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Solving Markov Decision Processes (MDPs) is a recurrent task in engineering. Even though it is known that solutions
for minimizing the infinite horizon expected cost can be found in polynomial time using LP techniques, iterative
methods like the Policy Iteration algorithm (PI) remain usually the most efficient in practice. This method is guaran-
teed to converge in a finite number of steps. Unfortunately, it is known that it may require an exponential number of
steps in the size of the problem to converge. On the other hand, many unknowns remain considering the actual worst
case complexity. In this work, we provide the first improvement over the fifteen years old upper bound from Mansour
and Singh (1999) by showing that PI requires at most 2 · 2n

n
iterations to converge.
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Markov Decision Processes (MDPs) are a renowned tool to model decision problems. They are rep-
resented through the set of n states in which a system can be. When being in a state, the system must
choose an available action in that state, each of which induces a cost and moves the system to another state
according to given transition probabilities. An MDP can always be reduced to a form in which every state
has exactly two available actions, hence we restrict ourselves to that case. A policy refers to the choice of
one action in every state. Given any policy (there are 2n of them), we can associate a value to each state
of the MDP that corresponds to the infinite horizon expected cost of an agent starting in that state. This
expected cost can be defined in several ways depending on the application. To solve an MDP, one should
provide the optimal policy that minimizes the value of every state. Such a policy always exists.

One practically efficient way of finding the optimal policy for an MDP is to use the Policy Iteration
algorithm (PI). Starting from an initial policy π0, this simple iterative scheme improves the current policy
until convergence to the optimal one π∗. More precisely, being at a policy πi at step i, PI identifies all
the states in which switching to the other action while keeping the actions of every other state unchanged
improves the value of every state. We refer to these states as the improvement set Tπi of πi. Then, πi+1

is obtained from πi by switching the actions of every state in Tπi . The algorithm stops with the optimal
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policy πK = π∗ whenever TπK is empty. The fact that πi+1 improves the value of every state guarantees
convergence in a finite number of steps.

There is a natural partial ordering on the policies of an MDP. We put a directed link from policy π to
policy σ when σ gives values at least as good to every state as π. We may view the policies as the vertices
of a cube of dimension n. The partial order gives an orientation to the edges of the cube exhibiting a
particular structure which we call an Acyclic Unique Sink Orientation (AUSO). In AUSOs, the cube with
its directed edges must satisfy two conditions: (1) the cube must be acyclic and (2) any sub-cube must
have a unique sink, i.e., a unique vertex with only incoming links. With this structure, PI steps can be
viewed as jumps in the cube, with the global sink corresponding to the optimal policy. Hence, bounding
the number of steps of PI can be relaxed to bounding the number of jumps in an AUSO.

Policy Iteration has been shown to require Ω(2n/7) steps to converge in the worst case by Fearnley
(2010). On the other hand, the best known upper bound to date was due to Mansour and Singh (1999)
with a 6 · 2

n

n steps bound, also holding for AUSOs. In this work, we provide the first improvement in
fifteen years over Mansour and Singh’s bound, which is given in Theorem 1.

Theorem 1 The number of iterations of Policy Iteration is bounded above by 2 · 2
n

n + o
(
2n

n

)
.

Our proof uses the ingredients of Mansour and Singh’s, and does not make use of the non-inclusion
property of the improvement sets. This property states that for any two policies πi and πj explored by PI
with i < j, then Tπi 6⊆ Tπj . It was thought by Mansour and Singh to be a key ingredient to improve
the upper bound. As a side result, we showed that it is not the case. To this end, we built a sequence
of policies of size 2 · 2n

n satisfying all the ingredients from Mansour and Singh’s proof as well as the
non-inclusion property. Thus our upper bound cannot be improved by the non-inclusion property alone.

Hansen (2012) and Zwick proposed a relaxation of the upper bound problem on AUSOs and found
using exhaustive search that the number of steps of PI are bounded above for n = 1, ..., 6 by Fn+2, the
(n + 2)nd Fibonacci number. Following this observation, they conjectured Fn+2 to be a possible upper
bound for the number of steps of PI. However, it is interesting to note that for n = 3, ..., 6, our 2 · 2

n

n
bound also fits the Fibonacci numbers almost perfectly, as shown in the table below. Which bound is more
likely to be the right fit is therefore unclear at the moment.

n 1 2 3 4 5 6 7
max PI 2 3 5 8 13 21 ≥ 33
Fn+2 2 3 5 8 13 21 34
2 · 2

n

n 4 4 5.3 8 12.8 21.3 36.6
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