreover, an elastic restoring force of entropic
nature arises when the chain uncoils. The solvent also exerts viscous drag along
the chain which affects the polymer configuration when different parts of the
chain feel a different velocity, i.e. when a velocity gradient is imposed on the
fluid.

In the framework of kinetic theory, the molecular configuration of an indi-
vidual polymer chain can be defined in a rather coarse fashion by the vector
X connecting the two chain ends. This simple approach provides a measure
of both molecular orientation and stretch. The set of possible values for X is
called the configuration space C, which has here a dimension NC equal to 3.

Within each macroscopic fluid element, located at position x in the flow
domain Ω, there is a large collection of polymer chains characterised at time
t by a probability distribution of configurations ψ(X,x, t). The distribution
function ψ is such that ψ(X,x, t)dX gives the probability of finding a polymer
with configuration between X and X + dX at time t and position x.

Under equilibrium conditions, namely when the macroscopic velocity vec-
tor field v vanishes identically, configurations are distributed according to the
equilibrium probability function ψeq(X) that results, in the present illustra-
tive model, from a balance between Brownian and elastic forces. Furthermore,
the polymer or viscoelastic contribution to the stress, which we denote by the
second-order tensor τ p, reduces to an isotropic tensor of no rheological impor-
tance.

Under non-equilibrium conditions, namely when the polymer solution un-
dergoes a macroscopic flow with velocity field v(x, t), the polymer chains also
feel a velocity gradient ∇v(x, t), and viscous drag exerted by the solvent affects
their configuration. The distribution function is no longer equal to the equi-
librium value ψeq(X), and it generally varies both in space and time, namely
ψ = ψ(X,x, t). Furthermore, the flow-induced distribution of configurations
induces a viscoelastic stress field τ p(x, t) resulting from anisotropic orientation
and stretch of the polymer chains.

Thus, while the kinematics alter the distribution of molecular configura-
tions along the flow trajectories, the stress experienced by each macroscopic
fluid element is itself governed by the distribution of configurations within that
element. Furthermore, velocity and stress fields are coupled through the conser-

1We ignore in this discussion important mechanisms related to excluded volume and hy-
drodynamic interactions (Bird et al [8]).
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vation principles. Clearly, predicting viscoelastic flow using a molecular model
of kinetic theory is a challenging non-linear problem. Let us briefly consider its
generic mathematical formulation.

Kinetic theory provides two basic building blocks: the diffusion or Fokker-
Planck equation that governs the evolution of the distribution function, and an
expression relating the viscoelastic stress to the distribution function (Doi and
Edwards [7], Bird et al [8], Öttinger [59]). The Fokker-Planck equation has the
general form

Dψ

Dt
= − ∂

∂X
· {A ψ}+

1
2

∂

∂X

∂

∂X
: {D ψ}. (1)

Here, the symbol D/Dt denotes the Lagrangian or material derivative ∂/∂t +
v ·∇, where ∇ is the del operator with respect to position x in physical space.
Molecules are thus assumed to be convected by the macroscopic velocity field v.
The vector X defines the coarse-grained configuration and has dimension NC .
The factor A is an NC-dimensional vector that defines the drift or deterministic
component of the molecular model. The macroscopic velocity gradient ∇v
enters in the formulation of A, and is assumed constant over the molecular
length scale. Finally, D is a symmetric, positive definite NC × NC matrix
that embodies the diffusive or stochastic component of the molecular model. In
general, both A and D depend upon (X, x, t). Suitable boundary conditions
must be specified for ψ, in both configuration and physical spaces.

The second building block of a kinetic theory model is an expression relating
stress to molecular configurations. It takes the form of a particular average
computed with the distribution function over all possible configurations:

τ p =
∫

C

g(X) ψ dX = 〈g(X)〉. (2)

Here, g is a model-dependent tensorial function of configuration. Thus, for
a given velocity field, and starting from a specified initial condition for ψ at
time t0, integration of the Fokker-Planck equation (1) yields the distribution
function at all time t ≥ t0, everywhere in the flow domain Ω. Use of the stress-
configuration relation (2) then provides the viscoelastic stress field.

In a complex flow, the velocity field is a priori unknown; velocity and stress
fields are coupled through the conservation laws. Consider isothermal, incom-
pressible flows. Conservation of mass and linear momentum2 is then expressed
as

∇ · v = 0, %
Dv

Dt
= ∇ · {−pI + τ p + ηsγ̇}, (3)

where % is the fluid density, p is the pressure, I is the unit tensor, and ηsγ̇
is a purely viscous component to the stress which involves the rate of strain
tensor γ̇ = ∇v + ∇vT and a constant viscosity coefficient ηs (Bird et al [60]).
The Newtonian stress can be interpreted physically as the solvent contribution

2Body forces are ignored.
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to the stress in polymer solutions, or as the stress response associated with
fast relaxation modes. In other cases, the Newtonian component is added to
correct the molecular model itself (e.g., to eliminate excessive shear-thinning).
Appropriate boundary conditions supplement the conservation laws (3). One
specifies components of either the velocity or the contact force at the boundary
∂Ω of the flow domain Ω; the pressure is specified at one point of the flow domain
if no normal contact forces have been specified anywhere at the boundary. In
view of the fluid’s memory, additional boundary conditions must be specified
when the flow domain Ω contains an inlet boundary. Specification of the flow
pre-history is often achieved by assuming fully-developed flow upstream of the
inlet boundary. For transient flows, initial conditions are also needed for the
distribution function and the velocity.

The set of coupled equations (1) to (3), supplemented with suitable ini-
tial and boundary conditions in both physical and configuration spaces, is the
generic multiscale formulation of viscoelastic flow that we consider in the present
review. Specific examples pertaining to polymer solutions and melts are given
in the next section. To date, three basic approaches have been adopted for
exploiting the generic multiscale model:
The continuum approach , wherein a constitutive equation of continuum me-
chanics that relates the viscoelastic stress to the deformation history is derived
from, and replaces altogether, the kinetic theory model (1) and (2). The deriva-
tion process usually involves closure approximations. The resulting constitutive
model takes the form of a differential, integral, or integro-differential equation.
It yields molecular information in terms of averaged quantities, such as the
second moment 〈XX〉 of the distribution;
The Fokker-Planck approach , wherein one solves the generic problem (1) to
(3) as such, in both configuration and physical spaces. The distribution function
is thus computed explicitly as a solution of the Fokker-Planck equation. The
viscoelastic stress is merely a by-product obtained from (2);
The stochastic approach , which draws on the mathematical equivalence be-
tween the Fokker-Planck equation (1) and the following Itô stochastic differential
equation 3:

dX = A dt + B · dW , (4)

where D = B · BT and W is a Wiener stochastic process of dimension NC

(Öttinger [59]). In a complex flow, the stochastic differential equation (4) ap-
plies along individual flow trajectories; the time derivative is thus a material
derivative. Instead of solving the deterministic Fokker-Planck equation (1), one
solves the associated stochastic differential equation (4) for a large ensemble of

3The Fokker-Planck equation (1) may also contain a source term, as in the tube model
proposed by Öttinger [21]. For models with mean-field interactions, such as the Doi-Edwards
model without independent alignment and the Doi model for liquid crystalline polymers, the
Fokker-Planck equation is non-linear in ψ due to the dependence of A and D on averages
computed with ψ (Öttinger [59]). These more complex cases can also be formulated in a
stochastic setting.
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realisations of the stochastic process X by means of a suitable numerical tech-
nique (Kloeden and Platen [61]). The distribution function is not computed
explicitly, and the viscoelastic stress (2) is readily obtained as an ensemble av-
erage.

As a matter of fact, the continuum approach outlined above has been adopted
throughout the development of computational rheology. In particular, the first
successful finite element simulations of die swell and laminar jet breakup in
viscoelastic liquids were obtained in the early 1980’s with the Oldroyd-B con-
stitutive equation (Crochet and Keunings [62], Keunings [63]). The latter is
mathematically equivalent to the simplest kinetic theory model of a dilute solu-
tion of flexible linear polymers in a Newtonian solvent, known as the Hookean
dumbbell model (Bird et al [8]). Two decades later, macroscopic numerical tech-
niques based upon the continuum approach remain under active development.
For a detailed account of the state of the art, see the monograph by Owens
and Phillips [38] and the review by Keunings [39]. Much of the recent work in
continuum simulations has been devoted to the evaluation in complex flows of
tube-based constitutive equations for entangled polymers (Peters et al [64], Lee
et al [65], Rasmussen [66], Wapperom et al [67], Bent et al [68], Wapperom and
Keunings [69, 70]).

The present review focuses on the micro-macro methods needed to imple-
ment the Fokker-Planck and stochastic approaches. To the best of our knowl-
edge, the idea of combining in a self-consistent way the conservation laws and a
model of kinetic theory was first put forward by Biller and Petruccione [53, 54],
using the stochastic approach. The context of their work is somewhat differ-
ent from the one formulated in this section. Indeed, the authors considered
planar Couette [53] and tube flow [54] of dilute polymer solutions in confined
geometries with a characteristic size (i.e. the gap between the two plates and
the tube radius) that is comparable to the molecular size. In such calculations,
the velocity gradient varies on the polymer length scale. The centre of mass of
individual polymers (modelled as dumbbells) cannot be assumed to be simply
convected by the macroscopic flow, but rather is allowed to migrate across flow
trajectories.

Before describing micro-macro techniques in some detail, we consider briefly
the FENE dumbbell and Doi-Edwards models. As discussed in the introduction,
these two models are not representative of the state-of-the-art in kinetic theory.
They do however display enough complexity for our purpose.

3. TWO BASIC EXAMPLES OF KINETIC THEORY MODELS

The FENE dumbbell model

The simplest non-linear kinetic theory model of a dilute polymer solution is
known as the Finitely Extensible Non-linear Elastic (FENE) dumbbell model
(Bird et al [8]). The polymer solution is viewed as a flowing suspension of dumb-
bells that do not interact with each other and are convected by the Newtonian
solvent. Each dumbbell consists of two identical Brownian beads connected by
an entropic spring. Here, the configuration X is the three-dimensional vector
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Q connecting the two beads. A FENE dumbbell cannot extend beyond the
polymer contour length Q0. Thus, the configuration space C is the set of three-
dimensional vectors of magnitude less than Q0. The Fokker-Planck equation
(1) for the distribution function ψ(Q, x, t) reads

Dψ

Dt
= − ∂

∂Q
·
[{

κ ·Q− 2
ζ

F c(Q)
}

ψ

]
+

2kT

ζ

∂

∂Q
· ∂

∂Q
ψ, (5)

where κ = ∇vT is the transpose of the velocity gradient, ζ is a friction coef-
ficient, F c(Q) is the entropic connector force, T is the absolute temperature,
and k is the Boltzmann constant. The distribution function vanishes at the
boundary of the configuration space C, namely for all Q of magnitude Q0. We
consider entropic springs that follow Warner’s force law [71],

F c(Q) =
H

1−Q2/Q2
0

Q, (6)

where H is a spring constant. The stress-configuration relation (2) is the clas-
sical Kramers expression

τ p = n 〈QF c(Q)〉, (7)

where n is the dumbbell number density and the angular brackets 〈 · 〉 denote
the configuration space average

∫
C
· ψ dQ. Finally, the Itô stochastic differential

equation (4) that is equivalent to (5) reads

dQ = [κ ·Q− 2
ζ
F c(Q)] dt +

√
4kT

ζ
dW , (8)

where W is the three-dimensional Wiener process, namely a Gaussian stochastic
process with vanishing mean and covariance 〈W (t1) W (t2)〉 = min(t1, t2) I.

The FENE dumbbell model does not have a mathematically equivalent,
closed-form constitutive equation4. A closure approximation is thus needed
to exploit the model in continuum simulations. The simplest closure, due to
Peterlin, replaces the FENE spring force (6) by the pre-averaged FENE-P ap-
proximation

F c(Q) ≈ H

1− 〈Q2〉/Q2
0

Q. (9)

One thus obtains from (5) and (7) the FENE-P constitutive equation, namely
a differential equation for the configuration tensor A = 〈QQ〉:

DA

Dt
− κ ·A−A · κT =

4kT

ζ
I − 4H/ζ

1− tr(A)/Q2
0

A, (10)

supplemented by an algebraic expression relating stress to average configuration,

τ p = n
H

1− tr(A)/Q2
0

A. (11)

4The limit of infinitely extensible dumbbells (Q0 → +∞) is the Hookean dumbbell model,
which is equivalent to the Oldroyd-B constitutive equation.
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The Peterlin approximation can be very poor indeed (Keunings [41], Sizaire et
al [12]), and much better closure approximations are available (Lielens et al
[31, 42]). At any rate, closure-approximated dumbbell models (such as FENE-
P) are very useful in the development and evaluation of micro-macro methods,
since the micro-macro results can be compared to those obtained with the con-
tinuum approach.

The Doi-Edwards model with independent alignment

The simplest tube model of entangled linear polymers is the classical Doi-
Edwards model with independent alignment. Reptation is the single relaxation
mechanism described by the model, and the dynamics of individual tube seg-
ments are decoupled. Constraint release (thermal or convective), tube stretch,
and contour length fluctuations are ignored (Doi and Edwards [7]). The con-
figuration X is defined by the unit orientation vector u of a tube segment and
the normalized contour label s ∈ [0, 1] of the primitive chain, where s = 0 and
s = 1 correspond to the chain ends. The distribution function ψ(u, s, x, t) is
such that ψ(u, s, x, t)duds is the joint probability that at time t and position x
a tube segment has an orientation in the interval [u,u + du] and contains the
chain segment labelled in the interval [s, s + ds]. Thus, the configuration space
C is B(0, 1)× [0, 1], where B(0, 1) is the surface of the unit sphere centered at
the origin. The Fokker-Planck equation (1) for the Doi-Edwards model reads

Dψ

Dt
= − ∂

∂u
· [(I − uu) · κ · u ψ] +

1
π2τd

∂2ψ

∂s2
, (12)

where τd is the disengagement time, namely the characteristic time for a chain
to escape from its tube by reptation. The boundary conditions in configuration
space specify that ψ is isotropic at s = 0 and 1, namely

ψ(u, 0,x, t) = ψ(u, 1, x, t) =
1
4π

δ(|u| − 1), (13)

where δ is the Dirac delta function. The stress-configuration relation (2) reads

τ p = G 〈uu〉, (14)

where G is an elastic modulus, and the angular brackets 〈 · 〉 denote the config-
uration space average

∫ 1

0

∫
B(0,1)

·ψ duds. Finally, the Itô stochastic differential
equation (4) that is equivalent to (12) is given by

du = (I − uu) · κ · u dt, ds =
√

2
π2τd

dW, (15)

where W is the one-dimensional Wiener process. The evolution equation for u
is deterministic; it expresses the assumption that tube segments orient with the
macroscopic flow. The equation for s is that of a purely-diffusive process. The
coupling between u and s arises through the boundary conditions (13): when
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the process s reaches either 0 or 1, it is reflected and u is reset to a randomly
oriented unit vector (Öttinger [59]).

In view of its (relative) simplicity, the basic Doi-Edwards model can be cast
into an equivalent integral constitutive model. Consider a fluid particle whose
position at present time t is given by x; its position at some past time t′ is x′.
The particle motion is described by the displacement function x′ = x′(x, t, t′),
while the deformation gradient F (t, t′) is defined as ∂x′/∂x. The Doi-Edwards
integral constitutive model is formulated in a Lagrangian framework: it gives
the viscoelastic stress τ p at a moving fluid particle, according to

τ p(t) = G

∫ t

−∞
m(t, t′)Q(t, t′) dt′, (16)

where the integral is computed along the past trajectory of the fluid particle,
parameterised by the past time t′. Here, m is a memory function given by

m(t, t′) =
8

π2τd

∞∑

k=0

exp(− (2k + 1)2(t− t′)
τd

), (17)

and Q is a strain measure defined as

Q(t, t′) = 〈uu〉t′ = 〈 (F (t, t′) · u(t′))(F (t, t′) · u(t′))
|F (t, t′) · u(t′)|2 〉t′ , (18)

where 〈 · 〉t′ denotes the average computed with the isotropic distribution (13).
Thus, simulations based on the basic Doi-Edwards tube model5 can be per-
formed either with a micro-macro numerical method, or with a continuum tech-
nique for integral constitutive equations such as the method of deformation fields
introduced by Peters et al [72]. Again, this is very useful for the validation of
numerical developments. More sophisticated tube models that take account of
additional physics such as stretch and constraint release generally do not have
an equivalent closed-form constitutive equation (Mead et al [20], Öttinger [21],
Graham et al [22]) .

4. THE STOCHASTIC APPROACH

CONNFFESSIT

The CONNFFESSIT method introduced in 1992 by Öttinger and Laso
[56, 57] is the first implementation of the stochastic approach defined in Sec-
tion 2. The acronym stands for “Calculation Of Non-Newtonian Flow: Finite
Elements and Stochastic SImulation Technique”. Although it can deal with

5Such calculations are useful for numerical purposes, but have limited rheological relevance.
Indeed, a small Newtonian stress must be added to the viscoelastic stress in the momentum
equation (3) to correct the excessive shear-thinning of the basic Doi-Edwards model. Unfor-
tunately, this procedure is not an innocuous fix: the viscous component dominates the fluid’s
response in the stress boundary layers that are often predicted in the vicinity of no-slip solid
walls.
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Eulerian steady flows (Feigl et al [73]), CONNFFESSIT is most naturally ex-
ploited as a time-marching scheme. A steady-state flow, if it exists, is then
obtained as the long-time limit of the calculations (Laso et al [74]). At the
start of a simulation, a large number of model molecules (such as dumbbells,
bead-spring chains, or any other coarse-grained model) is distributed uniformly
over the entire flow domain. Their initial configuration is drawn from the equi-
librium distribution. As the simulation proceeds, the molecules are convected
along flow trajectories. At each time step, solution of the conservation laws (3)
is decoupled from the integration of the stochastic differential equation (4) for
each molecule. More precisely, a typical time step is defined by the following
algorithm:

S1 Solve the conservation equations (3) by means of a standard finite element
method to obtain updated values for the velocity and pressure fields, treat-
ing the current approximation to the viscoelastic stress field as a known
body force term in the momentum equation;

S2 Using the updated velocity field, compute the path of each model molecule
convected by the macroscopic flow;

S3 For each molecule, integrate the stochastic differential equation (4) along
the molecule’s path to update its configuration;

S4 Update the viscoelastic stress field by means of the average (2) computed
over the local ensemble of molecules currently located within each finite
element.

The implementation by Laso et al [74] is for two-dimensional flows of FENE-P
and FENE dumbbells. A global ensemble of Ng molecules is distributed over
the elements of the mesh. Consider a typical time step tn → tn+1 = tn + ∆t.
S1 is performed using a classical penalty finite element technique, with bi-linear
quadrilateral elements for the velocity. Each quadrilateral element is split into
two triangles over which the viscoelastic stress has a constant value assigned to
the central Gauss integration point. The time-stepping scheme is implicit in the
velocity and explicit in the viscoelastic stress. The body force term ∇ ·τ p in the
momentum equation is evaluated with stress values known at time tn. Thus, S1
yields the approximated velocity field va at tn+1. S2 is the classical problem of
particle tracking in a given finite element velocity field. The updated location
rj

n+1 of the centre of mass of the jth molecule (j = 1, 2, ..., Ng) at time tn+1 is
obtained by integrating

drj

dt
= va(rj , t), (19)

using the explicit, first-order Euler scheme and the initial condition rj
n known

from the previous time step. The simplest numerical technique for implementing
S3 is the Euler-Maruyama scheme,

Xj
n+1 = Xj

n + A(Xj
n, tn)∆t + B(Xj

n, tn) ·∆W j
n. (20)
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Here, Xj
i denotes the configuration of the jth molecule at time ti, and the

random vector ∆W j
n has independent Gaussian components with zero mean

and variance ∆t. Note that each model molecule feels its own Brownian random
force, namely ∆W j1

n and ∆W j2
n are uncorrelated for j1 6= j2. The Euler-

Maruyama scheme is of weak order 1. When used with FENE dumbbells, it can
lead to difficulties if ∆t is too large. Indeed, the length of an individual dumbbell
can become larger than the upper bound Q0, which is unphysical. Use of the
predictor-corrector scheme of weak order 2 proposed by Öttinger [59] solves this
problem. Finally, S4 amounts to approximating the stress-configuration relation
(2) by means of a local ensemble average computed in each element (or possibly
sub-element) of the mesh. The updated viscoelastic stress in element k is thus
given by

τ k
p,n+1 =

1
Nk

loc

∑

l

g(X l
n+1). (21)

Here, the counter l runs over the indices of the Nk
loc molecules that are currently

present in the kth element. The time step tn → tn+1 is thus completed.
Applications of the CONNFFESSIT approach to dumbbell models of dilute

polymer solutions, tube models of entangled polymers, colloidal dispersions, and
liquid crystalline polymers, have been reported for steady-state and transient
two-dimensional flows (Feigl et al [73], Laso et al [74], Laso [75], Öttinger and
Laso [76], Hua and Schieber [77, 78]). Extension of CONNFFESSIT to free
surface flows is performed by Cormenzana et al [79] and Grande et al [80].

Three challenges and one breakthrough

The original CONNFFESSIT scheme has had a significant impact on the
development of micro-macro techniques. It does however present three basic
difficulties. First, tracking the motion of the molecules with a simple explicit
scheme can be inaccurate in complex flow geometries, especially in the vicinity of
impervious walls where numerical errors can result in molecules leaving the flow
domain. Tracking all Ng individual molecules is also very expensive. At every
time step, one must know the index of the finite element in which each molecule
is currently located. Given the large number of molecules and elements, typically
Ng = O(105−107) and Nelt = O(103−104) in two-dimensional simulations, one
cannot use a brute force search of complexity O(Nelt ×Ng) at each time step.
Use of element neighbour lists ordered on the basis of the local direction of flow
reduces the complexity of tracking to O(Ng) [74]. The second difficulty is related
to the statistical accuracy of the viscoelastic stress. For a given velocity field, the

ensemble average (21) carries a statistical error
√

Θ/Nk
loc, where Θ = V ar[g(X)]

is the variance of g(X). Thus, each element of the mesh must, during the entire
simulation, contain enough model molecules for the local ensemble average (21)
to be accurate. Ideally, one should have Nk

loc = O(102 − 103) molecules in
each element and at all times. This is not easy (and maybe even impossible)
to ensure, especially in flow regions where large spatial gradients develop in
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the velocity and stress fields, and where one would precisely wish to use very
small elements. A means of reducing the statistical error without increasing
the size Nk

loc of the ensemble is to apply variance reduction methods, which
we discuss shortly. The third difficulty is that CONNFFESSIT stress fields
typically show spurious spatial oscillations which affect, via the momentum
equation, the numerical accuracy of the velocity field. These basic issues are
illustrated by Laso et al [74] and Halin et al [81] who compared continuum
and CONNFFESSIT simulations for FENE-P dumbbells. They motivated the
development of improved techniques which we review next.

A breakthrough came with the use of correlated local ensembles, first intro-
duced by Hulsen et al [82] in their method of Brownian configuration fields. In
this approach, the same local ensemble of model molecules is defined initially
within each material element. As time evolves, the configurations of the kth
molecule in all local ensembles is determined using the same sequence of ran-
dom numbers, i.e. the sequence only depends on the index k. Thus, strong
spatial correlations develop in the stress fluctuations within neighbouring ma-
terial elements (which feel a very similar flow history), and evaluation of the
divergence of the stress in the momentum equation leads to partial cancellation
of the fluctuations. The method of Brownian configuration fields is an Eulerian
implementation of correlated local ensembles (Öttinger et al [83]). Alterna-
tively, the so-called Lagrangian particle methods introduced by Halin et al [84]
provide a Lagrangian implementation of the same idea. In comparison with
CONNFFESSIT, these techniques produce stress and velocity fields that are
significantly smoother in space. Moreover, the cost of generating sequences of
random numbers is reduced drastically. Of course, the use of correlated local en-
sembles introduces artificial spatial correlations. It is thus forbidden altogether
in problems dominated by physical fluctuations (such as flows on a molecular
length scale).

Brownian configuration fields

The method of Brownian configuration fields introduced by Hulsen et al
[82] uses correlated ensembles of model molecules and completely avoids the
tracking problem. Instead of computing the configuration of discrete molecules
along flow trajectories, this method determines the evolution of a finite number
of Eulerian configurations fields. Each field feels a random Wiener process that
is uniform in space.

Let {Xk(x, t)}Nf

k=1 denote an ensemble of Nf configuration fields defined
over the entire flow domain Ω. In a typical simulation, Nf is of order 103. The
field Xk(x, t) represents the configuration of the kth model molecule in the
local ensemble at position x and time t. At time t = 0, Xk is set to a spatially
uniform value X0

k, drawn from the equilibrium distribution for example; all kth
molecules thus have the same initial configuration. The subsequent evolution of
the field Xk is governed by
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dXk(x, t) = {−v(x, t) ·∇Xk(x, t) + A(Xk(x, t))} dt + B(Xk(x, t)) · dW k(t).
(22)

This is indeed the Eulerian formulation of the stochastic differential equation
(4), with a familiar convection term v ·∇Xk. Note however that the stochastic
factor dW k only depends on time. As a result, the spatial gradient of the
configuration field is a well defined function of the spatial coordinates. One can
thus discretize the field Xk by means of a standard finite element approximation.
Also, in the numerical integration of (22), the same sequence of random numbers
is used to determine, everywhere in the flow domain, the configuration of the
kth model molecule in the local ensemble.

At any time t, an ensemble average computed over all configuration fields
yields the approximated viscoelastic stress,

τ a
p(x, t) =

1
Nf

Nf∑

k=1

g(Xk(x, t)). (23)

Note that the CONNFFESSIT local ensembles (21) have a size Nloc that varies
both with time and position in the finite element mesh. In contrast, the en-
semble average (23) involves a number Nf of realisations that is fixed and in-
dependent of mesh refinement. This provides a much more effective control
of the statistical error. In their early implementation for Hookean dumbbells,
Hulsen et al [82] solve the Nf evolution equations (22) for the configuration
fields by means of a discontinuous Galerkin (DG) finite element method, with
explicit Euler-Maruyama time stepping. In the DG approach, the interpolation
functions are discontinuous across neighbouring elements, which induces only
weak coupling between elements. Thus, at each time step, all configuration and
stress calculations can be performed at the element level. Spatial discretization
of the conservation laws is achieved by means of the Discrete Elastic-Viscous
Split Stress (DEVSS) formulation of Guénette and Fortin [85].

Van Heel et al [86] have applied the method of configuration fields to the basic
Doi-Edwards model described in Section 3. They define a set {uk(x, t), sk(t)}Nf

k=1

of Nf configuration fields uk and associated random walkers sk. In view of (15),
the field uk evolves according to

∂

∂t
uk(x, t)+v(x, t) ·∇uk(x, t) = [I −uk(x, t)uk(x, t)] ·κ(x, t) ·uk(x, t), (24)

while the random walker sk performs Brownian motion,

dsk =
√

2
π2τd

dWk(t), (25)

with a reflecting boundary condition when it reaches 0 or 1. Note that sk is
not a function of position x. Whenever sk is reflected, the associated field uk
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is instantaneously reset to a spatially uniform, random field drawn from the
isotropic distribution on the surface of the unit sphere; its subsequent evolution
is again governed by (24) until the next reflection of sk. Here again, the method
of configuration fields produces much smoother results than CONNFFESSIT.
Indeed, in a typical CONNFFESSIT simulation of the Doi-Edwards model, in-
dividual tube segments are convected by the flow and have their own associated
random walkers. Thus, not only are the tube segmental orientations reset at
uncorrelated times (when the associated random walker is reflected), they are
also reset to uncorrelated random values. This induces severe spatial oscillations
in the numerical results for velocity and stress. Finally, we note that in more
complex tube models (e.g. Öttinger [21]), the random walker sk associated with
the field uk follows a stochastic differential equation that contains a determin-
istic drift term. As a result, the local velocity gradient has an impact on the
evolution of sk, and reflections of sk are dependent on both time and space.
The method of configuration fields can be modified to handle this complication
(Gigras and Khomami [87]).

Other applications and extensions of the method of configuration fields have
appeared recently. Simulations of fibre suspensions are reported by Phan-Thien
and Fan [88], and Fan et al [89, 90]. The linear stability of simple flows involv-
ing FENE dumbbells is studied by Somasi and Khomami [91]. Chauvière and
Lozinski [92] have derived from the method of configuration fields a new tech-
nique for computing viscoelastic flows with dumbbell models that is devoid of
stochastic noise and is competitive with conventional continuum schemes (see
also Chauvière [93]). In fact, the basic reason why the authors could derive
noise-free expressions for the stress tensor is that they consider molecular mod-
els (Hookean and FENE-P dumbbells) which have Gaussian statistics and an
equivalent constitutive equation. Their approach would not apply to FENE
dumbbells, for example. Finally, Ramirez and Laso [94] have recently extended
the method of Brownian configuration fields to handle three-dimensional flows.

Lagrangian particle methods

The Lagrangian particle method (LPM) introduced by Halin et al [84] is
another further development of CONNFFESSIT. Here again, the conservation
laws are solved at each time step by means of a standard finite element tech-
nique, with the viscoelastic stress known from the previous step. In LPM, the
stress is computed at a number Npart of Lagrangian particles that are convected
by the flow. Each Lagrangian particle carries a number Nd of model molecules.
Tracking is thus performed for Npart particles instead of Npart ×Nd molecules,
using a very accurate fourth-order Runge-Kutta scheme within the parent ele-
ment. Along the path of each particle, LPM solves the stochastic differential
equation (4) for each of the Nd molecules. Note that LPM can be used either
with uncorrelated or correlated local ensembles of model molecules. In the first
case, Npart × Nd independent Wiener processes drive the stochastic evolution
of molecular configurations, as in a CONNFFESSIT simulation. In the second
case, the same initial ensemble of molecules is used in each Lagrangian particle,
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and the same Nd independent Wiener processes are generated to compute the
configuration of corresponding molecules in each particle. In fact, LPM with
correlated ensembles of molecules can be viewed as a (Lagrangian) method of
characteristics for solving the evolution equation (22) that governs a partic-
ular Brownian configuration field; the number Nf of fields then corresponds
to the number Nd of molecules carried by each Lagrangian particle. The up-
dated viscoelastic stress is computed at each Lagrangian particle by means of
a local ensemble average involving the configurations of Nd molecules. At the
end of a typical time step for the solution of the conservation laws, we have
at our disposal values of the viscoelastic stress at discrete Lagrangian parti-
cles with a known position. These Lagrangian results then feed the Eulerian
discretized momentum balance as follows: within each finite element, LPM com-
putes the linear least-squares polynomial that best passes through the available
Lagrangian stress data. Clearly, this procedure requires that at least three La-
grangian particles be present in each element at all times. LPM results obtained
for non-linear dumbbells [84] are in excellent agreement with those provided by
the method of configuration fields.

Use of LPM with highly graded finite element meshes requires a large num-
ber of Lagrangian particles. This motivated the development of the adaptive
Lagrangian particle method (ALPM) by Gallez et al [95]. At each time step,
ALPM ensures that all elements of the mesh have a number of Lagrangian
particles in the user-specified interval [N elt,min

part , N elt,max
part ]. This necessitates an

elaborate adaptive procedure wherein Lagrangian particles are either created
or destroyed. Once a new particle is created, the configuration of the local
Nd molecules must be properly initialised in order to allow for the subsequent
solution of the stochastic differential equation (4) along the particle’s path.
Initialisation is performed at the element level, by means of a least-squares ap-
proximation based on the current configuration of molecules in neighbouring
particles. ALPM is superior to LPM both in terms of cost and numerical ac-
curacy. Unfortunately, it is much more intricate to implement, and can only
be used with correlated local ensembles in view of the initialisation step for
newly-created particles. Note that Gallez reports in his Ph.D. thesis [96] vari-
ous ALPM simulation results for FENE bead-spring chains with up to 8 springs.
This demonstrates the feasibility of stochastic micro-macro methods for molec-
ular models with configuration spaces of dimension NC = O(10).

Wapperom et al [97] further developed LPM with their backward-tracking
Lagrangian particle method (BLPM). Instead of dropping Lagrangian particles
into the flow and following them through the flow domain, the particle positions
at which the viscoelastic stress is evaluated are fixed and specified a priori. The
stress is computed by tracking the particles backwards in time over a single time
step ∆t, evaluating suitable initial values of configurations at that point, and
then integrating the stochastic differential equation forwards along the obtained
trajectories. Let rB denote an arbitrary fixed position in the mesh. In general,
the particle trajectory leading to that position changes from one time step to
the next, so that different Lagrangian particles arrive at rB as time evolves.
The position rI at tn−1 of the Lagrangian particle which is located at rB at
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current time tn is obtained by integrating (19) backwards in time,

rI = rB −
∫ tn

tn−1

v dt. (26)

Then, starting from the previously computed values of the Nd molecular con-
figurations Xj at rI and time tn−1, one obtains the updated configurations at
rB and tn by integrating the stochastic differential equation (4) along the path
joining rI and rB . The initialisation process requires that an Eulerian field be
computed from the Lagrangian data for each realisation Xj and at each time
step. As with ALPM, correlated ensembles of molecules must be used for the
initialisation process to be meaningful. Wapperom et al [97] have implemented
BLPM for two-dimensional transient flows of non-linear dumbbell models. In
each quadrilateral element of the mesh, the fixed positions rB are defined at
the nine nodal positions. For all problems which can be solved with correlated
ensembles of model molecules, BLPM is the best available Lagrangian particle
method, both in terms of numerical behaviour and cost. BLPM is also very
efficient in continuum simulations with a constitutive equation of differential
type (e.g. Wapperom and Keunings [70]). More generally, Lagrangian particle
methods take account in a most natural way of the purely convective nature of
the stochastic differential equation (4).

Mathematical issues and variance reduction

The stochastic formulation of viscoelastic flows raises several mathematical
issues of fundamental interest. In particular, the non-linear coupling between
the conservation laws (3) and the stochastic differential equation (4) has been
investigated recently in a series of theoretical papers by Jourdain et al [98, 99],
and Lelièvre [100]. The results are valid for the start-up of two-dimensional
planar shear flow of Hookean and FENE dumbbells. For this simple but non-
trivial flow, all convection terms of the form v · ∇ vanish in the governing
equations. The problem for Hookean dumbbells is shown to be well posed in the
sense of Cauchy, and convergence of the numerical solution to the exact solution
is established for a particular finite element micro-macro scheme (Jourdain et
al [98]). An optimal error estimate is derived by Lelièvre [100]. The analysis
is more complicated for FENE dumbbells. In view of (6), the drift term in the
stochastic differential equation (8) is non-linear and singular. This raises issues
of existence and uniqueness of solution of the stochastic differential equation
itself, even for a known velocity field; theoretical results are given by Jourdain
and Lelièvre [101]. For the coupled problem defined by equations (2) to (4),
Jourdain et al [99] present a proof of local-in-time existence and uniqueness of
the exact solution.

The Eulerian evolution equation (22) for a Brownian configuration field is
in fact a stochastic partial differential equation to which a rigorous meaning is
technically difficult to assign, even though the random process dW is uniform
in space (Le Bris and Lions [102]). A similar theoretical problem would arise if
one were to write down the Eulerian formulation of the stochastic differential
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equation (4) in the context of uncorrelated local ensembles of model molecules.
In this case, dW would be a function of space labelled by the flow trajectory.

Another important topic is that of the statistical variance of the numerical
solution. In the continuous (or exact) formulation of the coupled problem, the
velocity and viscoelastic stress fields are deterministic, while only the molecular
configurations are random. In the discrete problem, all variables are random
and the numerical accuracy of a simulation is dictated by the variance of the
discrete variables. In practice, a large variance in the numerical results would
imply that independent micro-macro simulations yield vastly different solutions
for the same flow problem. We have already discussed a significant beneficial
effect of using correlated ensemble of model molecules: at each time step, the
approximate velocity and viscoelastic stress fields are much smoother functions
of x than those obtained with uncorrelated ensembles. But what is the effect
on the variance? The early numerical experiments with correlated ensembles by
Öttinger et al [83] showed that the variance of the approximate velocity field
is drastically reduced; this led the authors to regard the method of Brownian
configuration fields as a very powerful and general variance reduction technique.
In fact, the latter statement is only partially correct. Indeed, Halin et al [84]
and Bonvin and Picasso [103] have independently shown in their simulations
with non-linear dumbbells that use of correlated ensembles reduces the vari-
ance of the velocity but increases the variance of the viscoelastic stress. This
counter-intuitive experimental finding must be due to the non-linear coupling
between the conservation laws and the stochastic differential equations.6 It has
been convincingly established and explained in the recent theoretical work by
Jourdain et al [104] for the start-up of shear flow of Hookean dumbbells. These
authors also address the question of finding the optimal spatial dependence of
the Wiener processes that would yield minimum variance in the approximate
stress and velocity. Moreover, using spatially-uniform Wiener processes, Jour-
dain et al [104] observe by way of numerical experiments that the ensemble
average for the stress is a biased estimator7. The bias is of order 1/Nf (or
equivalently 1/Nd), and is also due to the non-linear coupling between velocity
and molecular configurations.

A standard strategy for variance reduction is the use of control variates ob-
tained from parallel process simulations. For an early application to polymer
dynamics, see Melchior and Öttinger [105]. The basic idea is quite simple to
state: a control variate should have about the same fluctuations as the random
process of interest, but a vanishing average. Upon subtraction of the control
variate from the variable of interest, the average is unchanged but the fluctu-
ations are reduced. Bonvin and Picasso [103, 106] have implemented control
variates within the framework of Brownian configuration fields. In addition to
the viscoelastic stress τ p, the authors consider the auxiliary stress τ̄ p such that

τ̄ p = 〈ḡ(X̄)〉, (27)
6Indeed, for a given deterministic velocity field, the variance of the approximate stress is

not affected by the spatial dependence of the Wiener processes.
7This also confirms an earlier finding by Halin et al [84].
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where X̄ evolves according to

dX̄ = {−v̄ ·∇X̄ + Ā} dt + B̄ · dW . (28)

The stress equation (2) is written in the equivalent form

τ p = 〈g(X)− ḡ(X̄)〉+ τ̄ p. (29)

Note that the same Wiener process is used in the evolution equations for X̄ and
X. Thus, if (ḡ, v̄, Ā, B̄) are selected sufficiently close to (g, v, A, B), one ex-
pects that the difference g(X)− ḡ(X̄) has a much smaller variance than g(X).
The average 〈g(X)− ḡ(X̄)〉 is computed by means of parallel stochastic simu-
lations for X and X̄. In order to apply the decomposition (29), a constitutive
equation must be available to compute the auxiliary stress τ̄ p in a deterministic
way, in parallel with the velocity and actual viscoelastic stress. For example,
Bonvin and Picasso [103, 106] select v̄ = v and use the FENE-P dumbbell model
to define control variates for FENE dumbbells. Their numerical results for the
flow through a contraction indeed show a significant reduction of variance in
the numerical results relative to the method of Brownian configuration fields.
The CPU time to compute the viscoelastic stress is more than doubled, however.

Other developments

The micro-macro techniques described above decouple at each time step
the solution of the stochastic equations (micro) and conservation laws (macro).
Even though both the micro and macro problems can be discretized in time
by means of an implicit technique, the decoupled micro-macro algorithm is at
best semi-explicit. This may require the use of very small time steps to ensure
stability. Laso et al [107] have recently proposed an approach to fully implicit
micro-macro stochastic simulations based upon a size reduction technique. The
authors show that the very large non-linear set of discrete equations to be solved
at each time step can be reduced (by means of the Schur complement) to a sys-
tem having the same size as a purely macroscopic formulation. The feasibility of
implicit micro-macro techniques is illustrated in the start-up of one-dimensional
shear flow of Hookean dumbbells.

Bell et al [108] combine Brownian dynamics and a spectral method (Cheby-
shev collocation) to study the one-dimensional transient problem of recovery
after shear flow. Here, an ensemble of model molecules is attached to each
collocation point. Results are obtained for the bead-spring FENE chain model
of dilute polymer solutions (with up to 8 springs) and the Curtiss-Bird model
of entangled systems. Finally, Tran-Canh and Tran-Cong [109] couple neural
networks and stochastic simulation to study the start-up of planar Couette flow
of non-linear dumbbells.
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5. THE FOKKER-PLANCK APPROACH

We have seen in the previous section that control of the statistical noise is a
major issue in stochastic micro-macro simulations. This problem does not arise
at all in the Fokker-Planck approach, since the viscoelastic stress τ p and the
primary unknown fields (v, p, ψ) governed by eqs. (1) to (3) are deterministic
quantities. The difficulty, however, is that the Fokker-Planck equation (1) must
be solved for ψ in both physical and configuration spaces. This necessitates
a suitable discretization procedure for all relevant variables, namely position
x, configuration X, and time t (in transient flow). The dimensionality of the
problem can be daunting, and consideration of molecular models with many
configurational degrees of freedom does not appear feasible. This probably ex-
plains why relatively few studies based on the Fokker-Planck approach have
appeared in the literature, until very recently at least.

Fokker-Planck simulations of rheometrical flows

It is useful to briefly consider rheometrical flows, wherein the velocity field
is specified and the distribution function only depends on configuration X and
possibly time t. To date, most of the Fokker-Planck simulations of rheometrical
flows have been for models of rod-like polymers (Doi and Edwards [7]), either
in dilute solution or in the nematic liquid crystalline phase. Thus, the configu-
ration space is only of dimension NC = 2. Fokker-Planck simulations have also
been performed with molecular models having a three-dimensional configura-
tion space, but we are not aware of results published for NC > 3. In contrast,
stochastic simulations of rheometrical flows have been reported for molecular
models with NC = O(102) (e.g. Somasi et al [15]).

Typically, a numerical approximation is sought for the distribution function
ψ by means of the Galerkin spectral technique. This is a standard method of
weighted residuals wherein the trial functions are identical to the basis functions.
Proper selection of the basis functions is crucial for the accuracy of the numerical
approximation. In 1972, spherical harmonics were used by Stewart and Sørensen
[110] in their pioneering study of steady shear flow of a dilute suspension of rigid
dumbbells. Fifteen years later, Strand et al [111] extended these results to start-
up of shear flow. Since spherical harmonics are the eigenfunctions of the Laplace
operator on the unit sphere, this particular choice of basis functions is expected
to be optimal in the diffusion-dominated limit of small deformation rates. A
similar approach was used in the analysis of the Doi model for rod-like polymers
in the nematic phase. Here, the Fokker-Planck equation is non-linear in ψ in
view of the mean-field interaction potential between rods. Detailed Fokker-
Planck simulations of the Doi model in shear flow have uncovered the very rich
non-linear dynamical behaviour of nematic rod-like polymers (Marrucci and
Maffettone [112], Larson [113], Larson and Öttinger [114], Faraoni et al [115],
Grosso et al [116], Suen et al [117]).

To our knowledge, the first Fokker-Planck simulations in a three-dimensional
configuration space are due to Warner [71]. The author extended the technique
developed by Stewart and Sørensen [110] for rigid polymers to study steady-
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state and oscillatory shear flows of FENE dumbbells. Unfortunately, there are
problems with this work, one of which being the singularity of the computed
distribution for a vanishing dumbbell length. It was only 13 years later that Fan
[118] improved Warner’s technique, using spherical harmonics for the orienta-
tional dependence of ψ, and Jacobi polynomials for the dependence on dumbbell
length. Fan [119] applied the same technique to study the steady-state shear
response of the Bird and DeAguiar encapsulated FENE dumbbell model of en-
tangled polymers.

When the flow strength increases, the diffusion term no longer dominates
in the Fokker-Planck equation, and the distribution function usually becomes
highly localized as the flow tends to orient the model molecules in preferred di-
rections. Thus, the number of basis functions required to obtain accurate results
grows drastically and spherical harmonics are no longer the most appropriate
basis functions. For models with a configuration-dependent diffusivity, namely
D = D(X), spherical harmonics are not eigenfunctions of any operator present
in the Fokker-Planck equation. Moreover, conventional spectral basis functions
like spherical harmonics have global support, which leads to discrete systems
with dense matrices. These observations led Armstrong et al [120] and Suen et
al [117] to select Daubechies wavelets as alternative basis functions, in view of
their localization properties and compact support.

Fokker-Planck simulations of complex flows

The first implementation of the Fokker-Planck approach for a complex flow
appeared in 1989 and is due to Fan [55]. The author used a boundary element
method for the conservation laws and a Galerkin spectral scheme with spheri-
cal harmonics for the Fokker-Planck equation. Fan reported results for planar
channel flow of the dilute multibead-rod model (NC = 2), assuming that the
convection term v ·∇ψ vanishes identically in the Fokker-Planck equation. Con-
sideration of the convection term is a major challenge, first addressed in 1998 by
Nayak [121] for two-dimensional flows of rod-like polymers either in the dilute or
nematic phase. She discretized the convection operator by means of the discon-
tinuous Galerkin finite element method, and used Daubechies wavelets for the
discretization in configuration space (see also Suen et al [46]). Grosso et al [45]
computed the response of the Doi model of rod-like polymers in two-dimensional
flow between eccentric cylinders. They combined a Galerkin spectral solution in
configuration space and a Lagrangian streamline integration in physical space
(as in LPM). In their work, however, the coupling between viscoelastic stress
and kinematics is ignored, so that the velocity field is the one computed for a
Newtonian fluid. The state of the art in Fokker-Planck simulations has been
updated drastically in a series of reports bearing 2003 as publication or submis-
sion year (Lozinski et al [122], Chauvière and Lozinski [123, 124], Lozinski and
Chauvière [125], Suen et al [126]). Although many important features of these
recent techniques largely depend on the particular molecular model selected for
the simulations, we attempt in the remainder of this section to identify and
describe the common general ideas.
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As in the stochastic approach, solution of the conservation and Fokker-
Planck equations are decoupled at each time step. For solving the conserva-
tion laws, Suen et al [126] use the DEVSS-G finite element technique, while
a Galerkin spectral element technique is implemented by Lozinski et al [122],
Chauvière and Lozinski [123, 124], and Lozinski and Chauvière [125]. The new
velocity field is inserted in the Fokker-Planck equation, which is solved in con-
figuration and physical spaces to update the distribution function ψ. To this
end, use of a fully implicit method would be prohibitively expensive. It is im-
perative to somehow decouple the computation in physical space Ω from that
in configuration space. Lozinski et al [122] achieve this by splitting each time
step into two consecutive sub-steps,

ψ̃ − ψn

∆t
= − ∂

∂X
· {A ψn}+

1
2

∂

∂X

∂

∂X
: {D ψn}, (30)

ψn+1 − ψ̃

∆t
+ vn ·∇ψn+1 = 0. (31)

Equation (30) for the intermediate value ψ̃ is defined at each collocation point of
the spectral element mesh covering the flow domain Ω. It is solved by means of
a Galerkin spectral method, as discussed in the previous section. The first sub-
step is thus an ensemble of explicit, local updates in configuration space. The
second sub-step (31) is an implicit, global update of the distribution function in
physical space. Lozinski et al [122] solve (31) by means of a streamline-upwind-
Petrov-Galerkin spectral element method, namely an element-by-element tech-
nique designed for convection problems. Note that the authors actually split
the first sub-step into O(10) smaller explicit steps in order to ensure numeri-
cal stability. In further developments of the method, Chauvière and Lozinski
[123, 124], and Lozinski and Chauvière [125] adopt an implicit scheme, wherein
ψn is replaced by ψ̃ in the right-hand-side of (30). Thus, the method can be
used with a much larger time step ∆t. The above ideas have been applied
by Lozinski et al [122] to two-dimensional flows of the Öttinger tube model
[21], for which NC = 3. Implementations for FENE dumbbells are reported by
Chauvière and Lozinski [123, 124], and Lozinski and Chauvière [125]. These
authors considered both the (actual) three-dimensional configuration space of
FENE dumbbells [124] and the (artificial) two-dimensional case wherein planar
dumbbell orientation is assumed [123, 125]. They report an increase in simula-
tion cost of one order of magnitude when going from NC = 2 to NC = 3. This
clearly emphasizes the dimensionality problem of the Fokker-Planck approach
alluded to previously.

Building on the work of Nayak [121], Suen et al [126] have recently proposed a
mixed finite-element/wavelet-Galerkin method for computing two-dimensional
flows with the double reptation tube model (NC = 3) of Bird et al [8]. The
authors solve the Fokker-Planck equation in physical space by means of the
discontinuous Galerkin technique. A semi-implicit time-stepping scheme is used,
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wherein orientation diffusion is treated implicitly and all other operators in the
Fokker-Planck equation are treated explicitly. Together with a node-by-node
decomposition strategy, this allows for an efficient solution within each finite
element covering the flow domain in physical space.

Finally, two recent papers consider non-homogeneous flows wherein the cen-
tre of mass of the model molecules is not assumed to be simply convected
by the flow, but rather is allowed to migrate across trajectories. Thus, the
Fokker-Planck equation contains an additional spatial diffusion term. Lozinski
et al [127] study the start-up of Poiseuille flow of FENE dumbbells with two-
dimensional orientation. The results are in agreement with the early stochastic
simulations of the same problem by Biller and Petruccione [54]. Suen et al [128]
simulate pressure-driven channel flow of a modified Doi model for liquid crys-
talline polymers with spatially dependent concentration.

Fokker-Planck versus stochastic simulations

Only few comparisons have been reported to date between the stochastic
and Fokker-Planck approaches, in the simulation of the same flow problem and
with identical discretization in physical space (Lozinski and Chauvière [125],
Chauvière and Lozinski [124], Suen et al [126]). Since these simulations are for
molecular models with a configuration space of dimension NC ≤ 3, the compari-
son is bound to be somewhat biased in favour of the deterministic Fokker-Planck
methods. The authors have implemented the method of Brownian configura-
tion fields by means of the same discretization technique in physical space as
that used in their Fokker-Planck simulations. The results are for the bench-
mark problem of planar flow past a cylinder confined in a channel. As could
be expected, one concludes from these comparisons that the Fokker-Planck ap-
proach produces much more accurate results for a given overall cost, namely
CPU time and memory requirements. Chauvière and Lozinski [124] also report,
however, that the stochastic approach is significantly more stable as far as the
maximum attainable Weissenberg number is concerned. Future work will re-
veal whether the Fokker-Planck approach is feasible at all for molecular models
living in dimensions of order 10 or more.

Finally, hybrid techniques based on stochastic simulation and approximate
representations of the distribution function have been proposed recently by Jen-
drejack et al [129] and Ellero and Kröger [130]. Although promising, these
schemes remain to be tested in the simulation of complex flows.

6. CONCLUSIONS

The multiscale modelling of viscoelastic flows is an exciting recent development
in computational rheology, which nicely complements the efforts made by the
community on more conventional continuum simulations. Micro-macro meth-
ods allow the analysis of complex flow using a kinetic theory model that does
not have an equivalent closed-form constitutive equation. The difficult theo-
retical problem of obtaining accurate closure approximations is thus bypassed
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altogether, and the computational rheologist gains access to a potentially much
wider modelling space. Micro-macro techniques are of course more demanding
in computer resources than continuum methods, but they are generally easier
to implement efficiently on parallel computers. To date, available stochastic
and Fokker-Planck micro-macro techniques have been implemented for models
of kinetic theory having but few configurational degrees of freedom. This par-
ticular context currently favours the deterministic Fokker-Planck methods. For
more complex molecular models, however, extension of the stochastic approach
seems to be the only feasible route. Creative ideas will perhaps disprove this
statement.
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