This looks like Fibonacci... But is it really? A combinatorial open problem

Romain Hollanders Balázs Gerencsér Jean-Charles Delvenne Raphaël Jungers

	T ₂	T ₃	T_4	T_5	T_6	T ₇	T ₈	T ₉	T ₁₀	T ₁₁	Т
<	1110 <	1101 <	1011 <	0111 <	1100 <	1010 <	1001 <	0110 <	0101 <	0011 <	1(
		4 jumps			3 Jun	nps		2 jumps		2 jumps	

	T_2	T_3	T_4	T_5	T_6	T_7	T ₈	T ₉	T ₁₀	T ₁₁	Т
<	1110 <	1101 <	1100 <	1011 <	1010 <	1001 <	1000 <	0111 <	0110 <	0101 <	01
[=	$= \{1, 5, 8\}$	8, 9, 12,	13, 15, 1	16} and	card(I) = 8					

the constant is important	n	
• that $\operatorname{card}(I) \leq 2 \cdot \frac{2^n}{2} \perp O(n(n))$	Maximum m	
$\sum_{n \in \mathbb{N}} \frac{p(n)}{n} + O(p(n))$	$2 \cdot \frac{2^n}{n}$	